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Abstract

:

The investigation of symmetric/asymmetric structures and their applications in mathematics (in particular in operator theory and functional analysis) is useful and fruitful. A metric space has the property of symmetry. By looking in the same direction and using the  α -admissibility with regard to  η  and  θ -functions, we demonstrate some existence and uniqueness fixed point theorems. The obtained results extend and generalize the main result of Isik et al. (2019). At the end, some illustrated applications are presented.
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1. Introduction and Preliminaries


The known work in fixed point theory is the Banach contraction principle which ensured the existence of a fixed point for a contractive self-mapping over a complete metric space. Numerous researchers have built up the existence of fixed points in many directions, see [1,2,3,4,5,6,7,8,9,10,11,12,13].



In 2014, Jleli and Samet [14] presented a new type of contractive mappings, named as  θ -contractions.



Definition 1

([14]). Let T be self-mapping on a complete metric space   ( Υ , ρ )  . Such a T is named as a θ-contraction if there is   k ∈   (0,1) such that


  ν , ϖ ∈ Υ ,    ρ  ( T ν , T ϖ )  > 0 ⇒ θ  ( ρ  ( T ν , T ϖ )  )  ≤   [ θ  ( ρ  ( ν , ϖ )  )  ]  k  ,  



(1)




where Θ is the family of functions   θ : ( 0 , ∞ ) → ( 1 , ∞ )   verifying the following:




	(θ1)

	
θ is nondecreasing;




	(θ2)

	
for every sequence    {  ν n  }  ⊂  ( 0 , ∞ )  ,   we have     lim  n → ∞   θ  (  ν n  )  = 1    iff    lim  n → ∞     ν n  = 0 ;  




	(θ3)

	
there are   β ∈ ( 0 , 1 )   and   σ ∈ ( 0 , ∞ ]   such that     lim  ν →  0 +       θ ( ν ) − 1   ν β    = σ .   











Theorem 1

([14]). Let   ( Υ , ρ )   be a complete metric space and   T : Υ → Υ   be a θ-contraction. Then T admits a unique fixed point    ν ☆  .   Moreover, for each   ν ∈ Υ ,   the sequence    T n  ν   converges to    ν ☆  .  





Later, Ahmad et al. [15] introduced the following.



Definition 2

([15]). Let Γ be the set of functions   ξ : ( 0 , ∞ ) → ( 1 , ∞ )   verifying:




	(ξ1)

	
ξ is nondecreasing,




	(ξ2)

	
for a sequence    {  ν n  }  ⊆  ( 0 , ∞ )   , we have     lim  n → ∞   ξ  (  ν n  )  = 1    if and only if     lim  n → ∞    ν n  = 0   ,




	(ξ3)

	
ξ is continuous on   ( 0 , ∞ )  .











Lemma 1

([15]). Let   ( Υ , ρ )   be a complete metric space and   ξ ∈ Γ  . Then   ( Υ , ξ ∘ ρ )   is also a complete metric space.





Example 1.

The following functions    ξ 1   ( ν )  =  e ν   ,    ξ 2   ( ν )  =  e  ν    ,    ξ 3   ( ν )  =  e   ν  e ν      ,    ξ 4   ( ν )  = cosh ν  ,    ξ 5   ( ν )  = 1 + ln  ( 1 + ν )    and    ξ 6   ( ν )  =  e  ν  e ν     , are elements in Γ.





The concept of  α -admissibility is given as follows:



Definition 3

([16]). Given   f : Υ → Υ   and   α : Υ × Υ → [ 0 , ∞ )  . Such an f is designated α-admissible if   ∀ ν , ϖ ∈ Υ   with   α ( ν , ϖ ) ≥ 1   implies   α ( f ν , f ϖ ) ≥ 1  .





The notion of  α -admissibility in regards to a function  η  is given as follows:



Definition 4

([17]). Given   f : Υ → Υ   and   α , η : Υ × Υ → [ 0 , ∞ )  . Such an f is α-admissible with respect to η if   ν , ϖ ∈ Υ   with   α ( ν , ϖ ) ≥ η ( ν , ϖ )   implies   α ( f ν , f ϖ ) ≥ η ( f ν , f ϖ )  .





Many fixed point results using the above notion appeared, see [18,19,20,21,22]. The perception of triangular  α -admissibility is stated in the following:



Definition 5

([4]). Given   S , T : Υ → Υ   and   α , η : Υ × Υ → [ 0 , ∞ )   so that




	1 

	
if   α ( ν , ϖ ) ≥ η ( ν , ϖ )  , then   α ( S ν , T ϖ ) ≥ η ( S ν , T ϖ )   and   α ( T S ν , S T ϖ ) ≥ η ( T S ν , S T ϖ )  ;




	2 

	
if   α ( ν , z ) ≥ η ( ν , z )   and   α ( z , ϖ ) ≥ η ( z , ϖ )  , then   α ( ν , ϖ ) ≥ η ( ν , ϖ )  .









Then we designate that the pair   ( S , T )   is triangular α-admissible, appertaining to the function η.





Example 2

([4]). Let   Υ = [ 0 , ∞ )  . Define   S , T : Υ → Υ   by   S ν = ν   and   T ν =  ν 2   . Consider   α , η : Υ × Υ → [ 0 , ∞ )   as   α  ( ν , ϖ )  =  e  ν + ϖ     and   η  ( ν , ϖ )  =  e  ϖ − ν    . Clearly, the pair   ( S , T )   is triangular α-admissible regarding η.





Samet et al. [16] initiated the concept of  α - ψ -contractions and they demonstrated the existence and uniqueness of common fixed points. Denote by  Ψ  the family of nondecreasing functions   ψ : [ 0 , ∞ ) → [ 0 , ∞ )   such that     ∑  n = 1  ∞   ψ n   ( ν )  < ∞    for all   ν > 0 .   If   ψ ∈ Ψ ,   then   ψ ( ν ) < ν   for all   ν > 0 .  



Definition 6

([23]). Let   Υ = [ 0 , ∞ )  . Any   ψ ∈ Ψ   is said to be an altering distance function if




	1. 

	
ψ is nondecreasing and continuous;




	2. 

	
  ψ ( ν ) = 0 ⟺ ν = 0  .











The results presented in [16] can be abstracted as follows.



Theorem 2

([16]). Let   ( Υ , ρ )   be a complete metric space and   T : Υ → Υ   be an   α , ψ  -admissible contraction. Assume that the subsequent conditions are satisfied:




	(i) 

	
there is    ν 0  ∈ Υ   such that   α   x 0  , T  ν 0   ≥ 1  ;




	(ii) 

	
either T is continuous, or




	(ii)′ 

	
for each sequence    ν n    in Υ such that    ν n  → ν ∈ Υ   and   α   ν n  ,  ν  n + 1    ≥ 1 ,   then   α   ν n  , ν  ≥ 1   for all   n ∈ N .  









Then T admits a fixed point. Furthermore, if in addition we assume that for every   ( u , v ) ∈ Υ × Υ  , there exists   z ∈ Υ   so that   α ( u , z ) ≥ 1   and   α ( v , z ) ≥ 1 ,   then we have a unique fixed point.





In this paper, we originate a new type of contraction by using the concepts of  α -admissibility in regards to a function  η , and  ξ -functions. We establish the existence and uniqueness of some common fixed points results. Our obtained results improve and generalize Theorems 1 and 2 and many others in the literature (by taking particular choices of  ξ ,  ψ ,  α  and  η ).




2. Main Results


To begin, we state some principal notations.



Definition 7.

Let   S , T   be self-mappings on a complete metric space   ( Υ , ρ )   and   α , η : Υ × Υ → [ 0 , ∞ )   be given functions. Define   A ⊆ Υ × Υ   as


   A  ( S , T , α , η )  =  ( ν , ϖ ) : ρ ( T ν , T ϖ ) > 0  and  α ( ν , ϖ ) ≥ η ( ν , ϖ )  .   








Then the pair   ( S , T )   is named an   ( α , η , ξ , ψ )  -contraction, if there are   k ∈ ( 0 , 1 ) ,    ψ ∈ Ψ   and   ξ ∈ Γ   or Θ such that


   ξ  ( ρ  ( S ν , T ϖ )  )  ≤   [ ξ  ( ψ  ( K  ( ν , ϖ )  )  )  ]  k  ,      for  all   ( ν , ϖ )  ∈ A  ( S , T , α , η )  ,   



(2)




where


   K ( ν , ϖ ) = max { ρ ( ν , ϖ ) , ρ ( ν , S ν ) , ρ ( ϖ , T ϖ ) } .   













Remark 1.

Let   ( Υ , ρ )   be a metric space. Let   S , T : Υ → Υ   be self-mappings. If the pair   ( S , T )   is an   ( α , η , ξ , ψ )  -contraction, then by (2), we deduce


   l n [ ξ ( ρ ( S ν , T ϖ ) ) ] ≤ k ln ( ξ ( ψ ( ρ ( ν , ϖ ) ) ) ) < ln ( ξ ( ψ ( ρ ( ν , ϖ ) ) ) ) ,   








which infers from   ( ξ 1 )   that


   ρ ( S ν , T ϖ ) < ψ ( ρ ( ν , ϖ ) ) ,      for  all  ( ν , ϖ ) ∈ A ( S , T , α , η ) .   








It implies the following:


   ν , ϖ ∈ Υ ,     α ( ν , ϖ ) ≥ η ( ν , ϖ ) ⟹ ρ ( S ν , T ϖ ) ≤ ψ ( ρ ( ν , ϖ ) ) .   













Theorem 3.

Let   ( Υ , ρ )   be a complete metric space. Let   S , T : Υ → Υ   be self-mappings. Suppose that the following assumptions hold:




	(i) 

	
the pair   ( S , T )   is α-admissible regarding to the function η;




	(ii) 

	
  ( S , T )   is an   ( α , η , ξ , ψ )  -contraction;




	(iii) 

	
there exists    ν 0  ∈ Υ   so that   α   ν 0  , S  ν 0   ≥ η   ν 0  , S  ν 0     and   α   ν 0  , T  ν 0   ≥ η   ν 0  , T  ν 0    ;




	(iv) 

	
S and T are continuous.









Then S and T have a common fixed point.





Proof. 

In view of the condition   ( i i ) ,   there is    ν 0  ∈ Υ   so that   α   ν 0  , S  ν 0   ≥ η η   ν 0  , S  ν 0   .   Define the sequence    ν n    in  Υ  by    ν n  = S  ν  n − 1   =  S n   ν 0    and    ν  n + 1   = T  ν n  =  T n   ν 0    for all   n ≥ 1 .   If there is    n 0  ∈ N   such that    ν  n 0   =  ν   n 0  + 1   ,   then    ν  n 0   = S  ν  n 0   = T  ν  n 0   .   Thus, S and T have a common fixed point. It completes the proof. Thus, suppose that    ν n  ≠  ν  n + 1   ,   for all   n ,   that is,


     ρ ( S  ν  n − 1   , T  ν n  ) > 0 ,      for  all  n ∈ N .     



(3)







Since   α   ν 0  ,  ν 1   = α  S  ν 1  , T  ν 0   ≥ η   ν 0  ,  ν 1   = η  S  ν 1  , T  ν 0     and the pair   ( S , T )   is  α -admissible, one writes


  α  (  ν 1  ,  ν 2  )  = α  ( S  ν 0  , T  ν 1  )  ≥ η  ( S  ν 0  , T  ν 1  )  = η  (  ν 1  ,  ν 2  )  .  











Once more, by utilizing the  α -admissible concept to the function  η , we have


  α  (  ν 2  ,  ν 3  )  = α  ( T  ν 1  , S  ν 2  )  ≥ η  ( T  ν 1  , S  ν 2  )  = η  (  ν 2  ,  ν 3  )  .  











Repeating this strategy n-times, we deduce


     α  (  ν n  ,  ν  n + 1   )  ≥ η  (  ν n  ,  ν  n + 1   )  ,      for  all  n ∈ N ∪  0  .     



(4)







Combining (3) and (4), we deduce that


      (  ν n  ,  ν  n + 1   )  ∈ A  ( S , T , α , η )  ,      for  all  n ≥ 0 ∪  0  .     



(5)







Taking (2) and (5) into consideration, we find that


     ξ  ( ρ  (  ν n  ,  ν  n + 1   )  )  = ξ  ( ρ  ( S  ν  n − 1   , T  ν n  )  )  ≤   [ ξ  ( ψ  ( K  (  ν  n − 1   ,  ν n  )  )  )  ]  k  ,      for  all  n ∈ N ,     








where


     K (  ν  n − 1   ,  ν n  )    =    max { ρ  (  ν  n − 1   ,  ν n  )  , ρ  (  ν  n − 1   , S  ν  n − 1   )  , ρ  (  ν n  , T  ν n  )  }       =    max { ρ  (  ν  n − 1   ,  ν n  )  , ρ  (  ν  n − 1   ,  ν n  )  , ρ  (  ν n  ,  ν n  )  }       =    ρ (  ν  n − 1   ,  ν n  ) .     



(6)







Since  ξ  is nondecreasing, one writes that


  ξ  ( ρ  (  ν n  ,  ν  n + 1   )  )  <   [ ξ  ( ρ  (  ν  n − 1   ,  ν n  )  )  ]  k  ,      for  all  n ∈ N .  











Letting    ν n  = ρ  (  ν n  ,  ν  n + 1   )    for all   n ∈ N   and from the over inequality, we infer


  ξ  (  ν n  )  <   [ ξ  (  t  n − 1   )  ]  k  <   [ ξ  (  t  n − 1   )  ]   k 2   < ⋯ <   [ ξ  (  t 0  )  ]   k n   .  











Thus, for all   n ∈ N ,   we deduce


  1 < ξ  (  ν n  )  <   [ ξ  (  t 0  )  ]   k n   .  



(7)







Carrying out the limit of term (7) as n tends to   ∞ ,  


   lim  n → + ∞   ξ  (  ν n  )  = 1 ,  








which implies by   (  ξ 2  )   that


   lim  n → + ∞    ν n  = 0 .  



(8)







To demonstrate that    ν n    is a Cauchy sequence, we take two cases.



Case I: Let us consider condition   ( ξ 3 )   as it is defined in Definition 1. Then there are   r ∈ ( 0 , 1 )   and   λ ∈ ( 0 , ∞ ]   such that


   lim  n → ∞     ξ (  ν n  ) − 1    (  ν n  )  r   = λ .  



(9)







Choose   δ ∈ ( 0 , λ ) .   By the conception of limit, there involves    n 1  ∈ N   so that


    [  ν n  ]  r  ≤  δ  − 1    [ ξ  (  ν n  )  − 1 ]  ,     for  all  n >  n 1  .  











Using (7) and the over inequality, we deduce


  n   [  ν n  ]  r  ≤  δ  − 1   n  (   [ ξ  (  t 0  )  ]   k n   − 1 )  ,     for  all  n >  n 1  .  











This infers that


      lim  n → + ∞   n   [  ν n  ]  r  =  lim  n → + ∞   n   [ ρ  (  ν n  ,  ν  n + 1   )  ]  r  = 0 .     











Hence there is    n 2  ∈ N   so that


     ρ  (  ν n  ,  ν  n + 1   )  ≤  1  n  1 / r    ,     for  all  n >  n 2  .     



(10)







Given   m > n >  n 2  .   At that point, utilizing the triangular inequality concept and (10), we deduce


     ρ  (  ν n  ,  ν m  )  ≤  ∑  k = n   m − 1   ρ  (  ν k  ,  ν  k + 1   )  ≤  ∑  k = n   m − 1    1  k  1 / r    ≤  ∑  k = n  ∞   1  k  1 / r        








and hence    ν n    is a Cauchy sequence in   Υ .  



Case II: Let us consider condition   ( ξ 3 )   as it is defined in Definition 2. We proceed in the beginning of proof as


   lim  n → ∞    ν n  =  lim  n → + ∞   ρ  (  ν n  ,  ν  n + 1   )  = 0 ,  








and


     K (  ν  n − 1   ,  ν n  )    =    max { ρ  (  ν  n − 1   ,  ν n  )  , ρ  (  ν  n − 1   , S  ν  n − 1   )  , ρ  (  ν n  , T  ν n  )  }       =    max { ρ  (  ν  n − 1   ,  ν n  )  , ρ  (  ν  n − 1   ,  ν n  )  , ρ  (  ν n  ,  ν n  )  }       =    ρ (  ν  n − 1   ,  ν n  ) .     



(11)







Also, since  ξ  is non-decreasing, we deduce


     ξ  ( ρ  (  ν n  ,  ν  n + 1   )  )  = ξ  ( ρ  ( S  ν  n − 1   , T  ν n  )  )     ≤     [ ξ  ( ρ  (  ν  n − 1   ,  ν n  )  )  ]  k       ≤     [ ξ  ( ρ  (  ν  n − 2   ,  ν  n − 1   )  )  ]   k 2        ≤     [ ξ  ( ρ  (  ν  n − 3   ,  ν  n − 2   )  )  ]   k 3        ⋮         ≤    ξ   ( ρ  (  ν 0  ,  ν 1  )  )   k n   ,     



(12)




for all   n ∈ N  .



Since  ξ  is continuous on   ( 0 , ∞ )   and by taking the limit as   n → ∞   in (12), we have again


   lim  n → ∞   ξ  ( ρ  (  ν n  ,  ν  n + 1   )  )  = 1 ⟺  lim  n → ∞   ρ  (  ν n  ,  ν  n + 1   )  = 0 ,  











Now, we claim that the sequence   {  ν n  }   is Cauchy. Suppose the contrary. Then there exist   ϵ > 0   and two subsequences   {  ν  o ( k )   }   and   {  ν  w ( k )   }   of   {  ν n  }   with    o k  >  w k  > k   such that


  ρ  (  ν  w ( k )   ,  ν  o ( k )   )  ≥ ϵ ,  ρ  (  ν  w ( k ) − 1   ,  ν  o ( k )   )  < ϵ ,  








for all   n ∈ N  . By utilizing the triangular property,


    ϵ   ≤    ρ  (  ν  w ( k )   ,  ν  o ( k )   )  ≤ ρ  (  ν  w ( k )   ,  ν  o ( k ) − 1   )  + ρ  (  ν  o ( k ) − 1   ,  ν  o ( k )   )      



(13)






    <    ϵ + ρ (  ν  o ( k ) − 1   ,  ν  o ( k )   ) .     



(14)







By taking   k → ∞   in (12), we have


   lim  k → ∞   ρ  (  ν  w ( k )   ,  ν  o ( k )   )  = ϵ .  



(15)







Since


  ∣ ρ  (  ν  w ( k )   ,  ν  o ( k ) − 1   )  − ρ  (  ν  w ( k )   ,  ν  o ( k )   )  ∣ ≤ ρ  (  ν  o ( k )   ,  ν  o ( k ) − 1   )   








we have    lim  k → ∞   ρ  ( S  ν  w ( k ) − 1   , T  ν  o ( k ) − 2   )  =  lim  k → ∞   ρ  (  ν  w ( k )   ,  ν  o ( k ) − 1   )  = ϵ .   Essentially, we get that


   lim  k → ∞   ρ  (  ν  w ( k )   ,  ν  o ( k ) − 1   )  =  lim  k → ∞   ρ  (  ν  w ( k ) − 1   ,  ν  o ( k ) − 1   )  =  lim  k → ∞   ρ  ( S  ν  w ( k ) − 2   , T  ν  o ( k ) − 2   )  = ϵ .  











Then, by the above assumptions, we have


   lim  n → + ∞   ξ  ( ρ  ( S  ν  w ( k )   , T  ν  o ( k )   )  )  ≤ ξ   ( ψ  ( ρ  (  ν  w ( k )   ,  ν  o ( k )   )  )  )  k  .  



(16)







By taking   k → ∞   in (16), we have


  ξ  ( ϵ )  ≤ ξ   ( ψ  ( ϵ )  )  k  ,  








which is a contradiction since   k ∈ ( 0 , 1 )   and   ψ ( t ) < t   for all   t > 0  . Therefore,   {  ν n  }   is a Cauchy sequence.



By the completeness of   ( Υ , ρ )  , there is   u ∈ Υ   so that    ν n  → u   as   n → ∞ .   If   S , T   are continuous, then    ν n  = S  ν  n − 1   → S u   and    ν  n + 1   = T  ν n  → T u .   The uniqueness of the limit implies that   u = S u = T u .  



Assume that there exists another common fixed point z of   S , T   distinct from u, that is,   u ≠ z  . At that point, it follows from the above assumptions that


  ξ  ( ρ  ( u , z )  )  = ξ  ( ρ  ( S u , T z )  )  ≤ ξ   ( ψ  ( ρ  ( u , z )  )  )  k  ,  








which is a contradiction with respect to   k ∈ ( 0 , 1 )   and   ψ ( t ) < t   for all   t > 0  . Thus u is the unique common fixed point of S and T. □





The continuity of mappings in Theorem 3 can be replaced by a reasonable condition.



Theorem 4.

Let   ( Υ , ρ )   be a complete metric space and   S , T : Υ → Υ   be self-mappings. Assume that the following assumptions hold:




	(i) 

	
the pair   ( S , T )   is α-admissible regarding to the function η;




	(ii) 

	
the pair   ( S , T )   is an   ( α , η , ξ , ψ )  -contraction;




	(iii) 

	
there exists    ν 0  ∈ Υ   so that   α   ν 0  , S  ν 0   ≥ η   ν 0  , S  ν 0    ;




	(iv) 

	
for every      ν n    n ∈ N   ⊂ Υ   such that    ν n  → ν ∈ Υ   and   α   ν n  ,  ν  n + 1    ≥ η   ν n  ,  ν  n + 1      for all   n ∈ N ,   then   α   ν n  , ν  ≥ η   ν n  , ν    for all   n ∈ N .  









Then S and T have a common fixed point.





Proof. 

Let us consider condition   ( ξ 3 )   as it is defined in Definition 1 and by using the full proof of Theorem 3, define   {  ν n  }   as    ν n  = S  ν  n − 1   =  S n   ν 0    and    ν  n + 1   = T  ν n  =  T n   ν 0    for all   n ∈ N  . Assume that the sequence   {  ν n  }   such that   α  (  ν n  ,  ν  n + 1   )  ≥ η  (  ν n  ,  ν  n + 1   )    for all   n ∈ N  , is converging to   u ∈ Υ  .



In the case that   ( i v )   holds, we have   α  (  ν n  , u )  ≥ η  (  ν n  , u )    for all   n ≥ 0 .   If there is   k ∈ N   so that   ρ (  ν  k + 1   , T u ) = 0   and   ρ ( S u ,  ν  k + 1   ) = 0  , then clearly,   S u = T u = u .   So the proof is completed. Hence, there is    n 3  ∈ N   so that   ρ ( S  ν n  , T u ) > 0   for all   n >  n 3  .   Thus,    (  ν n  , u )  ∈ A  ( S , T , α , η )    for all   n >  n 3  .   Using Remark 1, we get


     ρ  (  ν  n + 1   , T u )  = ρ  ( S  ν n  , T u )  ≤ ψ  ( ρ  (  ν n  , u )  )  ,     








and so


     0 < ρ  (  ν  n + 1   , T u )  < ρ  (  ν n  , u )   and  0 < ρ  ( S u ,  ν  n + 1   )  < ρ  ( u ,  ν n  )       for  all  n >  n 3  .     











By carrying the limit as n goes to ∞, we obtain   ρ ( u , T u ) = 0 ⇒ u = T u   and   ρ ( S u , u ) = 0 ⇒ S u = u  . Hence,   S u = T u = u .  



To demonstrate the uniqueness of the common fixed point, suppose that   p , q   are two common fixed points of S and T such that   ρ ( p , q ) > 0 .   Then   ρ ( S p , T q ) > 0   and by the hypothesis   α ( p , q ) ≥ η ( p , q )  ,   ( p , q ) ∈ A ( S , T , α , η ) .   Regarding Remark 1, we get


     ρ ( p , q ) = ρ ( S p , T q ) ≤ ψ ( ρ ( p , q ) ) < ρ ( p , q ) ,     








which infers that   p = q .   □





Example 3.

Let   Υ = [ 0 , ∞ )   be endowed with the complete metric ρ defined by


   ρ  ν , ϖ  =  | ν − ϖ |  ,   








for all   ν , ϖ ∈ Υ .   Define   S , T : Υ → Υ   and   α , η : Υ × Υ → [ 0 , ∞ )   by


   S ν =        1 3    e  − 4   ν ,      i f    ν ∈  0 , 4  ,        2 ν ,      i f    ν > 4 ,             and     T ν =        1 2    e  − 4   ν ,      i f    ν ∈  0 , 4  ,        3 ν ,      i f    ν > 4 .        










   α  ν , ϖ  =       e  ν + ϖ   ,      i f    ν , ϖ ∈  0 , 4  ,        0 ,      i f    ν > 4    o r    ϖ > 4 ,             and     η  ν , ϖ  =       e ν  ,      i f    ν , ϖ ∈  0 , 4  ,        0 ,      i f    ν > 4    o r    ϖ > 4 .        








We have


      A ( S , T , α , η )     =  ( ν , ϖ ) ∈ Υ × Υ : ρ ( S ν , T ϖ ) > 0  and  α ( ν , ϖ ) ≥ η ( ν , ϖ )           =   ( ν , ϖ )  ∈ Υ × Υ : ν ≠ ϖ  and  ν , ϖ ∈  0 , 4   .      








Firstly,   ( S , T )   is an   ( α , η , ξ , ψ )  -contraction with   k =  e  − 2   ,     ψ  ( t )  =  t 3    and   ξ  ( t )  =  e   t  e t     .   Let   ν , ϖ ∈ A ( T , α ) ,   then   ν , ϖ ∈  0 , 4    with   ν ≠ ϖ ,  


      ξ  d  T ν , T ϖ       = ξ   e  − 4     ν − ϖ  3            =  e    e  − 4     ν − ϖ  3   e   e  − 4     ν − ϖ  3                ≤  e   e  − 2       ν − ϖ  3   e   ν − ϖ  3                =  e   e  − 2     ψ  ( K  ( ν , ϖ )  )   e  ψ ( ρ ( ν , ϖ ) )                =   [ ξ  ( ψ  ( K  ( ν , ϖ )  )  )  ]  k  .      








This means that   ( S , T )   is an   ( α , η , ξ , ψ )  -contraction.



Now, let   ν , ϖ ∈ Υ   be such that   α  ν , ϖ  ≥ η  ν , ϖ  .   Here,   ν , ϖ ∈  0 , 4   . Then   S ν , T ϖ ∈  0 , 4    and so   α  S ν , T ϖ  ≥ η  S ν , T ϖ  .   Hence, the pair   ( S , T )   is α-admissible regarding η. Moreover, there exists    ν 0  = 4   so that   α   ν 0  , T  ν 0      ≥ η   ν 0  , T  ν 0     and   α  S  ν 0  ,  ν 0      ≥ η  S  ν 0  ,  ν 0   .  



Let    ν n    be a sequence in Υ so that    ν n  → ν   and   α   ν n  ,  ν  n + 1    ≥ η   ν n  ,  ν  n + 1      for all   n .   Then,    ν n  ∈  0 , 4    and so   ν ∈  0 , 4    as    ν n  → ν .   Thus,   α   ν n  , ν  ≥ η   ν n  , ν   .



Finally, all conditions of Theorems 3 and 4 are fulfilled, and so S and T have a unique common fixed point, which is   0 .  



Furthermore, for   ν = ϖ = 0 ,   we have


      ξ  d  S ν , T ϖ   = ξ  ρ  S 0 , T 0   = ξ  0  ≤   [ ξ  0  ]  k  =   [ ξ  ρ ( ν , ϖ )  ]  k  .      








For   ν = ϖ = 4  , we have


      ξ  d  S ν , T ϖ   = ξ  ρ  S 4 , T 4   = ξ  0  ≤   [ ξ  0  ]  k  =   [ ξ  ρ ( ν , ϖ )  ]  k  .      








Also, for   ν = 0   and   ϖ = 4 ,   we have


      ξ  d  S ν , T ϖ   = ξ  d  S 0 , T 4   = ξ   1 3   e  − 4   4  ≤   [ ξ  4  ]  k  =   [ ξ  ρ ( ν , ϖ )  ]  k  ,      








for all   ξ ∈ Γ    a n d    k ∈ ( 0 , 1 ) .   Therefore, Theorem 3 can applied to this example.





Corollary 1.

Let   ( Υ , ρ )   be a complete metric space and   S , T : Υ → Υ   be self-mappings. Then the pair   ( S , T )   has a unique common fixed point if the following assumptions hold:




	(i) 

	
the pair   ( S , T )   is α-admissible;




	(ii) 

	
there exists    ν 0  ∈ Υ   in which   α   ν 0  , S  ν 0   ≥ 1   and   α   ν 0  , T  ν 0   ≥ 1  ;




	(iii) 

	
S and T are continuous;




	(iv) 

	
there are   k ∈ ( 0 , 1 ) ,    ψ ∈ Ψ   and   ξ ∈ Γ   or Θ so that


   ν , ϖ ∈ Υ ,   ρ  ( S ν , T ϖ )  > 0 ⟹ ξ  ( α  ( ν , ϖ )  ρ  ( S ν , T ϖ )  )  ≤   [ ξ  ( ψ  ( K  ( ν , ϖ )  )  )  ]  k  ,   



(17)




where


   K ( ν , ϖ ) = max { ρ ( ν , ϖ ) , ρ ( ν , S ν ) , ρ ( ϖ , T ϖ ) } .   



















Proof. 

It follows from Theorem 3 by considering   η : Υ × Υ → R   via   η ( ν , ϖ ) = 1 .   □





Corollary 2.

Let   ( Υ , ρ )   be a complete metric space and   S , T : Υ → Υ   be given mappings. Then the pair   ( S , T )   has a unique common fixed point if the following assumptions hold:




	(i) 

	
the pair   ( S , T )   is α-admissible;




	(ii) 

	
there exists    ν 0  ∈ Υ   so that   α   ν 0  , S  ν 0   ≥ 1   and   α   ν 0  , T  ν 0   ≥ 1  ;




	(iii) 

	
for every      ν n    n ∈ N   ⊂ Υ   such that    ν n  → ν ∈ Υ   and   α   ν n  ,  ν  n + 1    ≥ 1   for all   n ∈ N ,   then   α   ν n  , ν  ≥ 1   for all   n ∈ N ;  




	(iv) 

	
there are   k ∈ ( 0 , 1 ) ,    ψ ∈ Ψ   and   ξ ∈ Γ   or Θ so that


   ν , ϖ ∈ Υ ,    ρ  ( S ν , T ϖ )  > 0 ⟹ ξ  ( α  ( ν , ϖ )  ρ  ( S ν , T ϖ )  )  ≤   [ ξ  ( ψ  ( K  ( ν , ϖ )  )  )  ]  k  ,   



(18)




where


   K ( ν , ϖ ) = max { ρ ( ν , ϖ ) , ρ ( ν , S ν ) , ρ ( ϖ , T ϖ ) } .   



















Proof. 

The rest of proof follows from Theorem 4 by considering   η : Υ × Υ → R   via   η ( ν , ϖ ) = 1  . □





Corollary 3.

Let   S : Υ → Υ   be defined on a complete metric space   ( Υ , ρ )  . Assume there are   k ∈ ( 0 , 1 ) ,    ψ ∈ Ψ   and   ξ ∈ Γ   or Θ such that


   ν , ϖ ∈ Υ ,  ρ  ( S ν , S ϖ )  > 0 ⟹ ξ  ( ρ  ( S ν , S ϖ )  )  ≤   [ ξ  ( ψ  ( K  ( ν , ϖ )  )  )  ]  k  .   










   K ( ν , ϖ ) = max { ρ ( ν , ϖ ) , ρ ( ν , S ν ) , ρ ( ϖ , S ϖ ) } .   








Then S has a unique fixed point if:




	(i) 

	
S is α-admissible;




	(ii) 

	
there exists    ν 0  ∈ Υ   so that   α   ν 0  , S  ν 0   ≥ 1 ;  




	(iii) 

	
S is continuous.











Proof. 

It follows from Corollary 1 by regarding   S = T   and   α ( ν , ϖ ) = 1  . □





Corollary 4.

Let   S : Υ → Υ   be defined on a complete metric space   ( Υ , ρ )  . Assume there are   k ∈ ( 0 , 1 ) ,    ψ ∈ Ψ   and   ξ ∈ Γ   or Θ such that


   ν , ϖ ∈ Υ ,    ρ  ( S ν , S ϖ )  > 0 ⟹ ξ  ( ρ  ( S ν , S ϖ )  )  ≤   [ ξ  ( ψ  ( K  ( ν , ϖ )  )  )  ]  k  ,   








where


   K ( ν , ϖ ) = max { ρ ( ν , ϖ ) , ρ ( ν , S ν ) , ρ ( ϖ , S ϖ ) } .   








Then S has a unique fixed point if the following assumptions hold:




	(i) 

	
S is α-admissible;




	(ii) 

	
there exists    ν 0  ∈ Υ   so that   α   ν 0  , S  ν 0   ≥ 1 ;  




	(iii) 

	
for every      ν n    n ∈ N   ⊂ Υ   such that    ν n  → ν ∈ Υ   and   α   ν n  ,  ν  n + 1    ≥ 1   for all   n ∈ N ,   then   α   ν n  , ν  ≥ 1   for all   n ∈ N .  











Proof. 

It follows from Corollary 2 by regarding   S = T   and   α ( ν , ϖ ) = 1  . □





Corollary 5.

Let   S : Υ → Υ   be defined on a complete metric space   ( Υ , ρ )  . Assume there exist   k ∈ ( 0 , 1 )   and   ξ ∈ Γ   or Θ such that


   ν , ϖ ∈ Υ ,    ρ  ( S ν , S ϖ )  > 0 ⟹ ξ  ( ρ  ( S ν , S ϖ )  )  ≤   [ ξ  ( ρ  ( ν , ϖ )  )  ]  k  .   








Then S has a unique fixed point if the following assumptions hold:




	(i) 

	
S is α-admissible;




	(ii) 

	
there is    ν 0  ∈ Υ   so that   α   ν 0  , S  ν 0   ≥ 1 ;  




	(iii) 

	
S is continuous.











Proof. 

It follows from Corollary 3 and the fact that   ρ ( ν , ϖ ) ≤ K ( ν , ϖ ) .   □





Corollary 6.

Let   S : Υ → Υ   be a mapping on a complete metric space   ( Υ , ρ )  . Assume there exist   k ∈ ( 0 , 1 )   and   ξ ∈ Γ   or Θ so that


   ν , ϖ ∈ Υ ,    ρ  ( S ν , S ϖ )  > 0 ⟹ ξ  ( ρ  ( S ν , S ϖ )  )  ≤   [ ξ  ( ρ  ( ν , ϖ )  )  ]  k  .   








Then S has a unique fixed point if the following assumptions hold:




	(i) 

	
S is α-admissible;




	(ii) 

	
there exists    ν 0  ∈ Υ   in order that   α   ν 0  , S  ν 0   ≥ 1 ;  




	(iii) 

	
for every      ν n    n ∈ N   ⊂ Υ   such that    ν n  → ν ∈ Υ   and   α   ν n  ,  ν  n + 1    ≥ 1   for all   n ∈ N ,   then   α   ν n  , ν  ≥ 1   for all   n ∈ N .  











Proof. 

It comes from Corollary 4 and the fact that   ρ ( ν , ϖ ) ≤ K ( ν , ϖ ) .   □






3. Applications


We start with giving some fixed point results on a metric space endowed with a graph. We also ensure the existence of a solution for a functional equation originating in dynamic programming.



3.1. Graphic Contractions


In view of the paper of Jachymski [24], we consider the following assumptions:




	(a) 

	
  Υ , ρ   is a metric space;




	(b) 

	
  Δ : =   ν , ν  : x ∈ Υ    is the diagonal of the Cartesian product   Υ × Υ  ;




	(c) 

	
 G  is a graph of the set of its vertices   V  G    and the set of its edges contains all loops   E  G    such that each edge of graph  G  represents the distance between two vertices or a loop of the same vertex.









(For more details, see [25,26,27,28]).



Now, we give some notions and definitions related to a metric space endowed with a graph.



Definition 8

([24]). A map   T : Υ → Υ   is a  G -contractive map, if T preserves edges of   G ,   that is,


  ∀ ν , ϖ ∈ Υ ,       ν , ϖ  ∈ E  G  ⇒  T ν , T ϖ  ∈ E  G  ,  



(19)




and T relates with weights of edges of  G  as the subsequent way:


  ∃ k ∈  ( 0 , 1 )  ,  ∀ ν , ϖ ∈ Υ ,       ν , ϖ  ∈ E  G  ⇒ d  T ν , T ϖ  ≤ k ρ  ( ν , ϖ )  .  



(20)









Definition 9

([24]). A map   T : Υ → Υ   is  G -continuous if given   ν ∈ Υ   and a sequence   {  ν n  }   with    ν n  → ν   as   n → + ∞   and    (  ν n  ,  ν  n + 1   )  ∈ E  ( G )    for all   n ∈ N  , we have   T  ν n  → T ν   as   n → + ∞ .  





The  G -continuity implies the continuity. Whereas generally, the contrary of this explanation is not true.



Definition 10.

Let   Υ , ρ   be a metric space provided with a graph  G  and   S , T : Υ → Υ   be self-mappings. Let   E ( G ) ⊆ G ⊆ Υ × Υ   be defined by


   G  ( S , T )  =   ( ν , ϖ )  : ρ  ( S ν , T ϖ )  > 0  and   ν , ϖ  ∈ E  G   .   








Then the pair   ( S , T )   is an (α-ξ-ψ)- G -contraction if there are   k ∈ ( 0 , 1 ) ,    ψ ∈ Ψ   and   ξ ∈ Γ   or Θ so that


   ξ  ( ρ  ( S ν , T ϖ )  )  ≤   [ ξ  ( ψ  ( K  ( ν , ϖ )  )  )  ]  k  ,      for  all   ( ν , ϖ )  ∈ G  ( S , T , G )  ,   



(21)




where


   K ( ν , ϖ ) = max { ρ ( ν , ϖ ) , ρ ( ν , S ν ) , ρ ( ϖ , T ϖ ) } .   













Theorem 5.

Let   Υ , ρ   be a complete metric space endowed with a graph  G  and   S , T : Υ → Υ   be self-mappings. Suppose that the pair   ( S , T )   is an (α-ξ-ψ)- G -contraction. Then S and T have a common fixed point if the following conditions are fulfilled:




	(i) 

	
S and T preserve the edges of  G ;




	(ii) 

	
there exists    ν 0  ∈ Υ   so that     ν 0  , S  ν 0   ,   ν 0  , T  ν 0   ∈ E  ( G )   ;




	(iii) 

	
S and T are  G -continuous.









Moreover, if   ( ν , ϖ ) ∈ E ( G )   for all   ν , ϖ ∈ F i x ( T ) ,   then the common fixed point is unique.





Proof. 

Define   α : Υ × Υ → [ 0 , ∞ )   by


  α  ν , ϖ  =      1 ,      if     ν , ϖ  ∈ E  G  ,       0 ,      otherwise  .       











Let   ( ν , ϖ ) ∈ A ( S , T , α ) .   Then   ρ ( S ν , T ϖ ) > 0   and   α  ν , ϖ  ≥ 1 .   By definition of   α ,    ρ ( S ν , T ϖ ) > 0   and   ( ν , ϖ ) ∈ E ( G ) ,   that is,   ( ν , ϖ ) ∈ G ( S , T ) .   Since   ( S , T )   is an ( α - ξ - ψ )- G -contraction, we get


  ξ  ( ρ  ( S ν , T ϖ )  )  ≤   [ ξ  ( ψ  ( K  ( ν , ϖ )  )  )  ]  k  ,  








then for


      (  ν n  ,  ν  n + 1   )  ∈ A  ( S , T , G , α )  ,      for  all  n ∈ N ∪  0  ,     








we get


     ξ  ( ρ  (  ν n  ,  ν  n + 1   )  )  = ξ  ( ρ  ( S  ν  n − 1   , T  ν n  )  )  ≤   [ ξ  ( ψ  ( K  (  ν  n − 1   ,  ν n  )  )  )  ]  k  ,      for  all  n ∈ N ,     








where


     K (  ν  n − 1   ,  ν n  )    =    max { ρ  (  ν  n − 1   ,  ν n  )  , ρ  (  ν  n − 1   , S  ν  n − 1   )  , ρ  (  ν n  , T  ν n  )  }       =    max { ρ  (  ν  n − 1   ,  ν n  )  , ρ  (  ν  n − 1   ,  ν n  )  , ρ  (  ν n  ,  ν n  )  }       =    ρ (  ν  n − 1   ,  ν n  ) .     



(22)




Therefore,


  ξ  ( ρ  ( S ν , T ϖ )  )  ≤   [ ξ  ( ψ  ( ρ  ( ν , ϖ )  )  )  ]  k  ,      for  all   ( ν , ϖ )  ∈ A  ( S , T , G , α )  .  











Now, we demonstrate that   ( S , T )   is  α -admissible. Let   α  ν , ϖ  ≥ 1   for all   ν , ϖ ∈ Υ .   Then    ν , ϖ  ∈ E  G  .   By the virtue of   ( i ) ,   we get   ( S ν , T ϖ ) ∈ E ( G ) ,   and hence   α ( S ν , T ϖ ) ≥ 1 .   This proves that the pair   ( S , T )   is  α -admissible. Also, it is easy to see that the condition   i i i   implies the condition   i i i   of Theorem 3. Thus, since all conditions of Theorem 3 hold, S and T have a common fixed point. Also, we show that S and T have a unique common fixed point. On the contrary, suppose that   ν , ϖ ∈ F i x ( T ) .   Then, by the hypothesis    ν , ϖ  ∈ E  G    and so   α  ν , ϖ  ≥ 1 .   By Theorem 3, S and T have a unique common fixed point. □





Example 4.

Following Example 2.8 in [28], let   Υ = [ 0 , 1 ]   be endowed with the usual metric. Let  G  be a graph with   V ( G ) = Υ   and   E  ( G )  = Δ ∪    1 n  ,  1  n + 1    : n ∈ N  ∪    1 8  ,  1 4    ∪    1 n  , 0  : n ∈ N  .   Define   T : Υ → Υ   by


   S ν =        1 2   ,      i f    0 ≤ ν < 1 ,         1 3   ,      i f    ν = 1 .             and     T ν =        1 2   ,      i f    0 ≤ ν < 1 ,          1 8   ,      i f    ν = 1 .        








Now, we demonstrate that   S , T   are (α,ξ,ψ)- G -contractive maps with   k =  1 3  ,     ψ ( t ) = t   and   ξ  ( t )  =  e t  .   Note that   ( ν , ϖ ) ∈ G ( S , T )   if and only if   ν = 1   and   ϖ ∈ { 0 ,  1 3  ,  1 2  } .   Then, we need to check the subsequent cases:



Case 1.If   ν = 1   and   ϖ = 0 ,   we have


             ξ  ρ  S 1 , T 0   = ξ     1 3   −   1 2     = ξ    1 6    =  e   1 6    = 1.181         ξ  ψ  ρ  1 , 0     k  =   ξ  1    1 3   =    e 1    1 3   = 1.396              ⟹ ξ  ρ  S 1 , T 0   ≤   ξ  ψ  ρ  1 , 0     k  .      











Case 2.If   ν = 1   and   ϖ =  1 3  ,   we have


             ξ  ρ  S 1 , T  1 3    = ξ     1 3   −   1 2     = ξ    1 6    =  e   1 6    = 1.181         ξ  ψ  ρ  1 ,  1 3      k  =   ξ    2 3      1 3   =    e   2 3      1 3   = 1.249              ⟹ ξ  ρ  S 1 , T  1 3    ≤   ξ  ψ  ρ  1 ,  1 3      k  .      











Case 3.If   ν = 1   and   ϖ =  1 2  ,   we have


             ξ  ρ  S 1 , T  1 2    = ξ     1 3   −   1 2     = ξ    1 6    =  e   1 6    = 1.181         ξ  ψ  ρ  1 ,  1 2      k  =   ξ    1 2      1 3   =    e   1 2      1 3   = 1.181              ⟹ ξ  ρ  S 1 , T  1 2    ≤   ξ  ψ  ρ  1 ,  1 2      k  .      








Now, as we suppose   a = 0 , b =  1 3  , c =  1 2  , d = 1  , we can represent these results by the two following matrices (see Table 1 and Table 2) and graphs (see Figure 1):



Thus, the pair   ( S , T )   is an (α-ξ-ψ)- G -contraction in all possible cases. Also, all conditions of Theorem 5 are satisfied.






3.2. Existence Theorem for a Solution of a Functional Equation


In this subsection, as an application, we utilize the fixed point results proved in Section 3 to demonstrate the existence and uniqueness solutions for some nonlinear integral equations by regarding Corollary 3.



Let   Υ = C ( [ a , b ] , R )   denote to the set of all continuous functions specified on the interval   [ a , b ]  . We endow on  Υ  the metric   ρ : Υ × Υ → [ 0 , ∞ )   defined by


  ρ  ( ν , ϖ )  =  sup  t ∈ [ a , b ]   ∣ ν  ( t )  − ϖ  ( t )  ∣ ,  








for all   ν , ϖ ∈ Υ .   Here,   ( Υ , ρ )   is a complete metric space. Let ⪯ be a partial order on  Υ  given as


  ν ⪯ ϖ ⟺ ν ( r ) ≤ ϖ ( r ) ,  r ∈ [ a , b ] .  











We consider the following integral equation:


  ν  ( t )  = h  ( t )  +  ∫  0  t  P  ( t , r )  f  ( r , ν  ( r )  )  d r ,  



(23)




where   h : [ a , b ] → R  ,   P : [ a , b ] × [ a , b ] → [ 0 , ∞ )   and   f : [ a , b ] × R → R   are continuous functions.



Also, we define the operator   S : Υ → Υ   by


  S ν  ( t )  = h  ( t )  +  ∫  a  b  P  ( t , r )  f  ( r , ν  ( r )  )  d r .  



(24)




Note that a solution of the integral Equation (23) is identical to that where the operator S has a fixed point.



Consider the following assumptions:




	(A1) 

	
there exists    t 0  ∈  [ a , b ]    such that   ν  (  t 0  )  ≤ S ν  (  t 0  )  ;  




	(A2) 

	
for all   ν , ϖ ∈ Υ   with   ν ⪯ ϖ  , there exists   α ∈ ( 0 , 1 )   such that


   f  r , ν  r   − f  r , ϖ  r    ≤ α  ν ( r ) − ϖ ( r )  ,  r ∈  [ a , b ]  ;  












	(A3) 

	
    sup  r ∈ [ a , b ]   ∣ P  ( t , r )  ∣ ≤ 1    for all   t ∈ [ a , b ] ;  




	(A4) 

	
S is nondecreasing and continuous on   [ a , b ] .  









Theorem 6.

Assume the assumptions   A 1  –  A 4   are fulfilled. Then the nonlinear integral Equation (23) has a unique solution.





Proof. 

Let   ν , ϖ ∈ Υ   be such that   ν ⪯ ϖ  . For all   t ∈ [ a , b ]  , we have


     S ν ( t ) − S ϖ ( t )     =   ∫  a  b  P  ( t , r )   ( f  ( r , ν  ( r )  )  − f  ( r , ϖ  ( r )  )  )  d r           ≤  ∫  a  b  P  ( t , r )   ( f ( r , ν ( r ) ) − f ( r , ϖ ( r ) ) )  d r          ≤  ∫  a  b  α  | ν  ( r )  − ϖ  ( r )  |  d r          ≤ α K ( ν , ϖ ) ,     








where


  K ( ν , ϖ ) = max { ρ ( ν , ϖ ) , ρ ( ν , S ν ) , ρ ( ϖ , S ϖ ) } .  











This implicates that


  ρ ( S ν , S ϖ ) ≤ α K ( ν , ϖ ) .  











By defining   ξ  ( t )  =  e  t     (  t > 0  ) and   ψ  ( t )  =  α  1 2   t  , we get


   e   ρ ( S ν , S ϖ )    ≤  e   α  1 4      α  1 2   K  ( ν , ϖ )      =   [  e   ψ ( K ( ν , ϖ ) )    ]  k  ,  








where   k =  α  1 4    . Therefore, by Corollary 3 (by endowing on the function  α , the partial order on  Υ ), S has a unique fixed point. Hence, the nonlinear integral Equation (23) has a unique solution. □
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Figure 1. A graph indicated by distances and  ξ -contractions of distances between the vertices. 
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Table 1. A metric indicated by distances between vertices.
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	a
	b
	c
	d





	a
	0
	   1 3   
	   1 3   
	1  



	b
	
	0
	   1 6   
	  2 3    



	c
	
	
	0
	  1 2   



	d
	
	
	
	0
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Table 2. A metric indicated by distances between images of vertices under  ξ -contractions.
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	   Ta   
	   Tb   
	   Tc   
	   Td   





	   S a   
	1
	1
	1
	   1.181   



	   S b   
	
	1
	1
	   1.249   



	   S c   
	
	
	1
	   1.181   



	   S d   
	
	
	
	   1.232   
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