On ω-Limit Sets of Zadeh’s Extension of Nonautonomous Discrete Systems on an Interval
Abstract
:1. Introduction
2. Preliminaries
- (1)
- ;
- (2)
- A is an upper semicontinuous function;
- (3)
- For any and any , ;
- (4)
- is compact.
3. Proof of the Main Result
- (1)
- If for some , then for any and .
- (2)
- If for some , then is a connected subset of I for any and .
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Balibrea, F.; Oprocha, P. Weak mixing and chaos in nonautonomous discrete systems. Appl. Math. Lett. 2012, 25, 1135–1141. [Google Scholar] [CrossRef]
- Dvorakova, J. Chaos in nonautonomous discrete dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4649–4652. [Google Scholar] [CrossRef]
- Kawan, C.; Latushkin, Y. Some results on the entropy of non-autonomous dynamical systems. Dynam. Syst. Inter. J. 2016, 31, 251–279. [Google Scholar] [CrossRef]
- Lan, Y.; Peris, A. Weak stability of non-autonomous discrete dynamical systems. Topo. Appl. 2018, 250, 53–60. [Google Scholar] [CrossRef]
- Liu, L.; Chen, B. On ω-limit sets and attracton of non-autonomous discrete dynamical systems. J. Korean Math. Soc. 2012, 49, 703–713. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y. Weakly mixing sets and transitive sets for non-autonomous discrete systems. Adv. Differ. Equ. 2014, 2014, 217. [Google Scholar] [CrossRef]
- Ma, C.; Zhu, P.; Lu, T. Some chaotic properties of non-autonomous discrete fuzzy dynamical systems. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; pp. 46–49. [Google Scholar]
- Miralles, A.; Murillo-Arcila, M.; Sanchis, M. Sensitive dependence for non-autonomous discrete dynamical systems. J. Math. Anal. Appl. 2018, 463, 268–275. [Google Scholar] [CrossRef]
- Murillo-Arcila, M.; Peris, A. Mixing properties for nonautonomous linear dynamics and invariant sets. Appl. Math. Lett. 2013, 26, 215–218. [Google Scholar] [CrossRef]
- Rasouli, H. On the shadowing property of nonautonomous discrete systems. Int. J. Nonlinear Anal. Appl. 2016, 7, 271–277. [Google Scholar]
- Tang, X.; Chen, G.; Lu, T. Some iterative properties of (F-1, F-2)-chaos in non-autonomous discrete systems. Entropy 2018, 20, 188. [Google Scholar] [CrossRef]
- Kempf, R. On Ω-limit sets of discrete-time dynamical systems. J. Differ. Equ. Appl. 2002, 8, 1121–1131. [Google Scholar] [CrossRef]
- Cánovas, J.S. On ω-limit sets of non-autonomous discrete systems. J. Differ. Equ. Appl. 2006, 12, 95–100. [Google Scholar] [CrossRef]
- Sun, T. On ω-limit sets of non-autonomous discrete systems on trees. Nonlinear Anal. 2008, 68, 781–784. [Google Scholar] [CrossRef]
- Kupka, J. On fuzzifications of discrete dynamical systems. Inform. Sci. 2011, 181, 2858–2872. [Google Scholar] [CrossRef]
- Boroński, J.P.; Kupka, J. The topology and dynamics of the hyperspaces of normal fuzzy sets and their inverse limit spaces. Fuzzy Sets Sys. 2017, 321, 90–100. [Google Scholar] [CrossRef]
- Cánovas, J.S.; Kupka, J. Topological entropy of fuzzified dynamical systems. Fuzzy Sets Sys. 2011, 165, 67–79. [Google Scholar] [CrossRef]
- Cánovas, J.S.; Kupka, J. On the topological entropy on the space of fuzzy numbers. Fuzzy Sets Sys. 2014, 257, 132–145. [Google Scholar] [CrossRef]
- Cánovas, J.S.; Kupka, J. On fuzzy entropy and topological entropy of fuzzy extensions of dynamical systems. Fuzzy Sets Sys. 2017, 309, 115–130. [Google Scholar] [CrossRef]
- Kim, C.; Chen, M.; Ju, H. Dynamics and topological entropy for Zadeh’s extension of a compact system. Fuzzy Sets Syst. 2017, 319, 93–103. [Google Scholar] [CrossRef]
- Yan, K.; Zeng, F. Conditional fuzzy entropy of fuzzy dynamical systems. Fuzzy Sets Sys. 2018, 342, 138–152. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Papadopoulos, B.K. On the fuzzy difference equation xn+1 = A + xn/xn−m. Fuzzy Sets Sys. 2002, 129, 73–81. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, B. Embedding problem of noncompact fuzzy number space E−(I). Fuzzy Sets Sys. 1999, 105, 165–169. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, G.; Sun, T. On ω-Limit Sets of Zadeh’s Extension of Nonautonomous Discrete Systems on an Interval. Mathematics 2019, 7, 1116. https://doi.org/10.3390/math7111116
Su G, Sun T. On ω-Limit Sets of Zadeh’s Extension of Nonautonomous Discrete Systems on an Interval. Mathematics. 2019; 7(11):1116. https://doi.org/10.3390/math7111116
Chicago/Turabian StyleSu, Guangwang, and Taixiang Sun. 2019. "On ω-Limit Sets of Zadeh’s Extension of Nonautonomous Discrete Systems on an Interval" Mathematics 7, no. 11: 1116. https://doi.org/10.3390/math7111116
APA StyleSu, G., & Sun, T. (2019). On ω-Limit Sets of Zadeh’s Extension of Nonautonomous Discrete Systems on an Interval. Mathematics, 7(11), 1116. https://doi.org/10.3390/math7111116