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Abstract: Let I = [0,1] and f,, be a sequence of continuous self-maps on I which converge uniformly
to a self-map f on I. Denote by F(I) the set of fuzzy numbers on I, and denote by (F(I), f) and
(F(I), fu) the Zadeh’s extensions of (I, f) and (I, f,), respectively. In this paper, we study the w-limit
sets of (F(I), f») and show that, if all periodic points of f are fixed points, then w(A, f,) C F(f)
forany A € F(I), where w(A, f) is the w-limit set of A under (F(I), f,) and F(f) = {A € F(I) :

f(A) = A}
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1. Introduction

Research for the dynamical properties of nonautonomous discrete systems on a metric space is
very interesting (see [1-11]). In [12], Kempf investigated the w-limit sets of a sequence of continuous
self-maps f, on I which converge uniformly to a self-map f on I and showed that, if P(f) = F(f),
then w(x, f;) is a closed subset of [ with w(x, f,) C F(f) for any x € I, where F(f) and P(f)
are the set of fixed points of f and the set of periodic points of f, respectively, and w(x, f,) is the
set of w-limit points of x under (X, f,). Further, Canovas [13] showed that, if f, is a sequence of
continuous self-maps on I which converge uniformly to a self-map f on I and P(f) = F(f?) for
some s € N, then w(x, fn) = Ui [pr,q] © F(f%) with f([p,4x]) = [prsr, qen] (1 < k <25 —1)
and f([p2s,q2s]) = [p1,q1] for any x € I. In [14], we studied the w-limit sets of a sequence of
continuous self-maps f; on a tree T which converge uniformly to a self-map f on T and showed that,
if P(f) = F(f), then w(x, f,) is a closed connected subset of T with w(x, f,) C F(f) forany x € T.

It is well known [15] that the discrete dynamical system (X, f) naturally induces a dynamical
system (F(X), f), where F(X) is the set of all fuzzy sets on a metric space X and f is the Zadeh’s
extension of continuous self-maps f on X. It is natural to ask how the dynamical properties of f
is related to the dynamical properties of j? Already, there are many results for this question so far;
see, e.g., References [16-21] and the related references therein, where different chaotic properties and
topological entropies of Zadeh’s extensions of continuous seif-maps on metric spaces were considered.
Our aim in this paper is to study the w-limit sets of Zadeh’s extensions of nonautonomous discrete
systems on intervals.

2. Preliminaries

Throughout this paper, let (X, d) be a metric space, write I = [0, 1], and denote by N the set of
all positive integers. Let C%(X) be the set of all continuous self-maps on X. For a given f € C°(X),
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let f"*1 = fo f" forany n € N. We call F(f) = {x € X : f(x) = x} the set of fixed points of f and
P(f) ={x € X: f"(x) = x for some n € N} the set of periodic points of f.
Let f, € C%(X) (n € N) and F° be the identity map of X, and write

Fy=faofy_10---0fy forany neN.

y € X is called the w-limit point of x(€ X) under (X, f,) if there are 11 < np < -+ < n < - -+
such that
lim Fy (x) =y.

k—sc0
Denote by w(x, f) the set of w-limit points of x under (X, f,,). We write f, = f if f, converges

uniformly to f.
Now, let us recall some definitions for fuzzy theory which are from [15].

Definition 1. Let X be a metric space. A mapping A : X — [0, 1] is called a fuzzy set on X. For each fuzzy set
Aandeach o € (0,1], Ay = {t € X : A(t) > a} is called an a-level set of A and Ay = {t € X : A(t) > 0}
is called the support of A, where B means the closure of subset B of X.

Definition 2. A fuzzy set A on I is said to be a fuzzy number if it satisfies the following conditions:

(1) A #O;

(2) A is an upper semicontinuous function;

(3) Foranyty, ty € Ilandany A € [0,1], A(AMt; + (1 — A)tp) > min{A(t1), A(t2) };
(4) Apis compact.

Let F(I) denote the set of fuzzy numbers on I. It is known that a-level set A, of A determines
the fuzzy number A and that every A, is a closed connected subset of I. If A € I, then A € F(I) with
Ay =[A, A] forany a € [0,1].

For any A, B € F(I) with Ay = [A} 4, Arx] and By = [B;,, Br4| for any o € (0, 1], we define the
metric of A and B as follows:

D(A,B) = sup max{|A;, — B14|,|Ara — Bral}-
ae(0,1]

Obviously, we have

D(A,B) = sup max{sup d(x,By), sup d(y, Ax) }H(Ax, Ba),
ae(0,1] XEA, YEBy

where d(x, J) = infyc;d(x,y) for any x € I'and | C I. It is known that (F(I), D) is a complete metric
space (refer to [15]).

Let f € CO(I). We define the Zadeh’s extension f : F(I) — F(I) of f for any x € I and
A e F(I)by

o~

(f(A))(x) = sup A(y).
fly)=x

It follows from [15] that f is continuous if and only if j?is continuous, and it follows from [22]
(Lemma 2.1) that

[f(A)]tx = f(Aa)

forany A € F(I) and w € (0,1]. In this paper, we will show the following theorem.

Theorem 1. Let f, be a sequence of continuous self-maps on I with f, = f. If P(f) = F(f), then
w(A, fn) C E(f) forany A € F(I).
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3. Proof of the Main Result

In this section, we let f € CO(I) and f is the Zadeh’s extension of f. Let F° be the identity map of
F(I) and for any n € N, we write

Fi=fuofa_10---0fi.
Lemma 1. Assume that f, € CO(I) for any n € Nwith f, = f. Then, fy = f on F(I).

Proof. Since f, = f on I, it follows that, for any ¢ > 0, there is an N € N such that, whenn > N,
we have ¢
F(x) ~ fal)] < 5
for any x € I, which implies that, for any B C I, we have d(z, f,(B)) < €/2 for any z € f(B) and

d(z,f(B)) < e/2forany z € f,(B). Thus when n > N, we have

~ -~

D(f(A), fu(A)) = sup H(f(Ax), fu(Ad)) <

ae(0,1]

<é&

N[ ™

forany A € F(I). Lemma 1 is proven. [

Lemma 2. Assume that f, € CO(I) for any n € Nwith f, = f. If B € w(A, f,) for some A € F(I), then
w(x, fu) N By # @ forany « € (0,1] and x € A,.

Proof. Let B € w(A, f;) and w € (0,1]. Letny < np < --- < 1y < - - - such that

lim D(Fni(A),B) = 0.
k—>0c0

Then,
lim H(Fny(Ay), Bx) = 0.

k—0c0
Let x € A,. By taking a subsequence, we let limy_,o, Fng(x) =y € w(x, fu). If y & By, then
e = d(y,By) > 0. Since limy__,o, H(Fng(As), Bx) = 0, there is an N € N such that, when n; > N,
we have

€
H(Fng(Ag), By) < X

which implies d(Fng(x), By) < €/2 and limy__,o, Fng(x) # y since Fng(x) € Fng(Ay). This is a
contradiction. Thus, y € B,. Lemma 2 is proven. [

Proposition 1. Assume that f, € C°(I) for any n € Nwith f, = f and P(f) = F(f). Then, the following
statements hold:

(1) IfB e w(A,f,) forsome A € F(I), then @ # f(By) N By Nw(x, f) C F(f) for any a € (0,1] and
x € Ay

(2) IfB € w(A, fu) for some A € F(I), then U,
a € (0,1] and x € A,.

cw(afyBeY w(x, fn) is a connected subset of I for any

Proof. It follows from Theorem 1 and Lemma 2. O

Lemma 3 (See [14] (Lemma 2)). Assume that f € CO(I) with F(f) = P(f). Then, forany x € Iand n € N,
f(x) > xif f(x) > xand f"(x) < xif f(x) < x.

Now, we show the main result of this paper.
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Proof of Theorem 1. Let B € w(A,fn). For any « € (0,1], write By = [aq, by] and f(By) = [ca, dy]. Let
n < np <--- < n<--- such that

lim D(Fng(A),B) = 0. (1)

k—>o0

By f € CO(F(I)), we see that, for any ¢ > 0, there is an § = 6(¢) > 0 such that, if D(B,C) < 6
with C € F(I), then

D(f(B), f(C)) < 5.

By Lemma 1, we see that thereisan N = N (¢) € Nsuch that, when n > N, we have

D(FW), fa(W)) < 5 @
forany W € F(I). Take r = n; > N such that D(F,(A), B) < 6. Thus,
D(f(B), F11(A)) < D(f(B), f(F.(A))) + D(f(F,(A)), F11(A)) < % ®)

In the following, we show that a, = c, and b, = d,. For convenience, write ay = a,b, = b, cy = ¢,
andd, = d.

(i) We will show ¢ < 4. Assume on the contrary that ¢ > a. Then, by Proposition 1, we see ¢ < b.

We claim that there is an u € (a,1] such that f(u) = a. Indeed, if f([a,1]) C (a,1], then let
¢ = min{d(a, f([a,1])),c —a} > 0. By Equation (3), we see F,;1(A) C [a+¢/3,1]. It follows from
Equation (2) that

€
H(f(Er+1(Aa)), Frr2(Aa)) < 3.

Thus, Fr42(Ax) C [a+€/3,1]. Continuing in this fashion, we have that F,(A,) C [a+¢/3,1] for
any n > r + 1, which contradicts Equation (1). The claim is proven.

Let u = min{x € (a,1] : f(x) = a}. Then, u > bsince f([a,b]) = [c,d] and u > d (Otherwise, if
b < u < d, then there exists an uy € [a,b] and uy € [ug,u] such that uy = f(up) < up < d = f(uy).
This contradicts Lemma 3.). By Lemma 3, we see f([a, u]) C [a,u). Write

p = max{b,d maxf([a,u])},
e = (u—p)/2

q min{c, min f([a,p+ €1])},
e = min{(g—a)/2,&}.

By Equation (3), we see F,1(Ax) C [g — ¢ p + €1]. It follows from Equation (2) that

H(f(F41(Ax)), Fr42(An)) <

W m

Thus, F.12(As) C [g— ¢, p + €1]. Continuing in this fashion, we have that F,(Ay) C [ —¢,p + €1]
for any n > r + 1, which contradicts Equation (1).

(ii) In similar fashion, we can show d > b.

(iii) We will show that, if ¢ = a, then d = b. Assume on the contrary thatd > b. Let u = max{z €
[a,b] : f(z) =d} and e = min{z € [a,]] : f(z) = a}. Then, we have e < u (Otherwise, if ¢ > u, then
there is an w € [u, e] satisfying u = f(w) < w < d = f?(w). This contradicts Lemma 3.) and f(a) < u.
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We claim that there is an v € (1, 1] such that f(v) = u. Indeed, if p = min f([1,1]) > u, then let
e =min{(d —b)/2,d(u,p)} > 0. By Equation (3), we see

~ ~

D(F(B), Ea(4)) < 5.

If F,(Ax) N[a,u] # @ forany n > r+ 1, then we have d — 2¢/3 € F,(A,) forany n > r + 1, which
contradicts Equation (1). If F,(Ax) N [a,u] = @ for some n > r + 1, then let m = min{F, (As) N [a, u] =
@ :n >r+1}. Thus, F,(As) C (u,1], and it follows from Equation (2) that

H(f (Fu(Aa)), Fny1(Aa)) <

7

W[ o™

which implies F,,11(As) C [p —¢/3,1] C (u,1]. Continuing in this fashion, we obtain that F,(A,) C
[p —¢/3,1] C (u,1] for any n > m, which contradicts Equation (1). The claim is proven.
Letv = min{x € (u,1] : f(x) = u}. Then, by Lemma 3, we see d < v and p = max f([u,v]) < v.
If thereisan w € [0, a) satisfying f(w) = u, thenlet w = max{x € [0,4) : f(x) = u}. By Lemma 3,
we see g = min f([w,a]) > wand f([w,v]) = [g, p]. Write

e = (v-p)/2
z = minf([u,p+e]) >u,
e = min{(d—0b)/2,(g—w)/2,(z—u)/2,€1}.

By Equation (3), we see
-~ ~ 2¢
D(F(B), Fra(4)) < 2.
This implies F,1(Ax) C [ —¢,p +€1]. If Fy(Aa) N [a,u] # @ for any n > r + 1, then we have
d —2¢/3 € F,(Ay) for any n > r + 1, which contradicts Equation (1). If F,(As) N [a, u] = @ for some
n>r+1,thenlet m = min{F,(Ay) N[a,u] =@ :n >r+1}. Thus, Fu(Asx) C (u,p+€1], and it

follows from Equation (2) that
H(f(Fm(Aﬂl))r Fm+1(Aa)) <

4

W[ o™

which implies Fy,11(Ax) C [z —€/3,p +€1] C (u, p+ €1]. Continuing in this fashion, we obtain that
F.(Ax) C [z—¢€/3,p+¢€1] C (1, p+ €] for any n > m, which contradicts Equation (1).

If max f([0,a]) < u, then £([0,v]) = [0, p]. Using the similar arguments as ones developed in the
above given proof, we also obtain a conclusion which contradicts Equation (1).

(iv) We will show ¢ = a. Assume on the contrary that ¢ < a. Then by claim (ii), we see b < d.
Using the similar arguments as ones developed in the proof of claim (iii), we can obtain b < d. Let
¢ = min{(a —c)/2,(d — b)/2}. By Equation (3), we see F,11(Ax) D [a —¢,b+ ¢. It follows from
Equation (2) that

H(f(Fr+1(Aa))/ Fr+2(A,X)) <

Thus, F.12(Ax) D [a — ¢, b+ ¢]. Continuing in this fashion, we have that F,(Ay) D [a —¢,b + ¢
for any n > r + 1, which contradicts Equation (1).

By claims (iii) and (iv), we see f(B,) = B, for any a € (0, 1], which implies f(B) = B. Theorem 1
is proven. [

W[ o™

Using the similar arguments as ones developed in the proofs of Proposition 1.4 of [13] and
Theorem 1, we may show the following result.

Corollary 1. Let f, € C(I) for any n € N with f, = f. If P(f) = F(f*) for some s € N, then
wW(A, fu) CE(f?) forany A € F(I).
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The following example illustrates that there are f,, € C°(I) for any n € N such that f, => f with
P(f) =F(f) and w(A, f,) = @ for some A € F(I).

Example 1. Let f € CO(I) with f(1) =1 >0 = f(0) and x < f(x) forany x € (0,1) and f, = f for any
n € N. Thus, f, = f. We define A € F(I) forany x € I by

A(x) = —x+1

By calculation, we have Ay = [0,1 — a] for any « € (0,1] and f"(A;) = {0} forany n € N. In the
following, we assume that & € (0,1) and let f"(Ax) = [an(), by(a)]. Then, a,(a) = 0 for any n € N and
by(a) < byi1(a) <1foranyn € Nand b,(a) — 1. Since b(a) = 1 is not left continuous at « = 1, by
Theorem 2.1 of [23], there is not a B € F(I) such that By = [a(x),b(a)] = [0,1] for any « € (0,1]. Thus,

-~

w(A, f)=02.

4. Conclusions

In this paper, we investigated the w-limit sets of Zadeh’s extensions of a nonautonomous discrete
system f,, on an interval which converges uniformly to a map f and show that, if P(f) = F(f), then
w(A, fn) C F(f) forany A € F(I).
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