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Abstract: Let I = [0, 1] and fn be a sequence of continuous self-maps on I which converge uniformly
to a self-map f on I. Denote by F (I) the set of fuzzy numbers on I, and denote by (F (I), f̂ ) and
(F (I), f̂n) the Zadeh’s extensions of (I, f ) and (I, fn), respectively. In this paper, we study the ω-limit
sets of (F (I), f̂n) and show that, if all periodic points of f are fixed points, then ω(A, f̂n) ⊂ F( f̂ )
for any A ∈ F (I), where ω(A, f̂n) is the ω-limit set of A under (F (I), f̂n) and F( f̂ ) = {A ∈ F (I) :
f̂ (A) = A}.
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1. Introduction

Research for the dynamical properties of nonautonomous discrete systems on a metric space is
very interesting (see [1–11]). In [12], Kempf investigated the ω-limit sets of a sequence of continuous
self-maps fn on I which converge uniformly to a self-map f on I and showed that, if P( f ) = F( f ),
then ω(x, fn) is a closed subset of I with ω(x, fn) ⊂ F( f ) for any x ∈ I, where F( f ) and P( f )
are the set of fixed points of f and the set of periodic points of f , respectively, and ω(x, fn) is the
set of ω-limit points of x under (X, fn). Further, Cánovas [13] showed that, if fn is a sequence of
continuous self-maps on I which converge uniformly to a self-map f on I and P( f ) = F( f 2s

) for
some s ∈ N, then ω(x, fn) = ∪2s

k=1[pk, qk] ⊂ F( f 2s
) with f ([pk, qk]) = [pk+1, qk+1] (1 ≤ k ≤ 2s − 1)

and f ([p2s , q2s ]) = [p1, q1] for any x ∈ I. In [14], we studied the ω-limit sets of a sequence of
continuous self-maps fn on a tree T which converge uniformly to a self-map f on T and showed that,
if P( f ) = F( f ), then ω(x, fn) is a closed connected subset of T with ω(x, fn) ⊂ F( f ) for any x ∈ T.

It is well known [15] that the discrete dynamical system (X, f ) naturally induces a dynamical
system (F (X), f̂ ), where F (X) is the set of all fuzzy sets on a metric space X and f̂ is the Zadeh’s
extension of continuous self-maps f on X. It is natural to ask how the dynamical properties of f
is related to the dynamical properties of f̂ . Already, there are many results for this question so far;
see, e.g., References [16–21] and the related references therein, where different chaotic properties and
topological entropies of Zadeh’s extensions of continuous seif-maps on metric spaces were considered.
Our aim in this paper is to study the ω-limit sets of Zadeh’s extensions of nonautonomous discrete
systems on intervals.

2. Preliminaries

Throughout this paper, let (X, d) be a metric space, write I = [0, 1], and denote by N the set of
all positive integers. Let C0(X) be the set of all continuous self-maps on X. For a given f ∈ C0(X),
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let f n+1 = f ◦ f n for any n ∈ N. We call F( f ) = {x ∈ X : f (x) = x} the set of fixed points of f and
P( f ) = {x ∈ X : f n(x) = x for some n ∈ N} the set of periodic points of f .

Let fn ∈ C0(X) (n ∈ N) and F0 be the identity map of X, and write

Fn = fn ◦ fn−1 ◦ · · · ◦ f1 for any n ∈ N.

y ∈ X is called the ω-limit point of x(∈ X) under (X, fn) if there are n1 < n2 < · · · < nk < · · ·
such that

lim
k−→∞

Fnk (x) = y.

Denote by ω(x, fn) the set of ω-limit points of x under (X, fn). We write fn =⇒ f if fn converges
uniformly to f .

Now, let us recall some definitions for fuzzy theory which are from [15].

Definition 1. Let X be a metric space. A mapping A : X −→ [0, 1] is called a fuzzy set on X. For each fuzzy set
A and each α ∈ (0, 1], Aα = {t ∈ X : A(t) ≥ α} is called an α-level set of A and A0 = {t ∈ X : A(t) > 0}
is called the support of A, where B means the closure of subset B of X.

Definition 2. A fuzzy set A on I is said to be a fuzzy number if it satisfies the following conditions:

(1) A1 6= ∅;
(2) A is an upper semicontinuous function;
(3) For any t1, t2 ∈ I and any λ ∈ [0, 1], A(λt1 + (1− λ)t2) ≥ min{A(t1), A(t2)};
(4) A0 is compact.

Let F (I) denote the set of fuzzy numbers on I. It is known that α-level set Aα of A determines
the fuzzy number A and that every Aα is a closed connected subset of I. If A ∈ I, then A ∈ F (I) with
Aα = [A, A] for any α ∈ [0, 1].

For any A, B ∈ F (I) with Aα = [Al,α, Ar,α] and Bα = [Bl,α, Br,α] for any α ∈ (0, 1], we define the
metric of A and B as follows:

D(A, B) = sup
α∈(0,1]

max{|Al,α − Bl,α|, |Ar,α − Br,α|}.

Obviously, we have

D(A, B) = sup
α∈(0,1]

max{ sup
x∈Aα

d(x, Bα), sup
y∈Bα

d(y, Aα)}H(Aα, Bα),

where d(x, J) = infy∈J d(x, y) for any x ∈ I and J ⊂ I. It is known that (F (I), D) is a complete metric
space (refer to [15]).

Let f ∈ C0(I). We define the Zadeh’s extension f̂ : F (I) −→ F (I) of f for any x ∈ I and
A ∈ F (I) by

( f̂ (A))(x) = sup
f (y)=x

A(y).

It follows from [15] that f is continuous if and only if f̂ is continuous, and it follows from [22]
(Lemma 2.1) that

[ f̂ (A)]α = f (Aα)

for any A ∈ F (I) and α ∈ (0, 1]. In this paper, we will show the following theorem.

Theorem 1. Let fn be a sequence of continuous self-maps on I with fn =⇒ f . If P( f ) = F( f ), then
ω(A, f̂n) ⊂ F( f̂ ) for any A ∈ F (I).
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3. Proof of the Main Result

In this section, we let f ∈ C0(I) and f̂ is the Zadeh’s extension of f . Let F̂0 be the identity map of
F (I) and for any n ∈ N, we write

F̂n = f̂n ◦ f̂n−1 ◦ · · · ◦ f̂1.

Lemma 1. Assume that fn ∈ C0(I) for any n ∈ N with fn =⇒ f . Then, f̂n =⇒ f̂ on F (I).

Proof. Since fn =⇒ f on I, it follows that, for any ε > 0, there is an N ∈ N such that, when n ≥ N,
we have

| f (x)− fn(x)| < ε

2

for any x ∈ I, which implies that, for any B ⊂ I, we have d(z, fn(B)) < ε/2 for any z ∈ f (B) and
d(z, f (B)) < ε/2 for any z ∈ fn(B). Thus when n ≥ N, we have

D( f̂ (A), f̂n(A)) = sup
α∈(0,1]

H( f (Aα), fn(Aα)) ≤
ε

2
< ε

for any A ∈ F (I). Lemma 1 is proven.

Lemma 2. Assume that fn ∈ C0(I) for any n ∈ N with fn =⇒ f . If B ∈ ω(A, f̂n) for some A ∈ F (I), then
ω(x, fn) ∩ Bα 6= ∅ for any α ∈ (0, 1] and x ∈ Aα.

Proof. Let B ∈ ω(A, f̂n) and α ∈ (0, 1]. Let n1 < n2 < · · · < nk < · · · such that

lim
k−→∞

D(F̂nk(A), B) = 0.

Then,
lim

k−→∞
H(Fnk(Aα), Bα) = 0.

Let x ∈ Aα. By taking a subsequence, we let limk−→∞ Fnk(x) = y ∈ ω(x, fn). If y 6∈ Bα, then
ε = d(y, Bα) > 0. Since limk−→∞ H(Fnk(Aα), Bα) = 0, there is an N ∈ N such that, when nk > N,
we have

H(Fnk(Aα), Bα) <
ε

2
,

which implies d(Fnk(x), Bα) < ε/2 and limk−→∞ Fnk(x) 6= y since Fnk(x) ∈ Fnk(Aα). This is a
contradiction. Thus, y ∈ Bα. Lemma 2 is proven.

Proposition 1. Assume that fn ∈ C0(I) for any n ∈ N with fn =⇒ f and P( f ) = F( f ). Then, the following
statements hold:

(1) If B ∈ ω(A, f̂n) for some A ∈ F (I), then ∅ 6= f (Bα) ∩ Bα ∩ ω(x, fn) ⊂ F( f ) for any α ∈ (0, 1] and
x ∈ Aα.

(2) If B ∈ ω(A, f̂n) for some A ∈ F (I), then ∪B∈ω(A, f̂n)
Bα ∪ ω(x, fn) is a connected subset of I for any

α ∈ (0, 1] and x ∈ Aα.

Proof. It follows from Theorem 1 and Lemma 2.

Lemma 3 (See [14] (Lemma 2)). Assume that f ∈ C0(I) with F( f ) = P( f ). Then, for any x ∈ I and n ∈ N,
f n(x) > x if f (x) > x and f n(x) < x if f (x) < x.

Now, we show the main result of this paper.
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Proof of Theorem 1. Let B ∈ ω(A, f̂n). For any α ∈ (0, 1], write Bα = [aα, bα] and f (Bα) = [cα, dα]. Let
n1 < n2 < · · · < nk < · · · such that

lim
k−→∞

D(F̂nk(A), B) = 0. (1)

By f̂ ∈ C0(F (I)), we see that, for any ε > 0, there is an δ = δ(ε) > 0 such that, if D(B, C) < δ

with C ∈ F (I), then
D( f̂ (B), f̂ (C)) <

ε

3
.

By Lemma 1, we see that there is an N = N(ε) ∈ N such that , when n ≥ N, we have

D( f̂ (W), f̂n(W)) ≤ ε

3
(2)

for any W ∈ F (I). Take r = nk ≥ N such that D(F̂r(A), B) < δ. Thus,

D( f̂ (B), F̂r+1(A)) ≤ D( f̂ (B), f̂ (F̂r(A))) + D( f̂ (F̂r(A)), F̂r+1(A)) ≤ 2ε

3
. (3)

In the following, we show that aα = cα and bα = dα. For convenience, write aα = a, bα = b, cα = c,
and dα = d.

(i) We will show c ≤ a. Assume on the contrary that c > a. Then, by Proposition 1, we see c ≤ b.
We claim that there is an u ∈ (a, 1] such that f (u) = a. Indeed, if f ([a, 1]) ⊂ (a, 1], then let

ε = min{d(a, f ([a, 1])), c− a} > 0. By Equation (3), we see Fr+1(Aα) ⊂ [a + ε/3, 1]. It follows from
Equation (2) that

H( f (Fr+1(Aα)), Fr+2(Aα)) ≤
ε

3
.

Thus, Fr+2(Aα) ⊂ [a + ε/3, 1]. Continuing in this fashion, we have that Fn(Aα) ⊂ [a + ε/3, 1] for
any n ≥ r + 1, which contradicts Equation (1). The claim is proven.

Let u = min{x ∈ (a, 1] : f (x) = a}. Then, u > b since f ([a, b]) = [c, d] and u > d (Otherwise, if
b < u ≤ d, then there exists an u1 ∈ [a, b] and u2 ∈ [u1, u] such that u1 = f (u2) < u2 ≤ d = f (u1).
This contradicts Lemma 3.). By Lemma 3, we see f ([a, u]) ⊂ [a, u). Write

p = max{b, d, max f ([a, u])},
ε1 = (u− p)/2,

q = min{c, min f ([a, p + ε1])},
ε = min{(q− a)/2, ε1}.

By Equation (3), we see Fr+1(Aα) ⊂ [q− ε, p + ε1]. It follows from Equation (2) that

H( f (Fr+1(Aα)), Fr+2(Aα)) ≤
ε

3
.

Thus, Fr+2(Aα) ⊂ [q− ε, p + ε1]. Continuing in this fashion, we have that Fn(Aα) ⊂ [q− ε, p + ε1]

for any n ≥ r + 1, which contradicts Equation (1).
(ii) In similar fashion, we can show d ≥ b.

(iii) We will show that, if c = a, then d = b. Assume on the contrary that d > b. Let u = max{z ∈
[a, b] : f (z) = d} and e = min{z ∈ [a, b] : f (z) = a}. Then, we have e < u (Otherwise, if e > u, then
there is an w ∈ [u, e] satisfying u = f (w) < w < d = f 2(w). This contradicts Lemma 3.) and f (a) < u.
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We claim that there is an v ∈ (u, 1] such that f (v) = u. Indeed, if p = min f ([u, 1]) > u, then let
ε = min{(d− b)/2, d(u, p)} > 0. By Equation (3), we see

D( f̂ (B), F̂r+1(A)) ≤ 2ε

3
.

If Fn(Aα)∩ [a, u] 6= ∅ for any n ≥ r + 1, then we have d− 2ε/3 ∈ Fn(Aα) for any n ≥ r + 1, which
contradicts Equation (1). If Fn(Aα)∩ [a, u] = ∅ for some n ≥ r + 1, then let m = min{Fn(Aα)∩ [a, u] =
∅ : n ≥ r + 1}. Thus, Fm(Aα) ⊂ (u, 1], and it follows from Equation (2) that

H( f (Fm(Aα)), Fm+1(Aα)) ≤
ε

3
,

which implies Fm+1(Aα) ⊂ [p− ε/3, 1] ⊂ (u, 1]. Continuing in this fashion, we obtain that Fn(Aα) ⊂
[p− ε/3, 1] ⊂ (u, 1] for any n ≥ m, which contradicts Equation (1). The claim is proven.

Let v = min{x ∈ (u, 1] : f (x) = u}. Then, by Lemma 3, we see d < v and p = max f ([u, v]) < v.
If there is an w ∈ [0, a) satisfying f (w) = u, then let w = max{x ∈ [0, a) : f (x) = u}. By Lemma 3,

we see q = min f ([w, a]) > w and f ([w, v]) = [q, p]. Write

ε1 = (v− p)/2,

z = min f ([u, p + ε1]) > u,

ε = min{(d− b)/2, (q− w)/2, (z− u)/2, ε1}.

By Equation (3), we see

D( f̂ (B), F̂r+1(A)) ≤ 2ε

3
.

This implies Fr+1(Aα) ⊂ [q− ε, p + ε1]. If Fn(Aα) ∩ [a, u] 6= ∅ for any n ≥ r + 1, then we have
d− 2ε/3 ∈ Fn(Aα) for any n ≥ r + 1, which contradicts Equation (1). If Fn(Aα) ∩ [a, u] = ∅ for some
n ≥ r + 1, then let m = min{Fn(Aα) ∩ [a, u] = ∅ : n ≥ r + 1}. Thus, Fm(Aα) ⊂ (u, p + ε1], and it
follows from Equation (2) that

H( f (Fm(Aα)), Fm+1(Aα)) ≤
ε

3
,

which implies Fm+1(Aα) ⊂ [z− ε/3, p + ε1] ⊂ (u, p + ε1]. Continuing in this fashion, we obtain that
Fn(Aα) ⊂ [z− ε/3, p + ε1] ⊂ (u, p + ε1] for any n ≥ m, which contradicts Equation (1).

If max f ([0, a]) < u, then f ([0, v]) = [0, p]. Using the similar arguments as ones developed in the
above given proof, we also obtain a conclusion which contradicts Equation (1).

(iv) We will show c = a. Assume on the contrary that c < a. Then by claim (ii), we see b ≤ d.
Using the similar arguments as ones developed in the proof of claim (iii), we can obtain b < d. Let
ε = min{(a − c)/2, (d − b)/2}. By Equation (3), we see Fr+1(Aα) ⊃ [a − ε, b + ε]. It follows from
Equation (2) that

H( f (Fr+1(Aα)), Fr+2(Aα)) ≤
ε

3
.

Thus, Fr+2(Aα) ⊃ [a− ε, b + ε]. Continuing in this fashion, we have that Fn(Aα) ⊃ [a− ε, b + ε]

for any n ≥ r + 1, which contradicts Equation (1).
By claims (iii) and (iv), we see f (Bα) = Bα for any α ∈ (0, 1], which implies f (B) = B. Theorem 1

is proven.

Using the similar arguments as ones developed in the proofs of Proposition 1.4 of [13] and
Theorem 1, we may show the following result.

Corollary 1. Let fn ∈ C0(I) for any n ∈ N with fn =⇒ f . If P( f ) = F( f 2s
) for some s ∈ N, then

ω(A, f̂n) ⊂ F( f̂ 2s
) for any A ∈ F (I).
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The following example illustrates that there are fn ∈ C0(I) for any n ∈ N such that fn =⇒ f with
P( f ) = F( f ) and ω(A, f̂n) = ∅ for some A ∈ F (I).

Example 1. Let f ∈ C0(I) with f (1) = 1 > 0 = f (0) and x < f (x) for any x ∈ (0, 1) and fn ≡ f for any
n ∈ N. Thus, fn =⇒ f . We define A ∈ F (I) for any x ∈ I by

A(x) = −x + 1.

By calculation, we have Aα = [0, 1− α] for any α ∈ (0, 1] and f n(A1) = {0} for any n ∈ N. In the
following, we assume that α ∈ (0, 1) and let f n(Aα) = [an(α), bn(α)]. Then, an(α) = 0 for any n ∈ N and
bn(α) ≤ bn+1(α) ≤ 1 for any n ∈ N and bn(α) −→ 1. Since b(α) = 1 is not left continuous at α = 1, by
Theorem 2.1 of [23], there is not a B ∈ F (I) such that Bα = [a(α), b(α)] = [0, 1] for any α ∈ (0, 1]. Thus,
ω(A, f̂ ) = ∅.

4. Conclusions

In this paper, we investigated the ω-limit sets of Zadeh’s extensions of a nonautonomous discrete
system fn on an interval which converges uniformly to a map f and show that, if P( f ) = F( f ), then
ω(A, f̂n) ⊂ F( f̂ ) for any A ∈ F (I).
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