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Abstract: We establish sufficient conditions for the existence of solutions for a nonlinear impulsive
multi-order Caputo-type generalized fractional differential equation with infinite delay and nonlocal
generalized integro-initial value conditions. The existence result is proved by means of Krasnoselskii’s
fixed point theorem, while the contraction mapping principle is employed to obtain the uniqueness
of solutions for the problem at hand. The paper concludes with illustrative examples.
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1. Introduction

Impulsive fractional differential equation is found to serve in a number of practical applications,
for example, fractal porous media [1,2], fractal petroleum [3,4], neural networks [5,6], and physiology [7-9].

Delay differential equations appear in the mathematical modeling of several real world
phenomena occurring in various disciplines such as immunology [10], population dynamics [11],
physiology and epidemiology [12], ecological models [13], and neural networks [14-16]. The concept
of time delay relates to the duration of certain hidden processes like the time between the infection of a
cell and the production of new viruses. In fact, the evolution of a delay differential system is more
complex than the classical one as it relies on its current time as well as on its past stages. For further
details, see [17,18].

Impulsive fractional differential equations constitute an important field of study in view of
their diverse applications. These equations model the phenomena experiencing abrupt changes.
Agarwal et al. [19] discussed iterative techniques for Caputo fractional differential equations with
non-instantaneous impulses. Benchohra et al. [20] studied impulsive differential inclusions via
a variational method. In [21], the authors investigated optimal controls involving impulsive
Hilfer fractional delay evolution inclusions. Li et al. [22] derived a comparison principle for
impulsive functional differential equations with infinite delays. The optimal control problem
for non-instantaneous impulsive differential equations was studied in [23]. In [24], the authors
discussed the approximate controllability of impulsive fractional integro-differential equation with
state-dependent delay in Hilbert spaces. Zhang et al. [25] obtained extremal solutions for nonlinear
multi-orders fractional impulsive differential equations. In [26], the authors introduced and
investigated a nonlinear impulsive multi-order Caputo-type generalized fractional differential equation
with nonlocal integro-initial conditions.
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Motivated by [25,26], the objective of the present work is to derive the existence and uniqueness
results for a nonlinear impulsive multi-order Caputo-type generalized fractional differential equation
complemented with nonlocal generalized integro-initial value conditions and infinite delay. Precisely,
we investigate the following problem:

EDy(t) = fltby), 1<ax <2, k=0,1,2,...,p, t],
k
Ay(te) = Se(y(te), A dy(t) = Sp(y(te)) k=1,2,....p,
Sy(t) = ¢(t), t € (—o0,0],
y(0) =Y OAkat+y(§k) +17, te <8 < iy,

)

where £ D'X" is the Caputo-type generalized fractional derivative of order ay, p > 0, Iﬁ * is the

generahzed fractional integral of order By > 0,p > 0, f € C(J x Br,R), ¢ € B, (,b( ) =
0, — ft sP— 1q> ds € B, B is a phase space to be defined in Section 2, Sk, S; € C(R,R), Ag, & are
positive constants, ] = [0,T], T > 0,7 € R,0 =ty <t; < --- < h < --- <t, <t pr1 =T, J =
J\{ti,t, ..., tp}, and Ay(t) = y(tF) —y(t; ). Here y() and y( . ) denote the right and left limits
ofy(t)att =t (k=1,2,...,p), respectively, and Ady(t;) havea 51m11ar meaning for 5y(t), 6 = t1 ¢ dt.
We assume that y; : (—00,0] = R, y¢(s) = y(t +s), s < 0, belong to the abstract phase space B and
y¢(.) represents the history of the state from time —oo up to the present time ¢. Here we emphasize that
our problem is the delay-variant of the one studied in [26].

The rest of the content is arranged as follows. In Section 2, we recall some preliminary concepts
and prove an auxiliary lemma. Section 3 is devoted to our main results and illustrative examples.

2. Preliminaries

Let (B,].||g) denote the seminormed linear space of functions mapping (—oo,0] into R,
and satisfying the following axioms due to Hale and Kato [27]:

(Bg) Fory: (—oo,T| = R, yo € B and for every t € [0, T], the following conditions hold:

(1) Yrisin B;
(i) Nyl < K(£) sup{ly(s)] : 0 < s <t} + M(t)]|yo] 5; _ _
(iii) |y(t)| < H||y¢||g, where H > 0is a constant, K : [0, T] — [0, o) is continuous, M : [0,00) —

[0, c0) is locally bounded and H, K, M are independent of y(.) and

Kr = sup{|K(t)| : t € [0, T]}, My = sup{|M(t)| : t € [0, T]} 2)

(B1) For the function y(.) in (By), y: is a B—valued continuous function on [0, T].
(B2) The space B is complete.

Letus fix Jo = [0, 1], Jx = (tx, tey1), k=1,2,..., p with t,+1 = T, and consider the Banach space
PC(JJR)={y:] > R:y € C(JpR), k=0,1,...,pand y(t) and y(t, ) exist with y(t, ) = y(t),
k=1,2,...,p} with the norm ||y[| = sup;; [y(t)|, where C(J,R) denotes the space of all continuous
real valued functions on J, and PC}(J,R) = {y : | — R : 6y € PC(J,R); dy(t]),dy(t;) exist
and Jy is left continuous at f; for k = 1,2,...,p, 0 = tl’P%} is endowed with the norm ||y|| =
sup;e;{ly(t)|pc, 16y (t)pc}-

Let the space By = {y : (=00, T] = R : y[(_qo0] € Band y|j 1) € PC(],R)} be equipped with the
seminorm defined by: [y, = 19115 + sup,c; [¥(5)], ¥ € Br.
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Definition 1 ([28]). For a > 0and p > 0, the generalized fractional integral of f € X{(a,b) for —co < a <
t < b < oo, is defined by

1—a ot S -1
(plaa—l—f)(t) = ?(Dc) /a (tp psp)l_af(s)dsl 3)

where XJ(a, b) denotes the space of all complex-valued Lebesgue measurable functions ¢ on (a,b) equipped with
the norm:

b dx\1/4
ol = ([ o) <o, cer1<g <o
a

Note that the integral in Equation (3) is called the left-sided fractional integral. Similarly we can
define the right-sided fractional integral 9157 f as:

1-a /b S -1
R0 = b [ e @

Definition 2 ([29]). Fora >0, n = [a| + 1 and p > 0, the generalized fractional derivatives, associated with
the generalized fractional integrals (3) and (4), are defined, for 0 < a < x < b < oo, by:

("Das f)(t)

GRS RIS
x—n+1

p P AN g1
= B () [ e s

and,

eoi W = (—0r D) e
pu7n+1

_d\n b gp—1
m(_tl pﬁ) /t Wf@)ds

if the integrals exist. In particular, when o = n, then:

"D (1) = (0 0) "), g (1) = (10 )" so)

Definition 3 ([30]). For &« > 0,n = [a] +1and f € AC}[a,b], the Caputo-type generalized fractional
derivative ED¥ , is defined via the above generalized fractional derwatzve by:

n—1 sk _
pD“+f( ) pDZc+ {f(t) . Z 6 ]];(61) (tp aP)k} (x), 5= xl—p%_

k=0 P

Similarly we have,

n—1 (__1\ksk .
gDZ‘if(x):PDZ: [f(t)— 2( 1)}(‘? f(b) (bp tP)k}( y N Pl:;ix

k=0 Y

where AC?[a, b] denotes the class of all functions f that have absolutely continuous 6"~ '-derivative (6"~ f €
AC([a, b],R)), which is equipped with the norm || f|| acx = Y5 16 |-

Remark 1 ([30]). For & > 0and f € AC§[a,b], the left and right generalized Caputo derivatives of f are

defined as: . o ()5
N B t —sP\n—a=1("g)(s)ds
gDWFf(t) - T(n—a) /,1 ( 0 ) sl=p 7
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?Df,‘,f(t) _ i 1 )/tb <sP—tP)nﬂx—l(_l)n((sng)(S)ds.

n—uo o sl—p
when o ¢ Ny, and, ; ;
EDg, f(t) = (FP =) F(1), EDG_f() = (#P ) £(0). )

for o € Ny. In particular,

EDRLf(t) = f(1), €DY_f(1) = f(1).

Lemma 1 ([30]). Let f € AC}[a,b] or C§[a,b] and « € R. Then,

n—1 ( sk a) /xP —a
I DS = ) - 1 R p )
=0 )

n—1 (_1\k(sk B
I EDY f(x) :f(x)_kzo( 1) gj f)(a) (bP : xp)k.

In particular, for 0 < o < 1, we have,
Play €D f(x) = f(x) = f(a), PIy- £Dyf(x) = f(x) = f(D).
Definition 4. A function y € Br is said to be a solution of the problem (1) if y satisfies the differential equation

Q’D;ﬁy(t) = f(t,ys) on J\ {t,...,tp} and the following conditions:
k

Ay(t) = Se(y(k)), Ady(t) = Sf(y(k)) k=1,2,...,p,
Sy(t) = ¢(t), t € (—0,0],
y(0) =Y, , )\k”gky(ék) +1, b <8k < tigr,

Lemma 2. Let h € C([0,T],R), y € PC}(J,R) N ACZ(Ji), Sk, Si(k=1,2,...,p) be constants and,

P Ak(E — )P

Q=1-Y)"

=0 PP (B +1)

then the following impulsive integro-initial value problem with infinite delay:

# 0, (6)

ﬁ’kafy(t) =h(t), 0<ar <2, k=0,1,2,...,p, t€],
Ay(t) =Sk, Ady(t) =S5, k=1,2,...,p,

sy(t) = ¢(t), t € (—o0,0],

y(0) = Lo APy (E) + 0t < G < i,

@)

can be transformed into its equivalent system of integral equations:

PIOK(E) + A, te o,

" k a k-1 (o=t i =lp oy *

gty = § IR + X {Pltltllh(ti)—i-si} + Y] (kp )[plt,tf h(tl)+si} @®)
PP L N

+ L (t o k) [plf_fl Uh(t) +Si} +4,

i—

teJuk=1,2,...,p,
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where,
A = )\PI“k+5kh )+ L {pl"‘*‘*lh(tHS]
i L L e g s
PG — BPE( = 10) 1) a1 )
+Z; T T P12 () + 51 )
k(g ftp)ﬁk“ o1 \
and p(t) —f s~ 1¢g

Proof. In view of lemma 2.7 in [26] and by the given condition ¢(0) = 0, the solution of Equation (7)
on the interval [, k =0,1,...,pis:

PIVh(t) + A, te T,

L) + £ [P () + 8] + £ (A50) [ + s

(t) = "
y vk (tP tk> [plzf;l_lh(ti) + Sl*} + A,

tefuk=12,...,p,

Now, we extend the solution of Equation (7) to (—oo, 0]. Solving the differential equation dy = ¢(t)
and using the definition of y at zero, we get,

vty = [0ty 4

t

which together with Equation (10) yields the solution (8). The converse follows by direct computation.
This completes the proof. [

Further we introduce the following assumptions to establish our results.

(A1) There exists a constant £, such that:

f(t¢) = f(L9)| < Ll —ylls, forte]¢peb.

(Ap) Foreachk =1,...,p, there exists K1, Ky > 0, such that:

15k(x) = Skl < Kallx = yll, [[S¢(x) = Sg)ll < Kallx —yll, Vx,y € R.

(A3z) The function f : ] x Br — R is continuous and there exists a continuous function y : ] — (0,0)

such that |f(t,¢)| < u(t) and u* = SUP;¢0,71] u(t).
(A4) The functions S; : R — R, S;:R— R, k=1,...,p are continuous and there exists constants

M, M such that ||Si(x)|| < M; and ||S;(x)| < Mo.
3. Existence and Uniqueness Results

By Lemma 2, we transform problem (1) into a fixed point problem by defining an operator
F: BT — BT as:
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P(t)+ A, te (—oo,0],

PIVf(tyr) + A, te ],
k

IS + Y [PIE ie) + Sily(e)]

(11)

)

i=1

(Fy) () =< k= 1<tp_tp>[plall Ut ye) + S (8))]

=

k tp—t‘D

L) a7 ) + 57 w)] + A

=

i=1

tek=12,...,p,

where A is defined by Equation (9) with f(t,y;) instead of h(t). Let x(.) : (—co, T] — R be the function
defined by:

)+ A, t —o09,0],
x(t>_{"’” € (—e0,0] W
A/ t € ]I
then xg = ¢ + A. For each z € C([0, T], R) with z(0) = 0, we denote:
{ 0, t€ (—c0,0],
Z(t) = (13)
z(t), te],

If y(.) satisfies Equation (1) then we can decompose y(.) as y(t) = x(t) + z(t), which implies
Yt = x¢ + Z; for t € ] and the function z(.) satisfies:

PIVf(txe+2), t€E o,

k
PI:‘;Z( (t/ Xt + Zf) + Z {plfﬁjf(tirxfi +Zfi) + Si(x(ti) +Z(ti))]
i=1 =

(i
(%

e]k,kzl,z,...,p.

0
I [Pree Tt x, 2) + 57 (el + 2(01)] (14)

L
k
Z > [plocl T 42 + SF(x(t;) + Z(ti))]r

Set B't = {z € Br such that zy = 0} and let ||.|| 3, be a seminorm in Bt defined by:

|zl 51y = sup |z(t)| + [Izoll, = sup |z(t)|, z € B'r.
te] te]

Thus (B'r, .|| 5/, ) is a Banach space. Next we introduce an operator N : B't — B'r by:
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PIGLf(t, Xt +21), tE ]y,

k
Plf;k (hx+21) + Z [”a’ (kw1 + 21) + Si(x(8) + 2(8)]

#—t

(T) P15 (ks + 2) 4 ] (k) + 2(0)] (15)

Z
N

I
_|_
M\

Il
—_

<tP ; t’;) [Plf%ll_lf(ti/ xy, +2) + S (x(t) + Z(fi))],

tE]k,k:Lz,...,p.

_|_

Il
—_

It is clear that the operator F has a fixed point if and only if N has a fixed point. For p > 1, we set:

maxo<i<p TP maxo<i<p T

M=0 +p)min03i3p{P”"T(Ni 1y * @ = ming<;<, {p“T (a;)}’ {16)
1 p )‘k(':f ,tp)“kH%k POk A gk _tp),Bk(tp _tP BES
Ay = —
2 ‘Q| { ZO aﬁﬁkp(gk—:ﬁktl P sz pﬁkral o ﬁk+1) f(;Xl 1;;51)1 P 1 (17)
KL A (88 — )P (t) — ) (1 — £ )i A (8 — BB — 4 yria
+ 4
22; PP % T (B + 1)1 (aj_1) 21; PPt T (B +2)T (1) }
ha=@p=1)7 1)
1 & M@ — )P
ANy = — k——— 19
! ‘Q|{k:1 Pﬁkr(ﬁk+1)} (19)
and,
B DGR — )P — ) B Ar(Eh — )P
s = 6{ 22;1 pPHIT (B +1) k:zl pﬁk“T(ﬁkH)} ¢

In the following theorem, we prove the existence of solutions for problem (1) by applying
Krasnoselskii’s fixed point theorem [31].

Lemma 3. (Krasnoselskii’s fixed point theorem). Let S be a bounded, closed convex, and nonempty subset of
a Banach space X. Let P, Q be the operators from S to X such that (i) Px + Qy € S whenever x,y € S,
(ii) P is compact and continuous, and (iii) Q is a contraction mapping. Then there exists { € S such that

¢ ="Pr+ QC.

Theorem 1. Assume that the assumptions (Az), (Az), and(Ay) are satisfied. Then problem (1) has at least
one solution on (—oo, T}, provided that:
pK1+K2A5 <1, (1)

where ICq, Ky are given in (Ap) and Aj is defined by (18).
Proof. Consider B, = {z € B'r : ||z||g, < r} withr > p*Aq + pM, + M3Az, where p* and M, M3

are given in (A3) and (A4) respectively, and A; is defined by Equation (16). Next we define operators
P and Q on B, as follows:
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plaof(l’ xt—&-zt) t e Jo,

(PZ)(t) = Plik t Xt +Zt ZPI“: ! tzlxt,‘ +Zt g ( >p10¢1 1 1f(ti/ .Xti +Zti)
koo — N
+Y ( )Plt”‘fll Yt xy +2) tE Juk=1,2,...,p
i=1 i
and,
0, t € Jo,
k—1 tp _ tp k o _ tp
(Q2)(t) = Zs (1) + X ()i et + 2( £) 81 (k) +2(1:))

i=1 i=1

tG]k,k—lz P

Observe that P + Q = N, where the operator N : B/t — B'r is defined by Equation (15). For
z,z* € Byand t € ]y, we have:

p&o

1-ay ot
o—1r0 _ o \a—1 = < u* 1 < y*
B o O = s+ 2lds < b (Cphgy) S KM

=)

|Pz(t) + Qz* ()] <

Next, forz, z* € B,and t € Ji, k=1,2,..., p, we obtain:

[Pz(t) + Q=" (1)]

Dy [ =+ 2l

b [ [ s 2l 1) + 20

IN

i=1 (“z l
=R p* i i os1y,p 2
p=1(4f _ gp)ai1— s *((f) 4 5% (F
+ L) Mo ST YR (s x4 2 s 1S (e + 2 ()
k tP—tP ¥t t;
o—140 _ p\&i-1—2 5% (t.
+ 121( ) [Fammy T s R+ 2 s 1S (x(e) + 2 (1)) ]
< WA+ pMy + MzAs.

Thus, forz, z* € B,and t € Ji, k=0,1,2,..., p, we have:

[Pz + Qz*|| g, = sup |Pz(t) + Qz"(t)| < p*Ay + pMy + MaAy <7,
te]

which implies that Px + Qy € B,. Using the assumptions (A;) and Equation (21), we now show that
Q is a contraction. For z, z* € B, and t € Jp, it is clear that Q is contraction, where Qz(f) = 0 for each
z € By and t € Jy. Furthermore, for z,z* € B, and t € Ji, one can obtain:

k
sup |Qz(t) — Q2 (1)] < sup { Y 1Si(x (k) +2(1)) — Si(x(ti) + 2" (1))
0

+2(t )5 () + 2(0) — §F GeCk) + 2°(6)

tP—t

+Z(

* TP *
Kipsup |z(t) — z*(t)| + K2(2p — 1) — sup |z(t) — 2" (t)]
te] O teg

IN
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= (pIC1 + /C2A3> sup |z(t) — z*(1)].
te]

Consequently, for z,z* € Byand t € [, k=0,1,..., p, we have:

1Qz— Q2" Iz, = sup|Qz(t) — Qz*(B)| < (pKi + K2As ) Iz — 2" -
te]

Continuity of f implies that the operator P is continuous. Also, P is uniformly bounded on B, as:
1Pyl < w A

In order to prove the compactness of the operator P, let z € B,. Then, by the assumption (A3),
for 1y, o € Jp with 4 < T, we have:

1—ap T
(P2)(w) = (Pa)(m)| = [fs [ [0 =)t = (af =)0 f(s, s+ 2:)ds

T
+ / : sPH (T —sP) 0 £ (s, xs + Zs)ds] ‘
J 0

I p_ P pu pu
pT(ag+1) {2(5 - FIn - O‘}'

Also, fory, m € Jy, k=1,2,...,p (11 < 12), we get:

|(Pz)(r2) = (Pz)(n)]

1—ay e
- |2 Vo1 P _ ovm—1 _ (P _ oym—1 _
’F(zxk) {/tk s [(TZ § ) (Tl 5 ) i|f(sl Xs +Zs)d5

T2
+ / Sp—l(sz —sp)”‘k’lf(s,xs +Zs)ds}
JT

+,-é ( = ; Tf)> (F(izi_jil) /t: SPH(H —sP) 42 f (s, x5+ Zs)ds> ‘

{20 =) 41— ) = (< = )1}

koo(d) — ) (# — )t
+u* .1 i—1 )
H ;( oo T () )

*

_r
pT (o +1)

From the above inequalities, it follows that |(Py)(12) — (Py)(11)| = 0as o — 11 — 0,V1y, 1 €
Ji.k =0,1,...,p, independent of z € B,. Thus, P is equicontinuous. So P is relatively compact on
B,. Hence, by the Arzela-Ascoli theorem, P is compact on B,. Thus all the assumptions of Lemma 3
(Krasnoselskii’s fixed point theorem) are satisfied. Therefore, by the conclusion of Lemma 3, problem
(1) has at least one solution on (—oo, T]. O

Our second result deals with the uniqueness of solutions of Equation (1) and relies on Banach
contraction mapping principle.

Theorem 2. Let f € C(] x B,R) and the assumptions (A1), (Az), and (Ay) are satisfied. Then there exists a
unique solution for problem (1) on (—oo, T| if:

LKTA1 4+ pK1 + KAz < 1, (22)

and,
LK+ LT Ny <1, (23)
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where L is given in (Ay), KCq, Ky are given in (Az), A1, Aa, Az are respectively defined by Equations (16)—(18),
and J = Kt + Mt (K, Mt are given in Equation (2)).
Proof. Setting sup,; [f(t,0)| = My, we consider the set:

By = {Z S B/T : ||Z||B/T < 1_’}

with:
Lo+ Mrl[glls| A+ (MiAs + pMy + MsAz)(1 = LT A2)

r= 1— (LK + LTA,) ’

where ¢ = MjA; + MoAy + M3zAs + %, M,, M3 are given in (Ag), A4, As are defined by
Equation (19) and Equation (20), respectively, and show that NB; C B;. Forz € B and t € J,
we have:

(N2)(B)] =PIt +2)|
pl_lxo ! -1 ap—1 -
< T'(ag) /0 s (0 = sO) | f (s, xs + Z5) — f(5,0)| + [ f(s,0)]ds
pl—lxo t 1 1 i
< B [ - sk 2+ M

pag
= E[f(1 7127/\2) + UlthI:T}l/p\!B] +M1} {m}

= LHl 7127/\2) + Ultl\gyﬂs]/\l +MiA <7,

which, on taking norm for t € Jy, implies that ||[Nz|| < 7. For t € [0, T|, we have:

[xtll5 + |2t 5
(Kt + Mr)||All + M7|[9]| 5 + Kt sup{|z(s)| : s € [0, ]}
JIAll + Mr|[¢| 5 + Kr7
jﬁ(MT”’-PHB‘f'KT’_’)AZ'f’U
1-LITN,

_ Kt o+ Mr| ¢l
r(l = £jA2) YA CLTA,

llxt + 2t 5

IANIN A

IN

+ Mr ||l 5 + K17

and,

B MG = P 1) i
s B e s £ RSP v s
+185(x(t) +2(t:)) ]

k-1 — VB (P
+2 L i é’émtr)ﬁ (in )[" S k0 2) 18] (k) + 2(6)

0 0\B
Z > M (P17 k420 + 187 (x(t) + 2(80)] | + ’7}
—1i=1 -

1 0y k(G — )P

fe] k=0 PR (s + B+ 1)

MG — )P (8 — )% 2R A(E — )P — ) (= )

PrsaT(Be+ Dl (i +1) 5/ S PP T (B + 1)T (1)
_tp)/SkH(tP_tP )zx,»,l—l

Pk A(E — )P
ﬁ**“’ (B +2)T (1) }} IOI{ZZ l;‘kfkﬁwl)}

1i

IN

(£l + z1l| + M) {

5L
e
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(&0 — #0)Be (£ — MG = )Py
o LR gy L )

2 i=1 1i=1

< [E((KTJrMT)HAH + Mr|ylls +KTr) +M1}A2 4 MyAy + MaAs + ‘|;72||
< LIN|A] + LIMr|l¢llg + KrP) Az + 0
< LMrllyls+Kif)Ay +0

1-LITN

Forz € B, and t € J;, we have:

k
(N2)()] = \Plfk (ot 2 35 P12 b+ 2) + 8iGa(a) + 2(60)|

%
=
|

-~
~

+
-M\

D) [Prt x4+ 2) + 57 (x(8) + 2(1)

[
N
o)

/N
-
©
\
-
Eaainel

+

) [pla, (kx4 21,) + SE(x(k) + Z(ti))] )

=}
HN
LI
:
i}

IA

[ 5710 = 15 3 +29) — £(5,0) + (5, 0)[)ds

tk

pl_‘xi—l Lo o )
[W/ sO7H(tP — sP) Y| (s, x5+ 25) — f(5,0)| + |f(5,0)]1ds
+2(t))]

=
i~ 2

sl
%
~— =
=

T
-
-
~
\
o+
=

+
7

Il
—_

: pZ i1 t; P o\a1—2 _
) [re g [ = R 20 - £(5,0) + (5,0 s

157 (x(t) + 2(8:))]

%
%

2—wq

P :
lzl ( P 5) Flom J U )25+ 2) — £(5,0)| + [f(s,0)Jds

ki1

+IS5 (x(t) + 2(8))]]

(K o+ Mr|¢lls (fq — )
[U(l - £JA2> R T S v Ml} { 04T (g 4 1)
+ E o= Tr 141 + Z (

ty () — il
i=1 p >( ptx, - 1r(“i—1) )
tp )0(,',171

O 4f
+ i < kH )<(;”_llrl(“i1) )} + kM, +M3{ ) (

i=1 i=1

IA

_ t:” )0&,;1 tP

H—

gt

K
. T (7+MTH1PHB}A1+M1A1+pM2+M3A3<7.

L[r(l—ﬁjA2> 1-LTA,

IN

Consequently, we get ||[Nz|| < 7fort € J,k =0,1,...,p. Thus NB; C Bs.
Now, for z, z* € B'r and t € ]y, we have:

N0~ (N S B [ )+ 2) 0,3+ 2l

I (o)
1-ag pt
< B o =T Ll 2 s
pl—lxo t
< 7/ sPL(tP — sP) 0 1LKT sup |z(s) — z%(s)|ds
I'(ao) Jo se[04]
< LKrAj sup |z(s) —z*(s)]-

s€[0,T)
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In a similar manner, for ¢ € [, , we obtain:

1—ap ot
= ?(M P = ST f (x5 + 26) — f (8 %+ 2)|ds
k
k pl—lxi—l t;
Lt [T =) (s v+ 20) — f(s, x4 20)lds
i=1 i— i-1
185 (8) + 2(1)) = Si(x(t) + 2" (1)
k—1 i’p—tP 2—n; t:
ki 4 /‘ 0—1(40 _ o\&i1-2 =\ _ -
+ S tF —s S, Xs+ Z S, xs + 22 )|ds
L5 e b, o= Pl 2 — flo x4 )
157 (x(t) + 2(8)) = ] (x(t) + 2" (1)
koo — 0 21 t;
k o / p=1(o _ g0)xi1—2 s\ _ 54| d.
L () o L 0 T e+ 2 = o )l
157 (x(t) + 2(1)) = S (x(t) + 27 (1)) ]
1-ap  ft
P o—1r0 _ pya—1 s _ 5%
< By L = Ll — 2 s
B [ )
v 7/ P71t — syl L |z, — 2| gds + Ky sup |2(E) — 25 ()]
=T i) Jr T te[0,T)
k—1 fpftp 2—aq t
k i Y /x 0=1(40 _ o\&i1=2 /|5 _ 5% ok
+ Pt — s L||zs — zX || gds + Ky sup |z(t) — z* (¢t
L (5 ) ra = o, e = 2 s 2 sup [2() ol
ko o — 0 2 %in1 b
+ k / P — P\ 2Lz — 2 | ds + Ky sup |z(F) — Z*(¢
Lm0 =l s 2 sup [2() ol
< (LKrAy +pKy + Kafs) sup [2(H) =" (1)].

s€[0,T]
In consequence, for t € [,k =0,1,2,...,p, we deduce that:

INz=Nz*[lg = sup [(N2)(t) = (N2)()] < (LKrAq+ pKy + Kas ) 2 = 2" s,
te[0,T)

which, in view of Equation (23), implies that N is a contraction. Thus the conclusion of the theorem

follows by contraction mapping principle. [

Examples

(a) Let us consider the following problem:

USD%y (1) = f(t,y:), te€0,2], t#3/2, k=0,1,
Ay(3/2) = Ltan~1y(3/2), Ady(3/2) = %
y(t) = ¢(t), te (—oo,0],

y(0) = Xh_o A1y (&) +2/3,

k

(24)

where p = 1/3, a0 = 6/5, a1 = 8/5, B = 2/5, 1 = 3/7, Ao = 1/4, A = 1,8 = 3/4, & =
7/4,t1 =3/2,1=2/3,p=1,T=2,5(y) = %tan’1 v, Si(y) = %IM and f(t,y:), ¢(t) will be
fixed later.
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Let us define B, = {y € C((—o0,0],R) : glim e“?y(0) exists in R}, where w is a positive
——0

real constant. Clearly the space B, satisfies the axioms of phase space with the norm |y, =

sup e“?|y(f),andK =M =H =1.
—00<0<0
Let ¢(t) be a continuous function such that ¢(0) = 0 and tlim el (t) < oo, tlim et (t) < oo.
——00 00

Thus ¢, ¢ € B,,. For example, one can take ¢(t) = eVt e V13 which yields ¢(t) = — fto s72/3¢(s)ds =
3(2+ eVt —3¢V#/3). Obviously ¢, ¢ € By, and ¢(0) = 0.

Using the given data, we find that |Q)| ~ 0.0366186289, A; ~ 21.13605055, A, ~ 85.89633432,
A3 = 3.77976315, Ay =~ 14.81704598, and As = 1.878052710, where ), A1, Ay, A3, and A4 are given
by Equation (6) and Equations (16)-(20) respectively.

In order to illustrate Theorem 1, we consider:

—wt

|y

t, = +1/2cost), (t, € 10,2] x B, 25
ft) = o= (i ). (b) €10.2] x B 25)
and note that the assumptions (A;), (A3), and (A4) are satisfied with 1 = 1/4, K, =1/12, My =

—wt
/8, My = 1/12, and u(t) = e(lio%os”. Furthermore, pK7 + K2A3 =~ 0.5649802625 < 1. Thus
all the conditions of Theorem 1 hold true and consequently the problem (24) with f(t,y;) given by
Equation (25) has at least one solution on (—oo,2].
Next, for illustrating Theorem 2, we take:

e—wt 1
Fltye) = m(tan vi+1/8), (Lys) €[0,2) x Bo. (26)

Notice that f is continuous and the conditions (A1), (A2), and (Ay) are satisfied with £ =
1/225, K1 =1/4, K, =1/12, My = /8, My = 1/12. Also LKA + PKl + KAz =~ 0.6589182649 <
1,and LK + LT Ay = 0.7679674161 < 1. Since the hypothesis of Theorem 2 holds true, therefore the
problem (24) with f(t,y;) given by Equation (26) has a unique solution on (—co, 2].

(b) Fixing ay = &« = 2 and 1 = 1, By = 2, the differential equation in Equation (24) will take the

2
form: (tz/ 3%) y(t) = f(t,y¢) (see Equation (5)) and the integro-initial condition in Equation (24) will
become: 34 -

y(0) = 411 /0 s72/3y(s)ds + 3 /3/2 sT2/3((7/4)13 —sV/3)y(s)ds +2/3.

In this case, we have |Q)] ~ 0.3021864840, A1 ~ 72, A; ~ 3.123430595, A3 ~ 3.779763150, Ay =~
0.05424893115, As ~ 0.003274296770, and the conditions in Equations (21)—(23) are satisfied, that
is, pK1 + KaAz ~ 0.5649802625 < 1, LKTA1 + pK1 + KoA3 = 0.8849802625 < 1, LK1 + LT Ay =
0.03220827195 < 1. Clearly the hypotheses of Theorems 1 and 2 are satisfied with the functions defined
by Equations (25) and (26) respectively. In consequence, the conclusions of Theorems 1 and 2 apply to
the problem at hand.

4. Conclusions

We have presented the sufficient criteria for the existence and uniqueness of solutions for a
nonlinear impulsive multi-order Caputo-type generalized fractional differential equation equipped
with infinite delay and nonlocal generalized integro-initial value conditions. The results obtained in
this paper may have potential applications in diffraction-free and self-healing optoelectronic devices.
Examples include propagation properties of the fractional Schrodinger equation [32,33], parity-time
symmetry in a fractional Schrodinger equation [34], light beam in a fractional Schrodinger equation [35],
etc. It is imperative to note that our results specialize to new ones for an appropriate choice of the
parameters involved in the problem at hand, for example, the results for a nonlinear single order
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Caputo-type generalized fractional differential equation with generalized fractional integral boundary
conditions can be found by taking a; = a. Moreover, our results reduce to the ones for the infinite-delay
case of the problem considered in [25] by taking p = 1. We can also extend our discussion to a
‘short-memory’ case as argued in [36,37].
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