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Abstract: In this paper, we extended Yennum et al.’s model, in which geometric distribution is used
as a randomization device for a population that consists of different-sized clusters, and clusters are
obtained by probability proportional to size (PPS) sampling. Estimators of a sensitive parameter,
their variances, and their variance estimators are derived under PPS sampling and equal probability
two-stage sampling, respectively. We also applied these sampling schemes to Yennum et al.’s
generalized model. Numerical studies were carried out to compare the efficiencies of the proposed
sampling methods for each case of Yennum et al.’s model and Yennum et al.’s generalized model.

Keywords: probability proportional to size (PPS) sampling; geometric distribution; sensitive attribute;
randomization device; Yennum et al.’s model

1. Introduction

The randomized response model (RRM) was suggested by [1] to estimate the true population
proportion of sensitive characteristics, such as illegal gambling, drug-abuse, tax evasion, the extent of
illegal income, and the experience of abortion, among others [2–4].

Since Warner’s work, many scholars have developed the RRM in various ways. In [5,6],
they arranged, summarized, and systemized various RRMs and emphasized their importance.
In [7], sampling survey of sensitive attributes applied two-stage cluster sampling to RRM for a
population consisting of equal-sized clusters, and [8] considered the cluster RRM for a population
consisting of different-sized clusters, where the clusters are selected by probability proportional to size
(PPS) sampling.

Recently, Yennum et al. [9] suggested a new randomization device to gather sensitive data in
two-stages under the assumption of geometric distribution and made a generalization of their model
encompassing generalized geometric distribution using [10] model.

Based on Yennum et al.’s work, it is assumed that the respondents are selected by simple random
sampling with replacements, but a real survey selects respondents from various sampling schemes.

Now, we can consider a large sample of clusters. For example, to estimate the true population
proportion of drug-abuse among high school students, it is possible to use a randomization device like
Yennum et al.’s model via proportional sampling by considering the primary sampling unit as the
school and the secondary sampling unit as the students.

From this point of view, we extend Yennum et al.’s model, in which geometric distribution is used
as a randomization device based on a population that consists of different-sized clusters, and the clusters
are selected by PPS sampling. Estimators of a sensitive parameter, their variances, and their variance
estimators are derived by PPS sampling and equal probability two-stage sampling, respectively.
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We also apply these methods to the case of Yennum et al.’s generalized model. Numerical studies
are carried out to compare the efficiencies of the suggested methods in each case of Yennum et al.’s
model and Yennum et al.’s generalized model.

2. An Estimation of Sensitive Attributes with Probability Proportional to Size Sampling under
Yennum et al.’s Model

In Section 2, we consider a new sampling scheme to estimate sensitive attributes using Yennum et
al.’s model, in which geometric distribution is used as a randomization device when n clusters are
selected with proportional to size (PPS) sampling or equal probability sampling from a population that
consists of N clusters of size, Mi(i = 1, 2, · · · , N) and mi(i = 1, 2, · · · , n) units are selected by simple
random sampling from each sampled cluster.

In Section 2.1, we consider the sampling method for the clusters via PPS sampling with
replacements. Clusters by PPS sampling without replacement are considered in Section 2.2, and
clusters by equal probability sampling are examined in Section 2.3.

2.1. PPS Sampling with Replacement

Let the population be composed of N clusters. In the first stage, the size of the n sample of the
first sampling units (FSU) is selected with replacement by the selection probability pi for the ith cluster.
In the second stage, mi second sampling units (SSU) are drawn by simple random sampling with
replacement (SRSWR) from each FSU and are guided to carry out Yennum et al.’s randomization device.

First of all, the randomization device consists of two elements. The first randomization device for
the ith cluster consists of two kinds of urns with white and black balls, where the selection probability
of a white ball is Wi, and the selection probability of a black ball is 1−Wi.

On the other hand, the second randomization device is composed of two kinds of urns with balls.
The first device with balls contains a slip of paper including two statements, such as “I have a sensitive
attribute” with selection probability Pi, and the other balls includes a statement such as “I do not have
a sensitive attribute” with selection probability 1− Pi. The second device with balls contains a slip of
paper with the statement “I do not have a sensitive attribute” with selection probability Ti and balls
with the statement “I have a sensitive attribute” with selection probability 1− Ti.

In the first stage, for the ith cluster, each interviewee draws a ball from the first randomization
device, such as the urn with the white and black balls. When he or she selects a white ball, he or she is
guided to pick balls from the first urn of the second randomization device, one after another, with
replacement, until the first ball containing a statement matching his or her own status appears.

We assume that Xi1 is the total number of balls drawn before he or she obtains the first ball
including his or her own status in the ith cluster, and Xi2 is the total number of balls drawn before he or
she obtains the first ball with his or her own status of not having a sensitive attribute in the ith cluster.
Similarly, when he or she draws a black ball, he or she is guided to pick balls from the second urn of
the second randomization device, one after another, with replacement, until the first ball containing a
statement matching his or her own status appears.

For the ith cluster, using the randomization device in Figure 1, the total number of balls taken by
interviewees Xi1, Xi2, Yi1, Yi2 are distributed via generalized geometric distribution. Let πi and 1−πi
be the true population proportion of persons who have a sensitive attribute Ai and Ac

i for the ith cluster.
Assume that each interviewee in the ith cluster is drawn by SRSWR.

For the ith cluster, the total number for each ball selected by interviewees through the proposed
two-stage device distributes one of the following random variables: Xi1 ∼ Ge(Pi), Xi2 ∼ Ge(1− Pi),
Yi1 ∼ Ge(Ti) and Yi2 ∼ Ge(1− Ti), where Ge(·) represents the geometric distribution with a success
probability. Let πi and 1 − πi be the true population proportions of persons who have a sensitive
attribute (Ai and Ac

i , respectively) for the ith cluster. Assume that each interviewee in the ith cluster is
drawn by SRSWR.
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Figure 1. Randomization device for the ith cluster.

Let Zi j be the jth observed answer in the ith cluster; Zi j can be expressed as

Zi j =


Xi1, with probability Wiπi
Yi2, with probability (1−Wi)πi
Xi2, with probability Wi(1−πi)

Yi1, with probability (1−Wi)(1−πi)

(1)

Then, we can find the expected value of Zi j as follows:

E(Zi j) = πi

[
Wi
Pi

+
(1−Wi)
(1−Ti)

]
+ (1−πi)

[
Wi

(1−Pi)
+

(1−Wi)
Ti

]
= πi

[
Wi
Pi

+
(1−Wi)
(1−Ti)

−
Wi

(1−Pi)
−

(1−Wi)
Ti

]
+ Wi

(1−Pi)
+

(1−Wi)
Ti

.
(2)

The expected value (2) can be expressed as follows:

(1− Ti)Pi
{
E(Zi j)(1− Pi)Ti −WiTi − (1−Wi)(1− Pi)

}
PiTi(1− Pi)(1− Ti)

=
πiψi

PiTi(1− Pi)(1− Ti)
, (3)

where ψi = Wi(1− 2Pi)Ti(1− Ti) + (1−Wi)(2Ti − 1)Pi(1− Pi).
Now the estimator π̂i for the true population proportion πi in the ith cluster is given by:

π̂i =
1
ψi

PiTi(1− Pi)(1− Ti)
1

mi

mi∑
i=1

Zi j −WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)

. (4)

When the interviewees are drawn by SRSWR from the ith cluster selected with a replacement by
the sampling probability pi, the estimator π̂ppswr of the true population proportion π for a sensitive
character is given by:

π̂ppswr = 1
nM0

n∑
i=1

Miπ̂i
pi

= 1
nM0

n∑
i=1

Mi
piψi

PiTi(1− Pi)(1− Ti)
1

mi

mi∑
j=1

Zi j −WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)

, (5)

where M0 =
∑N

i=1 Mi.

Theorem 1: The estimator π̂ppswr of the true population proportion of a sensitive attribute π under PPS with a
replacement sampling scheme is an unbiased estimator.
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Proof:

E1E2
(
π̂ppswr

)
= E1E2

[
1

nM0

n∑
i=1

Miπ̂i
pi

]
= E1

[
1

nM0

n∑
i=1

MiE2(π̂i)
pi

]
,

and since:

E2(π̂i) = 1
ψi

[
PiTi(1− Pi)(1− Ti)

1
mi

mi∑
i=1

E2
(
Zi j

)
−WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)

]
= πi.

we can obtain:

E1E2
(
π̂ppswr

)
= E1

[
1

nM0

n∑
i=1

Miπi
pi

]
= 1

M0

N∑
i=1

pi
Miπi

pi

= π.

�

Theorem 2: The variance of π̂ppswr is obtained from a two-stage procedure, such that a sample of size n FSU is
selected by replacement with sampling probability pi for the unit i from the population of N clusters with size Mi
elements in the ith cluster, and the SSUs with size mi are drawn by SRSWR from each FSU, as given by:

V(π̂ppswr) = 1
nM2

0

N∑
i=1

pi
[Miπi

pi
−M0π

]2

+ 1
nM2

0

N∑
i=1

M2
i

mipi

[
πi(1−πi) −

πi
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(6)

where:

Ai = Wi(1− 2Pi)(2− Pi + P2
i )T

2
i (1− Ti)

2 + (1−Wi)(2Ti − 1)(2− Ti + T2
i )P

2
i (1− Pi)

2

+W2
i T2

i (1− Ti)
2(2Pi − 1) + (1−Wi)

2P2
i (1− Pi)

2(1− 2Ti)

+2Wi(1−Wi)PiTi(1− Pi)(1− Ti)(Pi − Ti),

Bi = (1− Ti)
2P2

i

{
Wi(1−Wi)(Pi + Ti − 1)2 + WiPiT2

i + (1−Wi)(1− Ti)(1− Pi)
2
}
.

Proof: Given Xi1 ∼ G(Pi), Xi2 ∼ G(1 − Pi), Yi1 ∼ G(Ti), Yi2 ∼ G(1 − Ti), where G represents the
geometric distribution with a success probability. Since the expected values of Zi j and Z2

i j are

E(Zi j) = πi

[
Wi
Pi

+
(1−Wi)

(1− Ti)

]
+ (1−πi)

[
Wi

(1− Pi)
+

(1−Wi)

Ti

]
, (7)

then:
E(Z2

i j) = πi

[
Wi(2−Pi)

P2
i

]
+ (1−πi)

[
Wi(1+Pi)

(1−Pi)
2

]
+ (1−πi)(1−Vi)

[
(2−Ti)

T2
i

]
+ πi(1−Wi)

[
(1+Ti)

(1−Ti)
2

]
. (8)

Based on (7) and (8), the variance of Zi j is:

σ2
iZ = E(Z2

i j) −
[
E(Zi j)

]2
, (9)
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and, since Zi j is independent, the variance of π̂i can be expressed by:

V(π̂i) = V

 1
ψi

PiTi(1−Pi)(1−Ti)
mi

mi∑
j=1

Zi j −WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)


=

P2
i T2

i (1−Pi)
2(1−Ti)

2

n2
hψ

2
h

mi∑
j=1

σ2
iZ

=
πi(1−πi)

mi
+ πi

miψ
2
i
Ai +

1
miψ

2
i
Bi.

(10)

Since V(π̂ppswr) = V1E2(π̂ppswr) + E1V2(π̂ppswr), then the first and second terms are given,
respectively, as:

V1E2(π̂ppswr) = V1E2

[
1

nM0

n∑
i=1

Miπ̂i
pi

]
= V1

[
1

nM0

n∑
i=1

Miπi
pi

]
= 1

nM2
0

N∑
i=1

pi
[Miπi

pi
−M0π

]2
,

and

E1V2(π̂ppswr) = E1V2

[
1

nM0

n∑
i=1

Miπ̂i
pi

]
= E1

[
1

(nM0)
2

n∑
i=1

M2
i

p2
i

V2(π̂i)

]
= E1

[
1

(nM0)
2

n∑
i=1

M2
i

p2
i

V2

{
1
ψi

PiTi(1− Pi)(1− Ti)
1

mi

mi∑
i=1

Zi j −WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)

}]
= E1

[
1

(nM0)
2

∑ M2
i

mip2
i

{
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

}]
.

Then, we can obtain the variance (10).
Moreover, an unbiased estimator of V(π̂ppswr) is given by

V̂(π̂ppswr) = 1
nM2

0

n∑
i=1

pi
[Miπ̂i

pi
−M0π̂ppswr

]2

+ 1
nM2

0

n∑
i=1

M2
i

pi(mi−1)

[
π̂i(1− π̂i) −

π̂i
ψ2

i
Ai +

1
ψ2

i
Bi

]
.

(11)

�

If the FSUs are selected proportional to size with Mi, then pi = Mi/M0. For this reason, we call
this method “probability proportional to size” (PPS) sampling. When a sample of the FSU is selected
by PPS sampling with replacement via sampling probability, pi = Mi/M0 for the ith cluster, and mi
SSU are selected by SRSWR from each FSU. The estimator π̂ppswr of π is given by:

π̂ppswr = 1
n

n∑
i=1

π̂i

= 1
n

n∑
i=1

1
mi

[
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(12)

and the variance of π̂ppswr and its estimator are as follows:

V
(
π̂ppswr

)
= 1

nM0

N∑
i=1

Mi(πi −π)
2

+ 1
nM0

N∑
i=1

Mi
mi

[
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(13)
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V̂
(
π̂ppswr

)
= 1

nM0

n∑
i=1

Mi(π̂i − π̂ppswr)
2

+ 1
nM0

n∑
i=1

Mi
mi−1

[
π̂i(1− π̂i) +

π̂i
ψ2

i
Ai +

1
ψ2

i
Bi

]
.

(14)

2.2. The PPS without Replacement

In this subsection, we consider PPS sampling without replacement to estimate the true population
proportion of a sensitive character by applying Yennum et al.’s model, in which n FSUs are drawn by
PPS sampling without replacement from the population of N clusters with Mi elementary units for the
ith cluster, and mi SSUs are drawn by SRSWR from each FSU.

From this two-stage sampling, the estimator π̂ppswor of π is:

π̂ppswor =
1

M0

n∑
i=1

Miπ̂i
θi

, (15)

where θi is the first inclusion probability for the ith cluster.
The variance of π̂ppswor is given by:

V
(
π̂ppswor

)
= 1

M2
0

N∑
i=1

N∑
j>i

(θiθ j − θi j)
[

Miπi
θi
−

M jπ j
θ j

]2

+ 1
M2

0

N∑
i=1

M2
i

miθi

[
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(16)

where θi j is the second inclusion probability of the ith and jth clusters.
Furthermore, the variance estimator of π̂ppswor is as follows:

V̂
(
π̂ppswor

)
= 1

M2
0

n∑
i=1

n∑
j>i

(θiθ j−θi j)

θi j

[
Miπ̂i
θi
−

M jπ̂ j
θ j

]2

+ 1
M2

0

n∑
i=1

M2
i

θi(mi−1)

[
π̂i(1− π̂i) +

π̂i
ψ2

i
Ai +

1
ψ2

i
Bi

]
.

(17)

2.3. Two-Stage Equal Probability Sampling

In this subsection, we consider a two-stage equal probability sampling design to estimate the
true population proportion of a sensitive characteristic by applying Yennum et al.’s model, in which n
FSUs are drawn by simple random sampling without replacement (SRSWOR) from a population of N
clusters with Mi elementary units for the ith cluster, and mi SSUs are drawn by SRSWR from each FSU.

From this two-stage sampling, the estimator π̂wr of π is given by:

π̂wr =
N

nM0

n∑
i=1

Miπ̂i, (18)

where π̂i is an estimator of the true population proportion for a sensitive characteristic for the ith
cluster, which is the same as (4).

The variance of π̂wr and its estimator are given as:

V(π̂wr) = N2

nM2
0

1
(N−1)

N∑
i=1

(Miπi −Mπ)
2

+ N
nM2

0

N∑
i=1

M2
i

mi

[
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(19)
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V̂(π̂wr) = N2

nM2
0

1
(n−1)

n∑
i=1

(Miπ̂i −Mπ̂wr)
2

+ N
nM2

0

n∑
i=1

M2
i

mi−1

[
π̂i(1− π̂i) +

π̂i
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(20)

where M = M0/N.

3. An Estimation of Sensitive Attributes with Probability Proportional to Size Sampling Under
Yennum et al.’s Generalized Model

We consider Yennum et al.’s generalized model, in which generalized geometric distribution is used
as a randomization device when n clusters are sampled by PPS sampling or equal probability sampling
from the population, which consists of N clusters with size Mi(i = 1, 2, · · · , N), and mi(i = 1, 2, · · · , n)
units are drawn by simple random sampling from each sampled cluster.

We develop the sampling schemes for PPS sampling with replacement in Section 3.1 and those for
PPS sampling without replacement in Section 3.2. Finally, equal probability sampling is presented in
Section 3.3.

3.1. PPS Sampling with Replacement

Let the population be composed of N clusters. In the first stage, a sample of n FSUs is drawn by
replacement with the sampling probability pi for the ith cluster. In the second stage, mi SSUs are selected
by SRSWR from each FSU and guided to apply Yennum et al.’s generalized randomization device.

If the interviewees in the ith cluster choose a white ball during the first stage, and if they have a
sensitive attribute A (or Ac), then they are guided to pick replacement balls from the first urn of the
second stage device until they take ki2 (or ki1) successive balls with their actual status for the first time
and are then asked to determine the total number of balls as Xi1 (or Xi2).

If the interviewee in the ith cluster draws a black ball in the first stage, and if they have a sensitive
attribute Ac (or A), then they are guided to take replacement balls from the second urn of the second
stage device until they take ki2 (or ki1) successive balls with their actual status for the first time and are
then asked to determine the total number of balls as Yi1 (or Yi2).

For the ith cluster, using the randomization device in Figure 1, the total number of balls taken by
interviewees Xi1, Xi2, Yi1, and Yi2 are distributed via generalized geometric distribution. Let πi and
1−πi be the true population proportion of persons who have a sensitive attribute A and Ac for the ith
cluster. Assume that each interviewee in the ith cluster is drawn by SRSWR.

For the jth surveyed answer in the ith cluster, Zi j can be expressed as:

Zi j =


Xi1 with probability Wiπi,
Yi2 with probability (1−Wi)πi,
Xi2 with probability Wi(1−πi),
Yi1 with probability (1−Wi)(1−πi),

. (21)

The expected value of Zi j is given by:

E(Zi j) = WiπiE(Xi1) + πi(1−Wi)E(Yi2) + (1−πi)WiE(Xi2) + (1−Wi)(1−πi)E(Yi1)

= πi

[
Wi

{
1−P

ki1
i

(1−Pi)P
ki1
i

−
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

}
+ (1−Wi)

{
1−(1−Ti)

ki1

Ti(1−Ti)
ki1
−

1−T
ki2
i

(1−Ti)T
ki2
i

}]
+ Wi

{
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

}
+ (1−Wi)

{
1−T

ki2
i

(1−Ti)T
ki2
i

}
.

(22)
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Then, the formula (22) can be expressed as:

E(Zi j) −Wi

{
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

}
− (1−Wi)

{
1−T

ki2
i

(1−Ti)T
ki2
i

}
= πi

[
Wi

{
1−P

ki1
i

(1−Pi)P
ki1
i

−
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

}
+ (1−Wi)

{
1−(1−Ti)

ki2

Ti(1−Ti)
ki2
−

1−T
ki1
i

(1−Ti)T
ki1
i

}]
.

(23)

The estimator π̂iG of the population proportion πi for the ith cluster is given by:

π̂iG =
(1− Ti)

ki1+1Tki2+1
i (1− Pi)

ki2+1Pki1+1
i

miϕi2

 mi∑
j=1

Zi j −ϕi1

, (24)

where:
ϕi1 = Wi

{
1− (1− Pi)

ki2
}
(1− Ti)

ki1+1Tki2+1
i (1− Pi)P

ki1
i

+ (1−Wi)(1− T
ki2
i )P

ki1+1

i (1− Pi)
ki2+1Ti(1− Ti)

ki1+1,
(25)

and:

ϕi2 = Wi
[
(1− Pi)

ki1PiT
ki2+1
i (1− Ti)

ki1+1(1− Pi)
ki2 −

{
1− (1− Pi)

ki2
}
P

ki1
i (1− Pi)T

ki2+1
i (1− Ti)

ki1+1
]

+ (1−Wi)
[{

1− (1− Ti)
ki1

}
P

ki1+1

i (1− Ti)(1− Pi)
ki2+1Tki2

i − (1− Tki2
i )P

ki1+1

i Ti(1− Pi)
ki2+1(1− Ti)

ki1
]
.

(26)

When the interviewees are sampled by SRSWR for the ith cluster selected with a replacement
by sampling probability pi, the estimator π̂Gppswr of the true population proportion π of a sensitive
attribute is:

π̂Gppswr = 1
nM0

n∑
i=1

Miπ̂iG
pi

= 1
nM0

n∑
i=1

Mi
pi

 (1−Ti)
ki1+1T

ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

miϕi2

 mi∑
j=1

Zi j −ϕi1

, (27)

where M0 =
∑N

i=1 Mi.

Theorem 3: The estimator π̂Gppswr of the true population proportion π of a sensitive character is an unbiased
estimator.

Proof:

E1E2
(
π̂Gppswr

)
= E1E2

 1
nM0

n∑
i=1

Miπ̂iG
pi

 = E1

 1
nM0

n∑
i=1

MiE2(π̂iG)

pi

,
and, since:

E2(π̂iG) = E2

 (1−Ti)
ki1+1T

ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

miϕi2

 mi∑
j=1

Zi j −ϕi1


=

(1−Ti)
ki1+1T

ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

miϕi2

 mi∑
j=1

E2(Zi j) −ϕi1


= πi,

we can obtain:

E1E2
(
π̂Gppswr

)
= E1

 1
nM0

n∑
i=1

Miπi
pi

 = 1
M0

N∑
i=1

pi
Miπi

pi
= π.

�
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Theorem 4: The variance of π̂Gppswr is obtained by a two-stage sampling scheme, such that a sample of n FSU
is selected with replacement by sampling probability pi for the ith cluster from the population of N clusters
consisting of Mi elements for the ith cluster, and mi SSUs are drawn by SRSWR from each FSU, as given by:

V
(
π̂Gppswr

)
= 1

nM2
0

N∑
i=1

pi
[Miπi

pi
−M0π

]2

+ 1
nM2

0

N∑
i=1

M2
i

mipi


{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ2
iZ

,
(28)

where:

σ2
iZ = E(Z2

i j) − (E(Zi j))
2

= πi

Wi

 1−(2ki1+1)(1−Pi)P
ki1
i −P

2ki1+1
i +(1−P

ki1
i )

2

(1−Pi)
2P

2ki1
i


+ (1−Wi)

(
1−(2ki1+1)Ti(1−Ti)

ki1−(1−Ti)
2ki1+1+(1−(1−Ti)

ki1 )
2

T2
i (1−Ti)

2ki1

)]
+(1−πi)

Wi

 1−(2ki2+1)Pi(1−Pi)
ki2−(1−Pi)

2ki2+1+(1−(1−P
ki1
i )

2
)

P2
i (1−Pi)

2ki2


+ (1−Wi)

(
1−(2ki2+1)(1−Ti)Ti

ki2−Ti
2ki2+1+(1−Ti

ki2 )
2

(1−Ti)
2Ti

2ki2

)]
−

[
πi

{
Wi

(
1−P

ki1
i

(1−Pi)P
2ki1
i

−
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

)
+ (1−Wi)

(
1−(1−Ti)

ki1

Ti(1−Ti)
ki1
−

1−T
ki2
i

(1−Ti)T
ki2
i

)}
+(1−πi)

{
Wi

(
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

)
+ (1−Wi)

(
1−T

ki2
i

(1−Ti)T
ki2
i

)}]2

.

(29)

Proof: The total number of balls taken by interviewees for the ith cluster, Xi1, Xi2, Yi1 and Yi2, are
random variables with variances:

V(Xi1) =
1− (2ki1 + 1)(1− Pi)P

ki1
i − P2ki1+1

i

(1− Pi)
2P2ki1

i

, (30)

V(Xi2) =
1− (2ki2 + 1)Pi(1− Pi)

2ki2 − (1− Pi)
2ki2+1

P2
i (1− Pi)

2ki2
, (31)

V(Yi1) =
1− (2ki2 + 1)(1− Ti)T

ki2
i − T2ki2+1

i

(1− Ti)
2T2ki2

i

, (32)

V(Yi2) =
1− (2ki1 + 1)Ti(1− Ti)

ki1 − (1− Ti)
2ki1+1

T2
i (1− Ti)

2ki1
. (33)

From (21), to drive the variance of π̂Gppswr we can obtain the expected values of Zi j and Z2
i j

as follows:

E(Zi j) = πi

[
Wi

(
1−P

ki1
i

(1−Pi)P
ki1
i

)
+ (1−Wi)

(
1−(1−Ti)

ki1

Ti(1−Ti)
ki1

)]
+ (1−πi)

[
Wi

(
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

)
+ (1−Wi)

(
1−T

ki2
i

(1−Ti)T
ki2
i

)]
,

(34)
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E(Z2
i j) = πi

[
WiE(X2

i1) + (1−Wi)E(Y2
i2)

]
+ (1−πi)

[
WiE(X2

i2) + (1−Wi)E(Y2
i2)

]
= πi

[
Wi

 1−(2ki1+1)(1−Pi)P
ki1
i −P

2ki1+1
i +(1−P

ki1
i )

2

(1−Pi)
2P

2ki1
i


+ (1−Wi)

 1−(2ki1+1)Ti(1−Ti)
ki1−(1−Ti)

2ki1+1+
{
1−(1−Ti)

ki1
}2

T2
i (1−Ti)

2ki1

 ]

+ (1−πi)

[
Wi


1−(2ki2+1)Pi(1−Pi)

ki2−(1−Pi)
2ki2+1+

{
1−(1−P

ki2
i )

2
}

P2
i (1−Pi)

2ki2


+ (1−Wi)

 1−(2ki2+1)(1−Ti)T
ki2
i −T

2ki2+1
i +(1−T

ki2
i )

2

(1−Ti)
2T

2ki2
i

 ]
.

(35)

Since V(π̂Gppswr) = V1E2(π̂Gppswr) + E1V2(π̂Gppswr),

V1E2(π̂Gppswr) = V1E2

[
1

nM0

n∑
i=1

Miπ̂iG
pi

]
= V1

[
1

nM0

n∑
i=1

Miπi
pi

]
= 1

nM2
0

N∑
i=1

pi
[MiπiG

pi
−M0π

]2

,

and:

E1V2(π̂Gppswr) = E1V2

[
1

nM0

n∑
i=1

Miπ̂iG
pi

]
= E1

[
1

(nM0)
2

n∑
i=1

M2
i

p2
i

V2(π̂iG)

]
= E1

 1
(nM0)

2

n∑
i=1

M2
i

p2
i

V2

 (1−Ti)
ki1+1T

ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

miϕi2

 mi∑
j=1

Zi j −ϕi1





= E1

 1
(nM0)

2

n∑
i=1

M2
i

p2
i

1
mi


{
(1−Ti)

ki1+1T
ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

}2

ϕ2
i2

σ2
iZ




= 1
nM2

0

N∑
i=1

M2
i

mipi


{
(1−Ti)

ki1+1T
ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

}2

ϕ2
i2

σ2
iZ

.
We can then obtain the variance (28). Also, an unbiased estimator of V(π̂Gppswr) is given by:

V̂
(
π̂Gppswr

)
= 1

nM2
0

n∑
i=1

pi
[Miπ̂iG

pi
−M0π̂Gppswr

]2

+ 1
nM2

0

n∑
i=1

M2
i

pi(mi−1)


{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ̂2
iZ

.
(36)

�

3.2. PPS Sampling Without Replacement

In this subsection, we consider PPS sampling without replacement to estimate the true population
proportion of a sensitive characteristic by applying Yennum et al.’s generalized model, in which n FSUs
are drawn by PPS sampling without replacement from a population of N clusters with Mi elementary
units for the ith cluster, and mi SSUs are drawn by SRSWR from each FSU.
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From this procedure, the estimator π̂Gppswor of π is given by:

π̂Gppswor =
1

M0

n∑
i=1

Miπ̂iG
θi

, (37)

where θi is the first inclusion probability for the ith cluster.
The variance of π̂Gppswor is given by:

V
(
π̂Gppswor

)
= 1

M2
0

N∑
i=1

N∑
j>i

(θiθ j − θi j)
[

Miπi
θi
−

M jπ j
θ j

]2

+ 1
M2

0

N∑
i=1

M2
i

miθi


{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ2
iZ

,
(38)

where θi j is the second inclusion probability for ith and jth clusters.
Also, the variance estimator of π̂Gppswor is:

V̂
(
π̂Gppswor

)
= 1

M2
0

n∑
i=1

n∑
j>i

(θiθ j−θi j)

θi j

[
Miπ̂iG
θi
−

M jπ̂ jG
θ j

]2

+ 1
M2

0

n∑
i=1

M2
i

θi(mi−1)


{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ̂2
iZ

.
(39)

3.3. Two-Stage Equal Probability Sampling

In this subsection, we consider a two-stage equal probability sampling scheme to estimate the
true population proportion of a sensitive attribute by applying Yennum et al.’s generalized model, in
which n FSUs are drawn by SRSWOR from a population of N clusters consisting of Mi elementary
units for the ith cluster, and mi SSUs are drawn by SRSWR from each FSU.

From this procedure, the estimator π̂Gwr of the true population proportion π for a sensitive
attribute is given by:

π̂Gwr =
N

nM0

n∑
i=1

Miπ̂iG, (40)

where the estimator π̂iG is the estimator of a sensitive characteristic of the ith cluster, which is the same
as (24).

The variance and variance estimator of π̂Gwr are:

V(π̂Gwr) =
N2

nM2
0

N∑
i=1

1
N−1

[
Miπi −Mπ

]2

+ N
nM2

0

N∑
i=1

M2
i

mi


{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ2
iZ

,
(41)

and:

V̂(π̂Gwr) =
N2

nM2
0

n∑
i=1

1
n−1 (Miπ̂iG −Mπ̂Gwr)

2

+ N
nM2

0

N∑
i=1

M2
i

mi−1


{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ̂2
iZ

,
(42)

respectively, where M = M0/N.
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4. Efficiency Comparisons

4.1. PPSWR Sampling versus Equal Probability Two-Stage Sampling in Yennum et al.’s Model

If we assume N − 1 � N, then the difference between the variance of equal probability two-stage
sampling, (19), and the variance of PPS with replacement sampling, (6), is given by:

V(π̂wr) −V(π̂ppswr) = 1
nM0M

[
N∑

i=1
(Mi −M)

2
π2

i + M
{

N∑
i=1

(Mi −M)(π2
i −π

2)

}
+

N∑
i=1

(Mi −M)
2 1

mi

(
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
B
)

+ M
{

N∑
i=1

(Mi −M) 1
mi

(
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
B
)}]

.

(43)

In (43), we can see that V(π̂wr) = V(π̂ppswr) under the condition Mi = M = M0/N; i.e., if the
cluster sizes are equal, the selection probabilities of the PPS with replacement sampling are all N−1 and
equal to those of equal probability two-stage replacement sampling.

If the size of a cluster, Mi is significantly different, then
∑N

i=1 (Mi −M)
2
π2

i , the first term on the

right side of (43), has large values, and the second term,
∑N

i=1 (Mi −M)
2
(π2

i −π
2), has relatively small

values. Hence, the estimation by PPS with replacement sampling is more efficient than that by equal
probability two-stage replacement sampling.

We used the relative efficiency (RE) to compare the efficiency of the two sampling methods—PPS
with replacement sampling and equal probability two-stage replacement sampling:

RE1 =
V(π̂wr)

V(π̂ppswr)
× 100(%).

Values of RE1 over 100% indicate that the estimator obtained by the PPS with the replacement
sampling method was more efficient than the estimator obtained by the equal probability two-stage
replacement sampling.

In calculating REs, we set the parameters as follows:

M0 = 10, 000, M1 = 1, 000, M2 = 2, 000, M3 = 3, 000, M4 = 4, 000
m0 = 1, 000, m1 = 100, m2 = 200, m3 = 300, m4 = 400,
p1 = 0.235, p2 = 0.441, p3 = 0.609, p4 = 0.715.

From Table 1, when the selection probability W for the first-stage randomization device increased
from 0.1 to 0.9 by 0.2 and the second stage randomization devices T increased from 0.6 to 0.8 by 0.1 and
P from 0.65 to 0.90 by 0.05, REs increase under the fixed proportion of a sensitive attribute (particularly
when the selection probability of the second randomization device T increased), and the RE increased
according to the conditions of P and πi.
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Table 1. The relative efficiencies (REs) of a sensitive estimator between the probability proportional to
size (PPS) sampling with replacement and the equal probability two-stage sampling with replacement
in Yennum et al.’s model to change πi and W.

πi

W

P

T 0.1 0.3 0.5 0.7 0.9

0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

0.1

0.65 56.59 95.07 123.5 48.08 61.06 91.71 52.73 46.18 55.97 63.18 52.59 39.63 75.51 71.08 61.88
0.7 54.42 89.17 120 50 54.61 81.69 58.65 48.28 48.17 71.01 60.85 45.08 83.88 80.2 72.61
0.75 52.93 81.67 114.8 53.61 51.26 70.48 64.76 53.56 45.34 77.67 69.08 54.13 90.33 87.46 81.68
0.8 52.61 72.72 106.4 58.15 51.63 59.9 70.32 60.37 48.28 83.01 76.38 64.29 95.2 93.08 88.97
0.85 53.84 63.67 93.17 62.84 55.3 53.48 75.02 67.37 55.79 87.17 82.48 73.91 98.87 97.41 94.69
0.9 56.57 57.65 74.27 67.15 61.05 54.47 78.79 73.8 65.52 90.32 87.41 82.23 101.6 100.7 99.15

0.2

0.65 82.74 134.4 153.1 50.22 92.87 130.8 60.29 48.44 86.05 90.64 61.69 34.18 117.4 108.9 89.02
0.7 75.82 129.7 151.4 51.78 76.68 121.8 77.73 48.28 65.5 108.7 84.97 43.35 130.7 125.1 111.8
0.75 68.56 122.7 148.7 60.97 61.93 108.4 94.15 62.33 48.62 121.2 104.6 67.95 139 135.4 127
0.8 62.59 111.6 144.1 74.34 56.05 88.85 107.2 82.13 48.28 129.7 118.9 94 144.4 142.1 137
0.85 61.04 94.57 135 87.93 64.32 66.55 116.7 100.4 68.61 135.4 128.9 114.4 148 146.5 143.6
0.9 66.6 74.23 114.3 99.4 82.02 61.52 123.5 114.4 95.72 139.3 135.8 128.5 150.4 149.6 148.1

0.3

0.65 106.8 152.4 164.9 54.34 117.7 149.2 70.41 53.88 109.9 119 74.13 31.19 148.1 139.5 115.9
0.7 98.24 149.4 163.9 53.64 99.37 142.7 100.6 48.28 85.26 139.9 111.1 42.92 159 154.4 141.5
0.75 87.63 144.7 162.4 70.27 76.57 132.3 124 73.92 55.9 151.7 135.4 85.58 164.8 162.2 155.2
0.8 76.17 136.6 159.9 94.79 61.53 114 139.2 107.4 48.28 158.6 149.6 122.7 168.2 166.6 162.8
0.85 69.9 121.6 154.7 116.5 75.47 83.46 148.7 131.9 85.14 162.8 158 145.2 170.2 169.4 167.4
0.9 78.83 94.88 140.8 131.9 107.7 69.61 154.7 146.9 126.4 165.4 163.1 157.6 171.6 171.1 170.2

0.4

0.65 124.6 162.1 171.2 59.97 134.4 159.3 82.29 61.29 126.3 141.7 88.14 30.06 166.3 159.3 136.7
0.7 116.5 160 170.5 55.58 117.6 154.6 122.6 48.28 102.2 160.3 133.3 43.6 173.7 170.4 159.7
0.75 105.4 156.9 169.6 81.25 91.92 146.7 147.4 87.35 65.18 169.2 156.3 103.3 177.3 175.5 170.3
0.8 91.07 151.5 168 116.6 67.99 131.8 160.8 130.8 48.28 173.8 167.6 144.2 179.1 178.2 175.5
0.85 80.35 140.6 164.9 142.3 88.79 100.6 168.2 155.2 103.2 176.4 173.5 164 180.2 179.7 178.4
0.9 93.87 116 156.4 157 133.7 78.99 172.3 167.2 150.6 178 176.6 173.2 180.9 180.6 180.1

On the other hand, RE increased when the first-stage selection probability W was less than 0.5,
and the values of T, P, and πi (from 0.1 to 0.4) decreased, but the RE decreased when the value of W
was greater than 0.5 under a fixed value for T, P, and πi.

Furthermore, the greater the true population proportion of a sensitive attribute πi, the higher the
overall efficiency of Yennum et al.’s model, as shown by the values of the bottom cells in Table 1. This
result agrees with the typical sampling survey methodology as the true population proportion of a
sensitive attribute πi increases.

4.2. PPSWR Sampling versus Equal Probability Two-Stage Sampling in Yennum et al.’s Generalized Model

If we assume N − 1 � N, then the difference between the variance of equal probability two-stage
sampling scheme (41) and the variance of the PPS with replacement sampling scheme (28) is given by:

V(π̂Gwr) −V(π̂Gppswr) = 1
nM0M

[
N∑

i=1
(Mi −M)

2
π2

i + M
{

N∑
i=1

(Mi −M)(π2
i −π

2)

}
+

N∑
i=1

(Mi −M)
2 1

mi


{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ2
iZ


+ M

 N∑
i=1

(Mi −M) 1
mi


{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ2
iZ



.

(44)
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In (44), we can see that V(π̂Gwr) = V(π̂Gppswr) under the condition Mi = M = M0/N, i.e., if the
cluster sizes are equal, the selection probabilities of the PPS with replacement sampling are all N−1 and
equal to those of the equal probability two-stage replacement sampling.

If cluster sizes, Mi, were significantly different, then
∑N

i=1 (Mi −M)
2
π2

i , the first term of the

right-hand side in (44), had large values, and the second term,
∑N

i=1 (Mi −M)
2
(π2

i −π
2), had relatively

small values. Hence, the estimation by PPS with replacement sampling is more efficient than that by
equal probability two-stage replacement sampling.

We used the relative efficiency (RE) to compare the efficiency of the two sampling designs (PPS
with replacement sampling and equal probability two-stage replacement sampling):

RE2 =
V(π̂Gwr)

V(π̂Gppswr)
× 100(%)

Values of RE2 over 100% indicate that the estimator obtained by PPS with the replacement
sampling method was more efficient than the estimator obtained by equal probability two-stage
replacement sampling.

Table 2 shows the results of the REs obtained by increasing the true population proportion πi from
0.1 to 0.4 by 0.1. The selection probabilities of the randomized response model (W, T and P) are shown
in Section 4.1.

Table 2. The REs for a sensitive estimator between the PPS with replacement sampling and equal
probability two-stage sampling with replacement in Yennum et al.’s generalized model for changing πi

and W.

πi

W

P

T 0.1 0.3 0.5 0.7 0.9

0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

0.1

0.65 171.5 172.8 172.8 163 166.9 167.9 145.4 155.4 159.1 104.1 126.5 138.8 48.17 52.15 68.27
0.7 167.5 169.7 170.1 152.7 160.2 163.1 119.1 139.1 148.9 57.85 83.09 111 78.98 76.63 58.68
0.75 162.2 165.9 167 135.6 150.2 156.7 79 111 133.1 54.18 48.22 69.55 116.3 124.4 117.6
0.8 154.2 160.9 163.3 106.2 133.1 147.2 48.74 68.09 105.6 88.1 76.9 50.14 136.5 148.1 152.8
0.85 139.8 153.1 158.5 64.63 99.62 130.1 64.15 50.65 60.85 116.4 120.1 102.3 147 159.4 168.3
0.9 108.4 136 150.3 49.94 51.5 89.01 96.84 95.38 69.51 133 144.7 150.1 152.7 165.1 175.3

0.2

0.65 180.9 181.1 181 177 178.1 178.3 168.4 172 173.1 140.7 154.2 160 48.39 59.25 87.17
0.7 178.9 179.5 179.5 172.1 174.6 175.5 152.4 162.4 166.8 75.03 112.8 137.8 120.5 111 71.17
0.75 176.4 177.5 177.8 163.1 169.2 171.8 113.3 142.1 156.1 67.28 48.47 88.43 159.6 161.5 149
0.8 172.6 174.9 175.8 143.4 159.1 166.1 50.3 91.74 133.4 132.9 110.7 52.83 171.6 175.4 173.9
0.85 165.8 171 173.1 91.83 133.9 154.7 94.45 55.74 74.87 160 159 135.4 176.4 180.4 182.1
0.9 147.3 162.3 168.5 55.09 58.5 118.4 145.2 139.7 94.09 170.3 174.6 173.7 178.6 182.6 185.2

0.3

0.65 184 184 183.9 181.6 182 182 176.2 178 178.5 157.3 165.5 168.9 48.68 66.76 101.4
0.7 182.8 183 182.9 178.5 179.7 180.2 165.6 171.4 174 91.45 130.8 151.3 145.6 132.9 81.96
0.75 181.2 181.7 181.8 172.9 176.1 177.6 134.5 156.5 166.1 81.89 48.76 102.6 174.4 173.9 161.9
0.8 178.9 180 180.4 159.7 169.3 173.6 52.38 109.5 147.9 155.9 132.1 55.54 181.2 182.4 180.1

0.85 174.8 177.5 178.6 114.3 150.9 165.5 120.4 61.6 86.84 174.9 172.4 151.2 183.6 185.3 185.4
0.9 163.6 172.1 175.6 62.66 66.66 135.6 166.4 160.1 112.1 180.7 182.3 180.3 184.7 186.4 187.3

0.4

0.65 185.5 185.5 185.4 183.9 184.1 184 180 181 181.3 166.1 171.6 173.8 49.04 74.03 112.4
0.7 184.7 184.8 184.7 181.7 182.4 182.6 172.3 176.1 177.9 105.3 142.5 159.4 159.6 146.4 91.15
0.75 183.5 183.8 183.9 177.7 179.7 180.7 147.7 164.5 171.7 95.48 49.07 113.7 180.5 179.2 168.8
0.8 181.9 182.6 182.9 168.2 174.7 177.7 54.79 122.6 156.8 167.6 145.4 58.24 184.8 185.2 182.8
0.85 179.2 180.8 181.6 130.6 160.5 171.4 138.7 67.61 97.01 181 178.3 160.1 186.3 187 186.7
0.9 171.7 177.1 179.3 71.76 75 146.8 176 170.1 125 184.7 185.3 183.2 186.9 187.8 188.1
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In calculating the REs, we set the parameters as follows:

M0 = 10, 000, M1 = 1, 000, M2 = 2, 000, M3 = 3, 000, M4 = 4, 000
m0 = 1, 000, m1 = 100, m2 = 200, m3 = 300, m4 = 400,
p1 = 0.235, p2 = 0.441, p3 = 0.609, p4 = 0.715,
k1 = 2, k2 = 1.

From the results of Table 2, the efficiencies vary according to changes in the probabilities of
selection during the first stage W and the second stage T and P in the randomization device, but when
the first-stage selection probability W is fixed, and the second-stage selection probabilities T and P
increase, then the relative efficiency of the PPS sampling is better than that of the equal probability
two-stage sampling in Yennum et al.’s model.

5. Conclusions

We extended Yennum et al.’s model, in which geometric distribution is used as a randomization
device for a population consisting of different-sized clusters, and clusters are selected by PPS sampling.
Estimators for the true population proportion of a sensitive attribute, their variances, and their variance
estimators are derived under PPS sampling and equal probability two-stage sampling.

We also applied these sampling designs to the case of Yennum et al.’s generalized model.
Numerical studies were carried out to compare the efficiencies of the proposed methods in each case of
Yennum et al.’s model and Yennum et al.’s generalized model in cases with a replacement.

Although the experiments were assumed to use a replacement, we expected similar results for a
case without replacement, as per typical sampling theory.

From the numerical study, we found that the efficiency of the two-stage sampling for probability
proportional to size depends on the given parameter values, but the efficiency of Yennum et al.’s
generalized model is preferred for most combinations of parameters over around 80%.
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