
mathematics

Article

Sine-Cosine Algorithm to Enhance Simulated
Annealing for Unrelated Parallel Machine
Scheduling with Setup Times

Hamza Jouhari 1, Deming Lei 1,*, Mohammed A. A. Al-qaness 2 , Mohamed Abd Elaziz 3,
Ahmed A. Ewees 4,5 and Osama Farouk 6

1 School of automation, Wuhan University of Technology, Wuhan 430070, China; jouhari.hamza@whut.edu.cn
2 School of Computer Science, Wuhan University, Wuhan 430072, China; alqaness@whu.edu.cn
3 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;

meahmed@zu.edu.eg
4 Department of e-Systems, University of Bisha, Bisha 61922, Saudi Arabia; a.ewees@hotmail.com
5 Department of Computer, Damietta University, Damietta 34511, Egypt
6 Mathematics Department, Faculty of Science, Damanhour University, Beheira 22516, Egypt;

osamafarouk@sci.dmu.edu.eg
* Correspondence: deminglei11@163.com

Received: 24 October 2019; Accepted: 13 November 2019; Published: 16 November 2019 ����������
�������

Abstract: This paper presents a hybrid method of Simulated Annealing (SA) algorithm and Sine
Cosine Algorithm (SCA) to solve unrelated parallel machine scheduling problems (UPMSPs) with
sequence-dependent and machine-dependent setup times. The proposed method, called SASCA, aims
to improve the SA algorithm using the SCA as a local search method. The SCA provides a good tool for
the SA to avoid getting stuck in a focal point and improving the convergence to an efficient solution.
SASCA algorithm is used to solve UPMSPs by minimizing makespan. To evaluate the performance of
SASCA, a set of experiments were performed using 30 tests for 4 problems. Moreover, the performance
of the proposed method was compared with other meta-heuristic algorithms. The comparison results
showed the superiority of SASCA over other methods in terms of performance dimensions.

Keywords: unrelated parallel machine scheduling problem (UPMSP); meta-heuristic algorithms;
Sine Cosine Algorithm; Simulated Annealing

1. Introduction

In recent years, parallel machine scheduling problems (PMSPs) have attracted significant attention
because they are used in different industrial applications and considered to be important key factors
for sustainability at the operational level [1–3]. This kind of problems aims at assigning a set of jobs
to a number of parallel machines with satisfying the requirements of the customers [4]. In general,
there are three classes of the PMSPs, namely uniform, identical, and unrelated parallel machine
scheduling problem (UPMSPs). However, the uniform and identical are considered as special cases of
the UPMSPs, where different machines have different capabilities that are used to perform the same
function. Also, if the processing times of the jobs are dependent on the machine to which these jobs are
assigned, the machines are called unrelated machines.

The UPMSPs have been applied to different applications such as the mass production lines that
use banks of machines with different capabilities and age to perform production tasks and those that
are used in drilling operations in a printed circuit board factory [5] and scheduling jobs on a printed
wiring board manufacturing line [6]. In addition, they are used in the textile industry and tested

Mathematics 2019, 7, 1120; doi:10.3390/math7111120 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6956-7641
http://dx.doi.org/10.3390/math7111120
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/11/1120?type=check_update&version=2


Mathematics 2019, 7, 1120 2 of 18

models as in [7], and the dicing of semiconductor wafer manufacturing [8]. There are several other
applications, including multiprocessor computers and docking systems for ships [9].

In general, the UPMSPs are considered as a set of N jobs that must be executed on only
one machine M from a set of unrelated parallel machines (RM) minimizing the makespan (Cmax),
where the nth job consists of a single task that demands a given processing time. In addition,
the sequence-dependent setup times (Sijk) between the jobs is studied since it is a very common
issue in the industry. This means that there exists a difference between the setup time required for
two consecutive jobs (i and j) on machine k, k = 1, . . . , M and the reverse two jobs (i.e., the setup time
on machine k between the jobs j and i). Also, the setup time between the jobs i and j on machine k is
different from the setup time of the same jobs on another machine k1 (i.e., there exists a unique setup
N × N matrix for each machine) [10]. According to these definitions, this problem can be represented
as RM/Sijk/Cmax.

The UPMSPs are considered as an NP-hard problem and they are extremely important
requirements in practice [11]. According to this information, the traditional algorithm can be used to
find the optimal solution for a small number of instances; however, if the problem has a large number
of instances it is very difficult. Therefore, several methods have been proposed to solve the UPMSPs
that considered the setup times [12], and they provide good results. Examples of these methods are
simulated annealing (SA) [13,14], Tabu Search (TS) algorithm [15], and firefly algorithm [16].

In this paper, an alternative method is proposed to solve the UPMSPs, which is a hybrid between
the SA algorithm and Sine Cosine Algorithm (SCA). The SCA is used to improve the exploitation ability
of SA, where SA is used as a local search method. The proposed algorithm, namely SASCA, starts by
generating a random integer solution that represents the solution for the UPMSPs. This solution has
dimensions equal to the number of jobs and each value of it refers to the machine index in which the
job must be performed on it. The next step of the proposed method is to select a new solution from the
neighbors of the current solutions and compare the quality of them and select the best to represent
the current solution. However, to ensure the ability of SA to avoid getting stuck in a local point, the
operators of SCA is used to improve the current solution in which the sine and cosine functions are
used. The previous steps are repeated until the stop conditions are met.

The main contributions of this paper can be summarized as:

1. A newly proposed method combines the SA and SCA to update the solutions by their properties.
Based on these properties the convergence toward the optimal solution increased.

2. The proposed method aims at minimizing the makespan in solving the unrelated parallel machine
scheduling problem (UPMSP) with sequence-dependent and machine-dependent setup times.

3. A comparison is provided between the proposed method and other meta-heuristics algorithms.

The rest of this paper is organized as the following: Section 2 gives a review of some related
works for the recent UPMSP methods. Section 3 presents the preliminaries about the Mixed
Integer Programming for the UPMSP, Simulated Annealing Algorithm, and Sine Cosine Algorithm.
In Section 4, the proposed method based on the hybrid between the SA and SCA is introduced to solve
the UPMSP problem. Section 5 presents the results and discussion of the proposed method against the
other algorithms. The conclusion and future works are presented in Section 6.

2. Literature Review

Several meta-heuristic algorithms have been used to solve UPMSPs in the literature [16].
For example, Logendran et al. [17] proposed a different six algorithms based on the TS to solve
the same problem. In contrast, Bozorgirad and Logendran [18] used the TS algorithm to solve the
sequence-dependent group-scheduling problem using unrelated-parallel machines; however, the time
of execution for every job differs on different machines. Another Tabu search method based on a hybrid
concept was proposed in [19] which combined the properties of the variable neighborhood descent
approach with the TS algorithm. This algorithm was used to solve UPMSP with sequence-dependent
setup times and unequal ready times and the objective function was the weighted number of tardy jobs.



Mathematics 2019, 7, 1120 3 of 18

In addition, Eva and Rubén [20] provided a method based on the improvement of the Genetic
Algorithm (GA) to solve the same problem but with sequence-dependent setup times. In this
modified version of GA, the fast local search and a local search enhanced crossover operator are used.
Duygu et al. [21] proposed hybrid GA with a local search method that aimed at the same problem
except the modification was to minimize the relocation operation of random key numbers for genes.
Also, the GA was proposed in [22] to minimize the total completion time and the number of tardy for
UPMSPs with sequence-dependent and machine-dependent setup times, due-times, and ready times.

The Ant Colony Optimization (ACO) algorithm was used to solve the unrelated PMSPs as
in [23] which provides results better than TS algorithm and a heuristic algorithm, called Partitioning
Heuristic (PH) proposed in [24]. The author of [23] proposed an extension to this study in [25]. They
highlighted the difference between the two methods, whereas, in [23] the performance of ACO was
evaluated over only preliminary tests where the parameters of ACO were selected by trial and error.
Also, a small number of instances and limited problem structures were used, and the results of ACO
was only compared with PH and TS. However, in [25], the results were compared with Metaheuristic
for Randomized Priority Search (MetaRaPS) [26]. Moreover, another enhancement of ACO was
introduced by the same authors to solve the same problem as in [27] which enhanced the parameters
of ACO such as pheromone. The authors concluded that the result of the ACO-II was better than
the ACO-I, MetaRaPS, and Simulated Annealing (SA). Lin and Hsieh [28] used a modified version of
ACO algorithm to solve unrelated PMSOs with set-up times and ready times for minimizing the total
weighted tardiness. They proposed a heuristic and iterated hybrid metaheuristic methods to solve the
problem and according to the evaluation results, the IHM was better than the ACO and TS.

Sheremetov et al. [29] presented a two-stage GA algorithm to solve UPSMPs of the steam
generators for oil cyclic steam stimulation. They considered this petroleum problem as a parallel
uniform machine scheduling and they addressed the makespan and the job’s tardiness.

Nguyen and Toggenburger [2] proposed a mixed-integer linear programming scheme to address
the scheduling problem of the identical machines with an additional resource. Ezugwu [30] presented
a solution method to non-pre-emptive UPMS problems to minimize the makespan. Three methods
were proposed to solve UPMS problems, namely SA, Hybrid Symbiotic Organisms Search with SA,
and Organisms Search algorithm. As the author described, these algorithms outperform existed
methods in case of 120 jobs with 12 machines. In addition, a modified differential evolution algorithm
was proposed to improve the consumption of energy problem for the UPSMPs [31]. The developed
method characterized each job by determining speed vectors. In [15], the TS algorithm was applied
to large scale UPSMPs according to its multiple-jump strategy. Bektur and Saraç [12] developed
the performance of SA and TS by combining both of them together with a mixed-integer linear
programming scheme as an alternative UPSMPs method. This method aims to minimize the total
weighted tardiness of the UPSMPs.

In the same context, the SA algorithm was used to solve the unrelated PMSP with
machine-independent sequence-dependent setup times for which the total tardiness was the objective
function used as in [32]. However, the SA suffers from some limitations, similar to other single-based
meta-heuristic algorithms, such as with increasing the number of jobs, the number of solutions
generated from the neighborhood extremely grows. Therefore, determining an efficient solution needs
a large computation time, also there is a high probability that the SA can get stuck in a local point.
Therefore, all of these points motivated us to provide an alternative method to solve the UPMSP by
improving the SA algorithm using the Sine Cosine Algorithm (SCA).

The SCA is a meta-heuristic algorithm proposed in [33] to solve the global optimization problems.
The solutions are updated in SCA through using either the sine or the cosine functions. The SCA
has a small number of parameters and also its ability to find the optimal solution is better than other
metaheuristic (MH) algorithms; therefore, the SCA has been used in many fields. For examples,
Elaziz et al., in [34] applied SCA to solve features selection problem; whereas, in [35] SCA was used to
select the relevant features to enhance the performance of classification the galaxy images. The authors



Mathematics 2019, 7, 1120 4 of 18

of [36] efficiently applied SCA to train the feed-forward neural network. Moreover, the improvement
of the data clustering by the SCA was used to determine the cluster centers process [37]. Ramanaiah
and Reddy [38] solved the Unified Power Quality Conditioner (UPQC) problem using the SCA. Also,
the SCA was applied to estimate the parameters of the kernel of Support Vector Regression (SVR) [39].

3. Preliminaries

3.1. Mixed Integer Programming Mathematical Model

The basic concepts of the Mixed Integer Programming (MIP) for the UPMSP with
sequence–dependent setup times are discussed in this section. Following [24,26], the MIP formulation
is given as

Min Cmax (1)

Subject to
N

∑
i=0,i 6=1

M

∑
k=1

xijk = 1; ∀j = 1, . . . , N (2)

N

∑
i=0,i 6=h

xihk −
N

∑
j=0,j 6=h

xhjk = 0; (3)

Equation (3) is performed ∀ h = 1, . . . , N, k = 1, . . . , M.

Cj ≥ Ci +
M

∑
k=1

xijk(Sijk + pik) + V(
M

∑
k=1

xijk − 1), (4)

where i = 0, . . . , N
N

∑
j=0

x0jk = 1, ∀k = 1, . . . , M (5)

Cj ≤ Cmax, ∀i = 1, . . . , N, (6)

xijk ∈ 0, 1, ∀i = 0, . . . , N, ∀j = 1, . . . , n, ∀k = 1, . . . , M, (7)

C0 = 0 (8)

Cj ≥ 0, ∀j = 0, . . . , N (9)

where Cmax, Cj, pjk and Sijk represent maximum completion time (makespan), completion time of job j,
processing time of job j on machine k, and sequence-dependent setup time to process job j after job i on
machine k, respectively. Also, xj0k : 1 if job j is the last job to be processed on machine k and 0 otherwise.
The xijk is 1 if job j is processed directly after job i on machine k and 0 otherwise. The S0jk represent
Setup time to process job j first on machine k. The x0jk is 1 if job j is the first job to be processed on
machine k and 0 otherwise. While, N, M and V represent the number of jobs, the number of machines,
and a large positive number, respectively.

Equation (1) represents the objective function that is used to minimize the makespan. To ensure
that every job is assigned to exactly one machine and it is scheduled only once, the constraint set in
Equation (2) is used. Meanwhile, the constraint (3) ensures that there exists only one preceding job
and only one succeeding job. The constraint set (4) is used to compute the completion times of the
jobs at the machines and to satisfy that no job can succeed and precede the same job. This can be
ensured through using a large positive number (i.e., V = ∞) such that if job j is scheduled after job i,
then ∑M

k=1 xijk = 1, and therefore, V(∑M
k=1 xijk − 1) = 0 and Cj = Ci + Sijk + pjk. Otherwise, if job j is

not scheduled right after job i, then ∑M
k=1 xijk = 0, and therefore, V(∑M

k=1 xijk − 1) = −V.
Set (5) is used to ensure that only one job is scheduled first at every machine. Furthermore,

to ensure that Cmax is larger than the completion time of any other job, the constraint (6) is used.



Mathematics 2019, 7, 1120 5 of 18

Also, the value of the solution x is a binary value over all the search space as stated in constraint (7).
The constraints (8) and (9) state that the completion time is set to zero for the job 0, and completion
times are set to non-negative values, respectively.

3.2. Simulated Annealing Algorithm

In this section, the basic concepts of the Simulated Annealing (SA) algorithm are introduced.
The SA algorithm is classified as a single-based solution method which simulates the annealing process
in metallurgy [40]. This process is performed through heating and cooling a metal, which increases
the size of crystals and generates uniform crystals with decreasing their defects. The SA algorithm
starts by generating a random solution X then it selects another solution Y from the neighborhood
of X. Then the fitness function for the two solutions is computed and if the f (Y) is better than f (X)

then the solution X is replaced by Y. Otherwise, there is a chance the solution X can be replaced by Y
with a probability that decreased with increasing the difference between fitness functions of the two
solutions (i.e.,4E = f (X)− f (Y)), this probability is defined as:

Prob = e−4E/kT (10)

where k is the Boltzmann constant, and T is the current temperature value. If Prob is greater than a
random number, then X = Y; otherwise X not changed. After that, the SA algorithm reduces the value
of the current temperature (T) using the following equation:

T = βT (11)

where β is random number chosen form the interval [0, 1].

3.3. Sine Cosine Algorithm

The Sine Cosine Algorithm (SCA) was proposed by Mirjalili [33] as a population-based
metaheuristic algorithm in which it used the sine and cosine functions to search for the optimal
solution. Therefore, the SCA algorithm, similar to other MH algorithms, starts by generating a set of N
solutions called X using the following equation

xi = li + rand× (ui − li), i = 1, . . . , N (12)

where ui and li represent the upper and lower boundary, respectively, of the search space. The next
step in the SCA is to evaluate the performance of each solution xi ∈ X through computing its fitness
function. After that, the solution will be updated by using either sine or cosine function based on the
probability random variable r1 ∈ [0, 1] as in the following equation:

xt+1
i =

{
xt

i + r2 × sin(r3)× |r4xt
b − xt

i |, r1 > 0.5
xt

i + r2 × cos(r3)× |r4xt
b − xt

i |, r1 ≤ 0.5
(13)

where xb represents the best solution, and ri ∈ [0, 1], i = 2, 3, 4 represents a random number. The aim
of the r2 is to determine the optimal region for the updated solution, this region may be in the area
between the current solution and the best solution or outside. Also, it is used to balance exploration
and exploitation through updating its values as [33]:

r2 = a− t
a

tmax
(14)

where a, t and tmax are the constant value, the current iteration and the maximum number of iteration,
respectively. Also, the aim of r3 is to determine if the current solution will move in the direction of
the best solution xb or in direction outwards the best solution. While the aim of the r4 is to give xb



Mathematics 2019, 7, 1120 6 of 18

a random weight to stochastically asserts (r4 > 1) or stochastically de-asserts (r4 < 1) the effect of
desalination in defining the distance.

4. Proposed Method

In this section, the proposed method to solve an unrelated parallel machine scheduling problem
with setup times is introduced (as in Figure 1). This proposed method is called SASCA where the SCA
is used to enhance the local search ability of the SA.

Figure 1. The entire phases of the proposed method.

In general, the proposed SASCA starts by generating a random integer solution that represents
the solution to UPMSPs. Then the SA generates a new solution Y from the neighboring (N(X)) of the
current solution X. The objective function (that aimed to minimize the makespan) is computed for



Mathematics 2019, 7, 1120 7 of 18

both solutions and if the f (Y) < f (X) then X = Y. Otherwise, the new solution can be replaced X
with probability Pro > α(α ∈ [0, 1]s) (rand ∈ [0, 1]) that is computed based on the difference between
the objective function values of both solutions (X and Y). Thereafter, the SCA is used to enhance the X
through using its strategy. If the new solution is better than the old one then it will replace it, then the
temperature T is decreased after performing Iiter. The previous steps are discussed with more details
in the following.

4.1. Initial Solution

The proposed SASCA starts by determining the initial value for each parameter such as the current
temperature T = T0. Then it generates a random integer solution X with dimension NJ (the number of
jobs) and it takes value from the interval [1, Nm]. For example, consider we have 15 Jobs and 3 machines,
then, the representation of the solution X can be given as [x1, x2, . . . , xNJ ] = [1 2 3 2 3 1 3 3 1 1 2 2 3 1 2].
This means that the jobs 1, 6, 9, 10, 14 will be performed on machine number one, jobs 2, 4, 11, 12, 15
on machine number two, and jobs 3, 5, 7, 8, 13 on machine number three.

The next step in this stage is to compute the fitness function for the solution X using Equation (1)
(that represents Cmax) and select the best solutions.

4.2. Updating Solution

The updating of the solution starts by selecting solution Y from the neighbor N(X) of the solution
X and compute its fitness function f (Y). The difference between the f (X) and f (Y) is computed
(which represents by4E). Then if f (Y) ≤ f (X) then the solution X will be replaced by Y. Meanwhile,
if this condition not satisfied, then there is another probability the solution Y can replace X (this
probability is defined in Equation (10)). If Prob > α then X = Y. Thereafter, the next step is to use the
operators of SCA algorithm to improve the exploitation ability of SA algorithm as the following: first,
the value of the parameter r2 is updated using Equation (14) also, the value of parameters r1, r3 and r4

are updated. Then based on the value of r1 the current solution X will be updated using either the sine
or cosine function as in Equation (13). The next step is to update the best solution Xb and reduce the
temperature as in Equation (11), after running the inner Iiter from the previous decreasing value of T.
The algorithm is stopped if the terminal criteria are met.

The entire steps of the proposed method are illustrated in Algorithm 1.



Mathematics 2019, 7, 1120 8 of 18

Algorithm 1 The steps of the proposed method

1: Input: T0 initial temprature, Size of population N, dimension of solution NJ , and total number of

generations tmax.
2: Output: The best solution xb.
3: Set the initial value of N solutions with dimension NJ .
4: Evaluate the quality of each Xi by computing its fitness value Fi, and update number of fitness

evaluation.
5: Find the best solution Xb.
6: Put t = 1.
7: repeat

8: for i = 1 : N do

9: XNew
i = determine the neighbor solution of Xi.

10: Compute the fitness value f (XNew
i ) for XNew

i .
11: if f (XNew

i ) < f (Xi) then

12: Xi = XNew
i .

13: else

14: δ = f (Xi)− f (XNew
i ).

15: if (exp(−δ/T) ≤ r5) then

16: Xi = XNew
i .

17: end if
18: end if
19: Update the temprature T using Equation (11).
20: end for
21: for i = 1 : N do

22: Update the parameters r1, r2, r3, and r4.
23: Update Xi using Equation (13).
24: Evaluate the quality of each Xi by computing its fitness value Fi.
25: end for
26: Find the best solution Xb.
27: Set t = t + 1.
28: until t < tmax

5. Experiments and Results

In this section, the dataset description, experiment settings, and the discussion of the results
are presented. The experiments are divided into two parts, the first one contains the results of the
proposed algorithm and the other metaheuristic algorithms such as grey wolf optimization, particle
swarm optimization, genetic algorithm in addition to the traditional SA. The second one compare the
results of the proposed SASCA with other state-of-the-art methods. Then, the results of the average
percent deviations are provided followed by the influence of the (β) variable on the proposed SASCA.

5.1. Dataset Description

We conducted 30 tests for 4 problems, each problem has its machines and jobs. The first problem
has 2 machines with 11 kinds of jobs (i.e., 6, 7, 8, 9, 10, 11, 40, 60, 80, 100, and 120 jobs). The second
problem has 4 machines with 10 kinds of jobs (i.e., 6, 7, 8, 9, 10, 11, 60, 80, 100, and 120 jobs). The third
problem has 6 machines with 8, 9, 10, 11, 100 and 120 jobs, whereas, the last problem has 8 machines



Mathematics 2019, 7, 1120 9 of 18

with 10, 11, and 120 jobs. These jobs were selected as in [24,25] to evaluate the proposed method
on small and large jobs. In this manner, Equation (15) is applied to select large jobs. For instance,
100/8 = 12.5; so, job 100 is ignored from machine 8 and 120 is selected.

Select Job i f (Jobs/Machine) > 15 (15)

For more information about the dataset used in this paper is available at [41].

5.2. Experiment Settings

The experiments were performed on “Windows 10” with CPU “Core2Due” and 4GB RAM. Each
job, in all problems, was evaluated over 15 different problem instances and the average value of Cmax

is calculated. The proposed method used a stop condition equals to 25 for the small problems and
10000 iterations for the large problems to record the best obtained value of fitness function (Cmax).
For a fair comparison, the number of iterations is chosen to meet the same setting in the references.
The parameters setting of the proposed method are listed in Table 1. In general, these parameters are
selected based on the experiments besides, they showed good performances in our previous works
such as [42–45].

Table 1. The parameters setting of the proposed method.

Algorithm Parameters Setting

SASCA Initialtemperature(T0) = 10,
temperature reduction rate (β) = 0.97, parameter (a) = 2,
parameter (r1) ∈ [2, 0]

SA Initial temperature = 10, temperature reduction rate = 0.97,
local step = 1

GWO Parameter (a) ∈ [2, 0]

PSO Inertia weight (w) = 1, inertia weight damping ratio (wDamp) = 0.99,
personal learning coe f f icient (c1) = 1, global learning coe f f icient (c2) = 2

GA Crossover probability (pc) = 0.8, extra range f actor f or crossover (γ) = 0.2,
mutation percentage (pm) = 0.3, mutation probability (mu) = 0.02, selection pressure(sp) = 8

5.3. Comparison with Metaheuristic Methods

In this experiments, the performance of the SASCA is compared with other four MH methods as
given in Tables 2 and 3. This comparison are performed using a set of different Jobs (i.e., 6, 7, 8, 9, 10,
11) and number of machines (2, 4, 6, 8). According to the results of the average of Cmax, it can be noticed
that the proposed SASCA has high ability to find the smallest Cmax among all the tested number of
machines and jobs. Meanwhile, the SA has better Cmax at the small number of jobs especially at jobs 6,
7, and 8. However, when the number of machines become 6 and number of jobs become 8, the GWO
gives better results than SA. By comparing, the performance of the four MH methods (i.e., GWO, PSO,
SA, and GA) at 8 machines as well as 10 and 11 jobs, it can be seen that the GA and GWO provided
smaller results, respectively, than the other two methods (i.e., SA, and PSO).

Moreover, by analysing the results of computational time(s), it can be observed that the SA is
the fast algorithm over all the tested problems except for the case when the number of machines is 2
and jobs 6, when the PSO has the smaller CPU time(s). In addition, it can be noticed that the SASCA
requires smaller CPU time(s) than the other methods.



Mathematics 2019, 7, 1120 10 of 18

Table 2. Average of Cmax values of the small problems for each algorithm (best results are in boldface).

M J SASCA SA GWO PSO GA
2 6 357.33 362.60 378.33 372.56 375.38
2 7 453.00 470.20 504.80 505.80 572.67
2 8 512.00 513.67 530.88 531.25 530.88
2 9 566.67 624.47 598.33 592.20 617.25
2 10 639.33 692.20 681.67 677.56 664.86
2 11 716.00 788.40 744.50 752.25 743.75

4 6 224.67 247.27 276.80 280.30 276.80
4 7 212.33 266.60 256.00 292.17 291.00
4 8 251.00 327.13 344.40 344.40 333.00
4 9 342.00 376.73 364.00 367.33 360.00
4 10 340.33 398.47 358.00 367.75 367.75
4 11 368.33 434.80 413.00 442.00 450.00

6 8 214.67 244.67 221.25 223.00 219.33
6 9 242.33 267.60 242.90 307.50 334.00
6 10 228.67 295.20 312.00 332.00 344.67
6 11 258.00 319.67 337.00 341.00 345.00

8 10 221.67 252.00 231.33 228.67 227.00
8 11 221.33 327.67 288.00 296.00 323.00

Table 3. Average of the computational time of the small problems for each algorithm (best results are
in boldface).

M J SASCA SA GWO PSO GA
2 6 0.0490 0.0545 0.0377 0.0337 0.0457
2 7 0.0541 0.0387 0.0560 0.0554 0.0597
2 8 0.0582 0.0378 0.0583 0.0584 0.0645
2 9 0.0586 0.0474 0.0594 0.0591 0.0768
2 10 0.0629 0.0445 0.0647 0.0600 0.0794
2 11 0.0590 0.0330 0.0732 0.0708 0.0914

4 6 0.0581 0.0287 0.0515 0.0468 0.0665
4 7 0.0601 0.0237 0.0592 0.0570 0.0834
4 8 0.0585 0.0295 0.0637 0.0616 0.0813
4 9 0.0613 0.0300 0.0718 0.0666 0.0883
4 10 0.0637 0.0308 0.0857 0.0805 0.1075
4 11 0.0646 0.0299 0.0892 0.0854 0.1066

6 8 0.0620 0.0283 0.0803 0.0740 0.1021
6 9 0.0652 0.0287 0.0834 0.0817 0.1052
6 10 0.0653 0.0322 0.0991 0.0899 0.1121
6 11 0.0822 0.0312 0.1134 0.1018 0.1314

8 10 0.0702 0.0412 0.1138 0.1045 0.1318
8 11 0.0723 0.0668 0.1189 0.1102 0.1324

5.4. Comparison with the State-of-the-Art Methods

In this section, we compare the performance of the SASCA and the other methods, for example ,
Tabu (T9) and Tabu (T8) [24] and Ant Colony Optimization (ACO) [25], Partitioning Heuristic (PH) [25],
Tabu Search (TS) [24], and MRPS (Meta-RaPS) [26]. These experiments are performed through two
datasets (i.e, small and large) as given in the following subsections.



Mathematics 2019, 7, 1120 11 of 18

5.4.1. Small Problems

Table 4 illustrates the results of the SASCA and other methods. The values of the Cmax and
computation time are listed in this table. The SASCA is compared with SA, Tabu(T9), and Tabu(T8).
The results of the Tabu (T9) and Tabu (T8) are obtained from [24] because it used the same problems
(i.e., the same numbers of machines and jobs).

From this table, we can see that the proposed method (SASCA) outperforms the other methods in
all problems in terms of Cmax value followed by Tabu (T9), Tabu (T8), and SA. In terms of computation
time, the proposed method ranked second after SA followed by Tabu (T8) and Tabu (T9). The SASCA
was close to SA but outperformed SA in computational time, as expected, since the SCA algorithm, in
general, consumes more time than SA.

Table 4. Average of Cmax values of the small problems for each algorithm (best results are in boldface).

SASCA SA Tabu (T9) [24] Tabu (T8) [24]

M Jobs Cmax Time Cmax Time Cmax Time Cmax Time

2 6 357.33 0.0490 362.60 0.05450 397.20 0.440 395.27 0.150
7 453.00 0.0541 470.20 0.03869 502.00 0.210 494.73 0.200
8 512.00 0.0582 513.67 0.03778 522.07 0.260 521.20 0.080
9 566.67 0.0586 624.47 0.04742 614.53 0.310 607.33 0.290
10 639.33 0.0629 692.20 0.04455 649.60 0.370 645.33 0.340
11 716.00 0.0590 788.40 0.03299 724.47 0.440 722.53 0.440

4 6 224.67 0.0581 247.27 0.02869 249.07 0.010 251.27 0.020
7 212.33 0.0601 266.60 0.02369 259.53 0.024 264.27 0.260
8 251.00 0.0585 327.13 0.02947 268.93 0.070 270.47 0.034
9 342.00 0.0613 376.73 0.03004 347.73 0.930 346.47 0.860
10 340.33 0.0637 398.47 0.03082 363.27 0.950 360.33 0.980
11 368.33 0.0646 434.80 0.02994 375.80 0.960 376.30 0.990

6 8 214.67 0.0620 244.67 0.02832 235.47 0.034 240.27 0.290
9 242.33 0.0652 267.60 0.02866 244.33 0.060 249.27 0.050
10 228.67 0.0653 295.20 0.03221 254.67 0.060 259.13 0.080
11 258.00 0.0822 319.67 0.03118 265.87 0.040 273.80 0.040

8 10 221.67 0.0702 252.00 0.04123 230.07 0.090 232.00 0.080
11 221.33 0.0723 327.67 0.06682 232.87 0.110 235.20 0.120

5.4.2. Statistical Test for the Small Problems

The performance of the SASCA is evaluated using Wilcoxon’s rank sum test to check if there is a
significant difference between the SASCA and the other methods or not in the small problems [46–48].
In addition, the Friedman test is applied to rank these methods. The results are given in Tables 5 and 6,
it can be seen from the Wilcoxon test that p-value is less than 0.05 and this indicates there is a significant
difference between the proposed method and other methods except Tabu (T9) in terms of Cmax.
In contrast, Table 6 shows that the SASCA has the smallest average rank in terms of Cmax, and it
achieved the second rank in CPU time(s). Therefore, it can be concluded that the proposed method can
outperform the other methods in the case of small datasets.

Table 5. Results of Wilcoxon test for the small problems (best results are in boldface).

Measure SA Tabu (T9) Tabu (T8)

Cmax 0.013 0.060 0.047

Time 0.000 0.041 0.006



Mathematics 2019, 7, 1120 12 of 18

Table 6. Results of Friedman test for the small problems (best results are in boldface).

SASCA SA Tabu (T9) Tabu (T8)

Cmax 1 3.56 2.67 2.78

Time: 2.5 2.06 2.72 2.72

5.4.3. Large Problems

Table 7 displays the results of the proposed method for large problems versus other methods.
The calculated values of the Cmax and standard deviation (STD) for the SASCA are listed in this
table along with the compared results which obtained from the state-of-the-art methods namely Ant
Colony Optimization (ACO) [25], Partitioning Heuristic (PH) [25], Tabu Search (TS) [24], and MRPS
(Meta-RaPS) [26]. In addition, the lower bound (LB) is listed in the last column as a reference value.

Table 7. Average of Cmax values of the large problems for each algorithm.

M Jobs SASCA ACO [25] MRPS [26] TS [24] PH [25] LB

Cmax STD Cmax STD Cmax STD Cmax STD Cmax STD Cmax STD

2 40 2398.40 39.45 2404.33 36.88 2422 35.44 2486.53 39.54 2521.47 57.28 2344.7 36.31
60 3574.70 22.15 3575.2 33.41 3617.93 35.61 3736.47 55.61 3733.33 50.17 3510.17 36.03
80 4737.00 11.19 4741.8 60.28 4803.27 57.62 4942.27 70.36 4926.93 74.11 4664.83 58.43

100 5986.73 81.02 5897.6 60.68 5988.6 58.05 6180.87 73.49 6128.07 63.96 5819.23 59.80
120 7234.87 56.93 7082.6 64.64 7196.47 71.98 7447.6 80.89 7336.53 73.79 7008.03 69.27

4 60 1715.27 28.06 1736.6 21.5 1752.4 17.71 1785.53 25.19 1817.87 26.79 1650.73 15.79
80 2294.53 22.33 2307.8 18.68 2334.07 15.57 2370.13 22.26 2396.67 25.97 2201.48 15.94

100 2855.00 15.42 2849.47 31.88 2867.27 20.53 2934.13 35.24 2959.93 46.61 2740.7 20.46
120 3432.50 16.36 3404.53 25.66 3432.93 17.45 3515.13 33.15 3537.8 36.92 3291.2 16.71

6 100 1890.57 9.57 1891.07 11.38 1892.67 6.68 1940.6 14.98 1973.47 21.21 1783.03 6.12
120 2295.80 17.33 2249.2 15.69 2252.6 14.58 2313.07 25.93 2353.67 38.37 2137.6 11.17

8 120 1684.14 7.10 1685.4 13.77 1706.8 8.93 1739.73 15.01 1778.13 48.31 1580.23 7.43

From this table, we can conclude that, in terms of Cmax, the proposed method outperformed the
other methods in 7 out of 12 problems and its results are closer to the reference values. Whereas,
in terms of STD, the proposed algorithm performed better in 6 out of 12 problems followed by MRPS
and ACO, respectively. These results are illustrated in Figure 2 to show the variation of Cmax among
these algorithms; the values in this figure are normalized by the following equation:

Normalized value =
Cmaxmethod − Cmaxre f rence value

Cmaxre f rence value

(16)

Figure 2. Normalized Cmax to show the performances of all methods.



Mathematics 2019, 7, 1120 13 of 18

5.4.4. Statistical Test for the Large Problems

In this section, the two statistical tests (i.e., Wilcoxon’s rank sum and Friedman test) are used
to further analyze the results of the proposed SASCA based on large problems. Table 8 depicts that
there is no significant difference between SASCA and the other methods in terms of Cmax. Meanwhile,
there are significant differences between SASCA and TS and PH methods in terms of CPU time(s).
The same observation is noticed from Table 9, where the SASCA and ACO have the same average rank,
followed by MRPS, TS, and PH, respectively, in terms of Cmax. Moreover, in terms of the CPU time(s),
the MRPS allocates the first rank followed by the SASCA which allocates the second rank, while the
ACO in the third rank followed by the TS and PH, respectively.

Table 8. Results of Wilcoxon test for the large problems (best results are in boldface).

ACO MRPS TS PH

Cmax 0.924 0.689 0.420 0.420

Time 0.140 0.687 0.021 0.001

Table 9. Results of Friedman test for the large problems (best results are in boldface).

SASCA ACO MRPS TS PH

Cmax 1.58 1.58 2.83 4.33 4.67

Time 2.33 2.42 1.67 4.00 4.58

5.5. Average Percent Deviations

The average percent deviations values (apd) for the small and the large problems are provided in
Tables 10 and 11 to prove the superiority of the proposed method against the other methods. The apd
of (Cmaxmethod ) of each method are recorded where apd is calculated as follows:

apd =
Cmaxmethod − CmaxSASCA

CmaxSASCA

(17)

Table 10 shows that the SASCA outperformed all algorithms in all machines and jobs. Table 11
illustrates that the SASCA outperformed the PH and TS in all large problems and got over MRPS in
10 out of 12 problems; while the SASCA works better than ACO in 7 out of 12 problems. In general,
the SASCA shows good ability to work with both small and large problems.

Table 10. The apd values for the small problems for the hybrid method of Simulated Annealing
algorithm and Sine Cosine Algorithm (SASCA) and the other methods.

M Jobs SA Tabu(T9) Tabu(T8)

2 6 0.015 0.112 0.106
7 0.038 0.108 0.092
8 0.003 0.020 0.018
9 0.102 0.084 0.072
10 0.083 0.016 0.009
11 0.101 0.012 0.009

4 6 0.101 0.109 0.118
7 0.256 0.222 0.245
8 0.303 0.071 0.078
9 0.102 0.017 0.013
10 0.171 0.067 0.059

11 0.180 0.020 0.022
6 8 0.140 0.097 0.119

9 0.104 0.008 0.029
10 0.291 0.114 0.133
11 0.239 0.031 0.061

8 10 0.137 0.038 0.047
11 0.480 0.052 0.063



Mathematics 2019, 7, 1120 14 of 18

Table 11. The apd values for the large problems among SASCA and the other methods.

M Jobs ACO MRPS TS PH

2 40 0.002 0.010 0.037 0.051
60 0.000 0.012 0.045 0.044
80 0.001 0.014 0.043 0.040

100 −0.015 0.000 0.032 0.024
120 −0.021 −0.005 0.029 0.014

4 60 0.012 0.022 0.041 0.060
80 0.006 0.017 0.033 0.045

100 −0.002 0.004 0.028 0.037
120 −0.008 0.000 0.024 0.031

6 100 0.000 0.001 0.026 0.044
120 −0.020 −0.019 0.008 0.025

8 120 0.001 0.013 0.033 0.056

5.6. Parameters Sensitivity

5.6.1. Influence of (β) value on the SASCA

In this subsection, the influence of (β) variable on the performance of the SASCA is evaluated.
In this test, two machines are used with five types of jobs (i.e., 40, 60, 80, 100, and 120). Table 12 shows
the Cmax and the STD values. It can be observed that the best value for the β is 0.95 which has the
smallest Cmax value followed by β = 0.5. Meanwhile, in the case of β = 0.5 the proposed SASCA
becomes more stable than other two values. In addition, the β = 0.95 is more stable than β = 0.1.

Table 12. Influence of the β on the performance of the SASCA.

Job β = 0.95 β = 0.5 β = 0.1
Cmax STD Cmax STD Cmax STD

40 2398.40 39.45 2416.15 31.46 2401.17 30.14

60 3574.70 22.15 3598.00 19.75 3616.00 30.61

80 4737.00 11.19 4857.13 19.71 4823.00 27.00

100 5986.73 81.02 6054.25 75.78 6083.50 74.72

120 7234.87 56.93 7337.50 49.50 7350.60 54.76

5.6.2. Influence of the Parameters Setting in the Algorithms

In this section, we study the influence of the parameters setting on the performance of the MH.
The values of the parameters for each algorithm are given in Table 13, with the same number of
population and the number of iterations used in the previous experiments. Moreover, the number
of machines is two and the number of jobs varies from 6 to 11. The comparison results are given in
Table 14 and Figure 3. From Table 14 it can be noticed that the SASCA has the smallest Cmax overall the
tested problems except at the number of jobs is 10, the PSO is the best algorithm. Whereas, Figure 3
depicts the comparison between the average of the Cmax of the parameter setting in Table 1 and the
current one (i.e., Table 13). It can be noticed that the performance of the MH methods based on the
value in Table 1 is better than their performance based on Table 13.

From the previous analysis, it can be observed the high performance of the SASCA method,
however, there are some limitations. For example, the time computational of the SASCA needs
more improvements since it updates the solutions using SA operators followed by the operators of
SCA. Besides, the diversity of the solution needs to be enhanced and this can be achieved using the
Disruptor operators.



Mathematics 2019, 7, 1120 15 of 18

Table 13. New parameters setting for testing the sensitivity of the parameters.

Algorithm Parameters Setting

SASCA T0 = 5, β = 0.97, a = 3, r1 ∈ [3, 0]

SA T0 = 5, β = 0.97, local step = 1

GWO a ∈ [3, 0]

PSO w = 0.9, wDamp = 0.2, c1 = 2, c2 = 2

GA pc = 0.6, mu = 0.05, γ = 0.4, pm = 0.5, sp = 5

Table 14. Average of Cmax of the small problems on 2 machines for testing the sensitivity of the
parameters (best results are in boldface).

J SASCA SA GWO PSO GA

6 372.33 391.12 390.25 388.75 389.00
7 457.50 488.11 496.60 479.40 519.67
8 512.80 536.36 535.80 534.33 539.25
9 568.00 623.50 605.75 605.00 629.60
10 696.50 700.02 689.40 681.00 688.40
11 729.67 775.45 749.75 751.50 749.75

Figure 3. Average Cmax of the 6 jobs on 2 machines to show the difference between the original
parameters (Case 1) and the new parameters (Case 2) to show the performances of all methods.

6. Conclusions

Recently, unrelated parallel machine scheduling problems (UPMSPs) have received more attention
due to their wide applications in various domains. To solve UPMSPs, Simulated Annealing (SA)
algorithm provides suitable results compared to other meta-heuristic methods (MH) methods, but its
performance still requires more improvement. Therefore, in this paper, an alternative method was
proposed for determining the optimal solution to solve UPMSPs by minimizing the makespan value.
The proposed method called SASCA combined the SA algorithm with Sine-Cosine Algorithm (SCA).
SASCA worked in sequence order; in the first stage, the optimization process started by using SA to
evaluate the problem solution, then the output solution was fed to SCA to continue the optimization
process. The final solution was evaluated by the objected function. The performance of the proposed
method was compared with several methods including ACO, MRPS, TS, and PH in terms of makespan
values and standard deviation. In general, SASCA has the ability to solve small and large problems
of unrelated parallel machine scheduling. In the future, the proposed method will be evaluated in
different kinds of problems such as image segmentation, task scheduling in cloud computing, and
other optimization problems.

Author Contributions: Conceptualization, H.J., D.L., and M.A.A.A.-q.; methodology, H.J., M.A.E., and A.A.E.;
software, H.J., M.A.E., and A.A.E.; validation, H.J., M.A.A.A.-q., and O.F.; formal analysis, M.A.E. and A.A.E.;



Mathematics 2019, 7, 1120 16 of 18

investigation, D.L. and A.A.E.; writing—original draft, H.J.; writing—review and editing, H.J., M.A.E., A.A.E.,
and O.F.; supervision, D.L.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shim, S.O.; Park, K. Technology for production scheduling of jobs for open innovation and sustainability
with fixed processing property on parallel machines. Sustainability 2016, 8, 904. [CrossRef]

2. Nguyen, N.Q.; Yalaoui, F.; Amodeo, L.; Chehade, H.; Toggenburger, P. Total completion time minimization
for machine scheduling problem under time windows constraints with jobs’ linear processing rate function.
Comput. Oper. Res. 2018, 90, 110–124. [CrossRef]

3. Gafarov, E.; Werner, F. Two-Machine Job-Shop Scheduling with Equal Processing Times on Each Machine.
Mathematics 2019, 7, 301. [CrossRef]

4. Expósito-Izquierdo, C.; Angel-Bello, F.; Melián-Batista, B.; Alvarez, A.; Báez, S. A metaheuristic algorithm
and simulation to study the effect of learning or tiredness on sequence-dependent setup times in a parallel
machine scheduling problem. Expert Syst. Appl. 2019, 117, 62–74. [CrossRef]

5. Hsieh, J.C.; Chang, P.C.; Hsu, L.C. Scheduling of Drilling Operations in Printed Circuit Board Factory.
Comput. Ind. Eng. 2003, 44, 461–473. [CrossRef]

6. Bilyk, A.; Mönch, L. A Variable Neighborhood Search Approach for Planning and Scheduling of Jobs on
Unrelated Parallel Machines. J. Intell. Manuf. 2012, 23, 1621–1635. [CrossRef]

7. Silva, C.; Magalhaes, J.M. Heuristic Lot Size Scheduling on Unrelated Parallel Machines with Applications
in the Textile Industry. Comput. Ind. Eng. 2006, 50, 76–89. [CrossRef]

8. Kim, D.W.; Na, D.G.; Chen, F.F. Unrelated Parallel Machine Scheduling with Setup times and a Total
Weighted Tardiness Objective. Robot. Comput.-Integr. Manuf. 2003, 19, 179–181. [CrossRef]

9. Fanjul-Peyro, L.; Ruiz, R. Iterated greedy local search methods for unrelated parallel machine scheduling.
Eur. J. Oper. Res. 2010, 207, 55–69. [CrossRef]

10. Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems; Springer: Berlin, Germany, 2016.
11. Yalaoui, F.; Chu., C. An Efficient Heuristic Approach for Parallel Machine Scheduling with Job Splitting and

Sequence-dependent Setup Times. IIE Trans. 2003, 35, 183–190. [CrossRef]
12. Bektur, G.; Saraç, T. A mathematical model and heuristic algorithms for an unrelated parallel machine

scheduling problem with sequence-dependent setup times, machine eligibility restrictions and a common
server. Comput. Oper. Res. 2019, 103, 46–63. [CrossRef]

13. Hamzadayi, A.; Yildiz, G. Event driven strategy based complete rescheduling approaches for dynamic m
identical parallel machines scheduling problem with a common server. Comput. Ind. Eng. 2016, 91, 66–84.
[CrossRef]

14. Hamzadayi, A.; Yildiz, G. Hybrid strategy based complete rescheduling approaches for dynamic m identical
parallel machines scheduling problem with a common server. Simul. Model. Pract. Theory 2016, 63, 104–132.
[CrossRef]

15. Wang, H.; Alidaee, B. Effective heuristic for large-scale unrelated parallel machines scheduling problems.
Omega 2019, 83, 261–274. [CrossRef]

16. Ezugwu, A.E.; Akutsah, F. An Improved Firefly Algorithm for the Unrelated Parallel Machines Scheduling
Problem With Sequence-Dependent Setup Times. IEEE Access 2018, 6, 54459–54478. [CrossRef]

17. Logendran, R.; McDonellb, B.; Smuckera, B. Scheduling unrelated parallel machines with
sequence-dependent setups. Comput. Oper. Res. 2007, 34, 3420–3438. [CrossRef]

18. Bozorgirad, M.A.; Logendran, R. Sequence-dependent group scheduling problem on unrelated-parallel
machines. Expert Syst. Appl. 2012, 39, 9021–9030. [CrossRef]

19. Chen, C.L. Iterated hybrid metaheuristic algorithms for unrelated parallel machines problem with unequal
ready times and sequence-dependent setup times. Int. J. Adv. Manuf. Technol. 2012, 60, 693–705. [CrossRef]

20. Eva, V.; Rubén, R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence
dependent setup times. Eur. J. Oper. Res. 2011, 211, 612–622.

21. Duygu, Y.E.; Ozmutlu, H.C.; Seda, O. Genetic algorithm with local search for the unrelated parallel machine
scheduling problem with sequence-dependent set-up times. Int. J. Prod. Res. 2014, 52, 5841–5856.

http://dx.doi.org/10.3390/su8090904
http://dx.doi.org/10.1016/j.cor.2017.09.015
http://dx.doi.org/10.3390/math7030301
http://dx.doi.org/10.1016/j.eswa.2018.09.041
http://dx.doi.org/10.1016/S0360-8352(02)00231-0
http://dx.doi.org/10.1007/s10845-010-0464-6
http://dx.doi.org/10.1016/j.cie.2006.01.001
http://dx.doi.org/10.1016/S0736-5845(02)00077-7
http://dx.doi.org/10.1016/j.ejor.2010.03.030
http://dx.doi.org/10.1080/07408170304382
http://dx.doi.org/10.1016/j.cor.2018.10.010
http://dx.doi.org/10.1016/j.cie.2015.11.005
http://dx.doi.org/10.1016/j.simpat.2016.02.010
http://dx.doi.org/10.1016/j.omega.2018.07.005
http://dx.doi.org/10.1109/ACCESS.2018.2872110
http://dx.doi.org/10.1016/j.cor.2006.02.006
http://dx.doi.org/10.1016/j.eswa.2012.02.032
http://dx.doi.org/10.1007/s00170-011-3623-9


Mathematics 2019, 7, 1120 17 of 18

22. Tavakkoli-Moghaddam, R.; Taheri, F.; Bazzazi, M.; Izadi, M.; Sassani, F. Design of a genetic algorithm for
bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and precedence
constraints. Comput. Oper. Res. 2009, 36, 3224–3230. [CrossRef]

23. Arnaout, J.P.; Musa, R.; Rabadi, G. Ant colony optimization algorithm to parallel machine scheduling
problem with setups. In Proceedings of the 2008 IEEE International Conference on Automation Science and
Engineering, Arlington, VA, USA, 23–26 August 2008; pp. 578–582.

24. Helal, M.; Rabadi, G.; Al-Salem, A. A tabu search algorithm to minimize the makespan for the unrelated
parallel machines scheduling problem with setup times. Int. J. Oper. Res. 2006, 3, 182–192.

25. Arnaout, J.P.; Rabadi, G.; Musa, R. A two-stage ant colony optimization algorithm to minimize the makespan
on unrelated parallel machines with sequence-dependent setup times. J. Intell. Manuf. 2010, 21, 693–701.
[CrossRef]

26. Rabadi, G.; Moraga, R.J.; Al-Salem, A. Heuristics for the unrelated parallel machine scheduling problem
with setup times. J. Intell. Manuf. 2006, 17, 85–97. [CrossRef]

27. Arnaout, J.P.; Musa, R.; Rabadi, G. A two-stage ant colony optimization algorithm to minimize the
makespan on unrelated parallel machines—-Part II: enhancements and experimentations. J. Intell. Manuf.
2014, 25, 43–53. [CrossRef]

28. Lin, Y.K.; Hsieh, F.U. Unrelated Parallel Machine Scheduling with Setup times and Ready times. Int. J.
Prod. Res. 2014, 52, 1200–1214. [CrossRef]

29. Sheremetov, L.; Martínez-Muñoz, J.; Chi-Chim, M. Two-stage genetic algorithm for parallel machines
scheduling problem: Cyclic steam stimulation of high viscosity oil reservoirs. Appl. Soft Comput.
2018, 64, 317–330. [CrossRef]

30. Ezugwu, A.E. Enhanced symbiotic organisms search algorithm for unrelated parallel machines
manufacturing scheduling with setup times. Knowl.-Based Syst. 2019, 172, 15–32. [CrossRef]

31. Wu, X.; Che, A. A memetic differential evolution algorithm for energy-efficient parallel machine scheduling.
Omega 2019, 82, 155–165. [CrossRef]

32. Kim, D.W.; Kim, K.H.; Jang, W.; Chen, F.F. Unrelated parallel machine scheduling with setup times using
simulated annealing. Robot. Comput. Integr. Manuf. 2002, 18, 223–231. [CrossRef]

33. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst.
2016, 96, 120–133. [CrossRef]

34. Elaziz, M.E.A.; Ewees, A.A.; Oliva, D.; Duan, P.; Xiong, S. A Hybrid Method of Sine Cosine Algorithm
and Differential Evolution for Feature Selection. In International Conference on Neural Information Processing;
Springer: Cham, Switzerland, 2017; pp. 145–155.

35. Abd ElAziz M, Selim IM, X.S. Automatic Detection of Galaxy Type From Datasets of Galaxies Image Based
on Image Retrieval Approach. Sci. Rep. 2017, 7, 4463. [CrossRef] [PubMed]

36. Sahlol, A.T.; Ewees, A.A.; Hemdan, A.M.; Hassanien, A.E. Training feedforward neural networks
using Sine-Cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite.
In Proceedings of the 2016 12th International Computer Engineering Conference (ICENCO), Cairo, Egypt,
28–29 December 2016; pp. 35–40.

37. Kumar, V.; Kumar, D. Data clustering using sine cosine algorithm: Data clustering using SCA. In Handbook
of Research on Machine Learning Innovations and Trends; IGI Global: Hershey, PA, USA, 2017; pp. 715–726.

38. Ramanaiah, M.L.; Reddy, M.D. Sine Cosine Algorithm for Loss Reduction in Distribution System with
Uniffied Power Quality Conditioner. i-Manag. J. Power Syst. Eng. 2017, 5, 10.

39. Li, S.; Fang, H.; Liu, X. Parameter optimization of support vector regression based on sine cosine algorithm.
Expert Syst. Appl. 2018, 91, 63–77. [CrossRef]

40. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680.
[CrossRef]

41. WebSite, D. Scheduling Research Dataset. 2018. Available online: http://www.schedulingresearch.com
(accessed on 1 April 2018).

42. Ewees, A.A.; Elaziz, M.A.; Houssein, E.H. Improved grasshopper optimization algorithm using
opposition-based learning. Expert Syst. Appl. 2018, 112, 156–172. [CrossRef]

43. Ibrahim, R.A.; Elaziz, M.A.; Ewees, A.A.; Selim, I.M.; Lu, S. Galaxy images classification using hybrid brain
storm optimization with moth flame optimization. J. Astron. Telesc. Instrum. Syst. 2018, 4, 038001. [CrossRef]

http://dx.doi.org/10.1016/j.cor.2009.02.012
http://dx.doi.org/10.1007/s10845-009-0246-1
http://dx.doi.org/10.1007/s10845-005-5514-0
http://dx.doi.org/10.1007/s10845-012-0672-3
http://dx.doi.org/10.1080/00207543.2013.848305
http://dx.doi.org/10.1016/j.asoc.2017.12.021
http://dx.doi.org/10.1016/j.knosys.2019.02.005
http://dx.doi.org/10.1016/j.omega.2018.01.001
http://dx.doi.org/10.1016/S0736-5845(02)00013-3
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1038/s41598-017-04605-9
http://www.ncbi.nlm.nih.gov/pubmed/28667318
http://dx.doi.org/10.1016/j.eswa.2017.08.038
http://dx.doi.org/10.1126/science.220.4598.671
http://www.schedulingresearch.com
http://dx.doi.org/10.1016/j.eswa.2018.06.023
http://dx.doi.org/10.1117/1.JATIS.4.3.038001


Mathematics 2019, 7, 1120 18 of 18

44. Al-qaness, M.A.; Abd Elaziz, M.; Ewees, A.A.; Cui, X. A Modified Adaptive Neuro-Fuzzy Inference
System Using Multi-Verse Optimizer Algorithm for Oil Consumption Forecasting. Electronics 2019, 8, 1071.
[CrossRef]

45. Ewees, A.A.; El Aziz, M.A.; Hassanien, A.E. Chaotic multi-verse optimizer-based feature selection.
Neural Comput. Appl. 2019, 31, 991–1006. [CrossRef]

46. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

47. Črepinšek, M.; Liu, S.H.; Mernik, M. Replication and comparison of computational experiments in applied
evolutionary computing: Common pitfalls and guidelines to avoid them. Appl. Soft Comput. 2014, 19, 161–170.
[CrossRef]

48. Črepinšek, M.; Liu, S.H.; Mernik, L. A note on teaching—Learning-based optimization algorithm. Inf. Sci.
2012, 212, 79–93. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/electronics8101071
http://dx.doi.org/10.1007/s00521-017-3131-4
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.asoc.2014.02.009
http://dx.doi.org/10.1016/j.ins.2012.05.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Preliminaries
	Mixed Integer Programming Mathematical Model
	Simulated Annealing Algorithm
	Sine Cosine Algorithm

	Proposed Method
	Initial Solution
	Updating Solution

	Experiments and Results
	Dataset Description
	Experiment Settings
	Comparison with Metaheuristic Methods
	Comparison with the State-of-the-Art Methods
	Small Problems
	Statistical Test for the Small Problems
	Large Problems
	Statistical Test for the Large Problems

	Average Percent Deviations
	Parameters Sensitivity
	Influence of () value on the SASCA
	Influence of the Parameters Setting in the Algorithms


	Conclusions
	References

