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1. Introduction

The study of quasi-periodic functions may go back to P. Bohl in 1893 and E. Esclangon in 1904;
see [1,2]. These quasi-periodic functions, which appeared in astronomical perturbation problems,
are those that can be approximated uniformly on R by Y} cxAx(t) with ¢ € C and Ax(t) =
el(martmayt+muan)t \yhere m; € N and a; € R. It turns out that any quasi-periodic function can be
obtained from a periodic function depending on several variables [3]. Let f be a periodic function
from R" into C. Regarding the variable t;, if the periodic function f(t1,t,- - ,t,) has a period 27,
then F(t) = f(wit, wat, - -+, wnt) with w; € R/{0} is quasi-periodic.

The application of quasi-periodic functions has been taken in several directions. One
direction is the study of quasi-periodic solutions to nonlinear PDE. Up until now, the existence
of quasi-periodic solutions of different kinds of nonlinear equations has been shown by the KAM
(Kolmogorov—-Arnold-Moser) theory or the C-W-B (Craig-Wayne-Bourgain) method. We briefly
mention some recent work in this direction and refer the reader to [4-11] for some pioneering
work. In [12], F. Giuliani focused on the generalized KdV equations and discussed the existence
of Cantor families of quasi-periodic solutions, which extended the results in [13]. In [14], based
on a modified KAM theorem, the existence of quasi-periodic response solutions of reversible
systems that have Liouvillian frequencies was studied. Regarding the beam equations defined on
compact Lie groups, in [15], the authors showed the existence of quasi-periodic solutions by the
Nash-Moser iteration; meanwhile, based on the KAM theorem, in [16], Y. Wang proved the existence
of quasi-periodic solutions to beam equations when the nonlinear term has the time and space
variables. In [17], the authors discussed the Whitney smooth family of quasi-periodic solutions to
beam equations. For other applications of quasi-periodic functions, we mention the work by Kiipper
and Yuan [18] on quasi-periodic solutions for differential equations with piecewise constant argument
(see also, e.g., [19,20]).
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On the other hand, consider the inhomogeneous abstract Cauchy problem:

{xl(t) = Ax(t) + F(t), t e RT; 1)

where A is the infinitesimal generator of an exponentially stable Cy-semigroup (T(t));>o, that is there
exist M > 0 and r > 0 such that ||T(t)|| < Me " for all t € R*. In order to study the existence of
asymptotically periodic solutions of (1), the authors in [21] proposed the concept of the w-periodic
limit function, which is a generalization of the asymptotically w-periodic function. Later, in [22], the
concept of the squared mean periodic limit process was proposed and the application to stochastic
differential equations was studied. The theory of w-periodic limit functions has the advantage of
considering the asymptotical periodicity as a whole. For other applications of the w-periodic limit
function, we refer the reader to [23].

It follows from the method in Theorem 4.4 in [21] that the solution of (1) is asymptotically
w-periodic when the coefficient F is the w-periodic limit. Moreover, if we assume F = F; + F,, F; is the
w1-periodic limit and F, is the wy-periodic limit, then the solution of (1) is asymptotically quasi-periodic.
Here, a question arises: To make sure the solution of (1) is asymptotically quasi-periodic, what kind of
function can F be?

Motivated by the above discussions, in the present paper, we propose a class of functions, and we
call them quasi-periodic limit functions, which could be regarded as a generalization of (asymptotically)
quasi-periodic functions. We will show that the quasi-periodic limit functions contribute to studying
the existence of asymptotically quasi-periodic solutions of (1). The main results are Theorem 2 and
Theorem 4. To show this, we develop a very general method. We believe the method in this paper
could contribute to studying the existence of asymptotically quasi-periodic solutions of some kinds of
equations, such as fractional differential equations.

This paper is arranged in three main sections.

In Section 2, we define the notion of quasi-periodic limit functions and study their properties.
Especially, we discuss the relation between quasi-periodic limit functions and asymptotically
quasi-periodic functions. In Section 3, these quasi-periodic limit functions are applied to study
the existence of asymptotically quasi-periodic solutions of abstract Cauchy problems. In Section 4, we
propose some related questions. We believe that the questions found here are of interest in the theory
of asymptotical quasi-periodicity and that their answers would certainly help to develop this field.

2. Space of Quasi-Periodic Limit Functions

In this paper, we denote the interval [0,00) by R*. Let (X, | - ||) be a Banach space, and let
Cp(RT x RT, X)) be the space of bounded and continuous functions from R™ x R* into X, endowed
with the uniform convergence norm || - [|«. Assume that wy,wy, -+ ,wy € R. wy,wo, -+ ,wy are
called rationally independent if kyw1 + kpwy + - - - + kpw,, # 0 for all ky,kp, - -+, k, € Q\{0}, where
Q is the set of all rational numbers. In this paper, we always assume w1, wp, - - - ,wy, are rationally
independent and w1, wy,- -+ ,wy > 0. Let f be a periodic function from R" into X. If the periodic
function f(t1,tp,- -+ ,ty) inty, by, - - - , t, with the same periodic 27, then F(t) = f(i]—ft, i—’;t,~ . 2(7:0
is said to be quasi-periodic. If we define g(t1,t,- -+, ty) = f(fdilrtl, %tZ/ e, i—:tn), then:
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and we can define the same quasi-periodic function by g, thatis F(t) = g(t,t,--- ,t). A continuous
function f : RT — X is called asymptotically quasi-periodic if it admits a decomposition f(t) =
g(t) + h(t), where ¢ : R — X is a quasi-periodic function and / : Rt — X is a continuous function
with lim 1« ||(#)|| = 0. Let w > 0. A bounded continuous function f : Rt — X is called the
w-periodic limit if there is a function ¢ : Rt — X such that lim,_« f(t + nw) = g(t). The set of
w-periodic limit functions will be denoted by P, L(R™, X).

For the sake of simplicity, we establish the concept by a function with two variables.

Definition 1. Let f € Cp(RT x RT, X). If g(t,5) = limy—ye0 f (t + 1wy, s) and h(t,s) = limy oo f (£, 5 +
nwy) are well defined for each pair (t,s) € Rt x RT, where n € N, then f is said to be the (w1, w,)-periodic
limit.

Hypothesis 1 (H1). Foreacht € RT, limy, 0 f(t + nwy,s) = g(t,s) uniformly fors € RT.
Hypothesis 2 (H2). Foreach s € R, lim, s f(t, 5 + nwy) = h(t,s) uniformly for t € R,

Definition 2. Let f be a (w1, wy)-periodic limit function. Assume H1 and H2 hold, then F(t) = f(t,t) is
said to be the (w1, wy)-quasi-periodic limit. The collection of all (w1, wy)-periodic limit functions that satisfies
H1 and H2 (respectively, (w1, wy)-quasi-periodic limit functions) will be denoted by PL (RT x R, X)
(QPL(wl,wz) (RJrr X))

w1,w3)

Remark 1. The functions g and h in Definition 2 is measurable, but not necessarily continuous.
Now, we present some examples of (w1, w;)-quasi-periodic limit functions.

Example 1. Let f(t,s) = f1(t) + fa(s), where fy € Py, L(RT, X) and f, € P,,L(R™, X). By the definition
of the w-periodic limit function, we have limy, o f1(t +nwy) = g1(t) and imy, 00 f2(t + nws) = go(t). Let
g(t,s) = g1(t) + fa(s) and h(t,s) = f1(t) + ga(s). Thus, for each t € R, limy e f(t + newy,s) = g(t,s)
uniformly for s € R, and for each s € R, lim,_ye0 f(t, 5 + nwy) = h(t,s) uniformly for t € R*. Then,
F(t) = f(t,t) = f1(t) + fa(t) is the (w1, wy)-quasi-periodic limit.

Example 2. Let f(t,s) = f1(t)fa(s), where fi € Py, L(RY,C) and f, € Py, L(R",X). Then, F(t) =
f(t,t) = f1(t) fo(t) is the (wy, wo)-quasi-periodic limit.

Example 3. For n > 0, define a function f on [nwy, (n + 1)wq] X [mwy x (m + 1)ws] as follows:
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1, (t,s) € [nwy + F, nwy + 2%] X [mwz + %2, mwy + 2“’2]
am(t,s), (t,s) € [nwy 4+ % — 3585, nwy + G X [mw, + 5 3 2, mw, + 242],
2n(ts), (ts) € [nw + 2%,11001 + 2w1 + n+3] [mwz + 2, mw; + 2“’2],
Sa(ts), (ts) € [nwy + 4, nwy + 2%] X [mwy 4 F — 5y, mwsy + ],
flbs) = an(ts), (ts) € [nwy + 4, nwy + 2‘3’1] X [mwz + 292 e, + 2“’2 + m+3]
am(ts), (ts) € [nwy + G — 35, nwy + 4] x [mwz + %2 - m,mwz + ]
,?,m(t,s), (t,s) € [nwy + 231,nw1 + 2w1 + n+3] [mwy + %2 — m,mwz + %,
T a(ts), (ts) € [nwy + % — 5, nwy + G X [mw, + 2‘3)2 mwy + 242 4 m+3]
E,m(t,s), (t,s) € [nwy + 31,nw1 + 2w1 + n+3] [mews, + 292 e, + 2w2 + m+3]
0, otherwise,
2
where f&rm(t,s) = ”w—f[t — (nw1 L n‘%)} ,%,m(t,s) = _7%3“ — (nwy + 5+ + n+3)}
2
am(ts) = ME[s — (mwy + @ — mszgj)]/ am(ts) = —2[s — (mwy + “'2 + k)l
2 (5 ) Rl (e )
r?,m(tfs) = 1 %3 = [S_ (mw2+ 3 m+3>] fnm(t S) = = wf3 — [ -
2 [t (i + 3 — )] >
(mwr + § — 32, fu(ts) = I oy 4 By ) ) =
n+3 — +L+7
o | ("wlwz 3 ties)| [s — (mw, + %2 + a25)]. The graph of the function f in each rectangle [ncwy, (n +

m+3
1)wq] X [mwy x (m+1)ws] (n > 1) consists of ten parts, and f(t,s) : RT x RT — [0,1] is continuous. If
we define the function g and h on [nwy, (n + 1)wi] x [mwy x (m + 1)ws] by:

L s 30 e )
glt,s) = f3u(ts), () € [nwy + %, nwr + 2414 x [mw; + 4§ — e ey + B,
an(t5), (4,5) € [nwr + 5, newy + 23] % [mew + 2‘*'2 ,mewy + %2 4 m+3]
0, otherwise
and:
L (f,S) [”wl + L nwy + Zwl] X [Tflwz L w % /me + sz]
h(t S) — fr%,m(t,s)/ (t,S) {lel + n+3,nw1 -+ ] [me + 2% ,mw 4 2(4]2]
, fam(ts), (ts) € [nw + wl ey + 4 G [mws + @, maw, + 2],
’ n+3 3 3
0, otherwise.

Then, for each t € R, limy oo f(t + nwy,s) = g(t,s) uniformly for s € RT, and for each s € RT,
limy, o0 f(t,5 + nwy) = h(t,s) uniformly for t € R*. Thus, F(t) = f(t,t) is the (w1, wy)-quasi-periodic
limit.

Next, we present the following properties of (w1, w;)-quasi-periodic limit functions.

Proposition 1. Let F, Fj and F, be the (w1, wy)-quasi-periodic limit. Assume g(t,s) = limy, e f (t + nwy, s),
h(t,s) = limy_eo f(t, 5 + nws) are well defined for each pair (t,s) € RT x R and F(t) = f(t,t). Then, the
following statements are true:

(1) Fy + F, is the (w1, wy)-quasi-periodic limit;

(2)  CF is the (w1, wo)-quasi-periodic limit for any ¢ € C;

(3) g(t+wy,s) =g(ts), h(t,s+ wa) = h(t,s) for each pair (t,s) € RT x R*;
(4) g and hare bounded on R* x RY; moreover, | < | flloo and ||h|lco < ||fl]oos
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(5)  F is bounded on R"; moreover, | F|lec < ||f]|co-

Proposition 2. Let f be a (w1, wy)-periodic limit function.

(1)  Assume H1 holds, then k(t,s) = limy—c0 §(t, s + nwy) is well defined for each pair (t,s) € Rt x RT.
(2)  Assume H2 holds, then k(t,s) = limy, oo h(t + nwy, s) is well defined for each pair (t,5) € RT x R*.
(3)  Assume H1 and H2 hold, then k(t,s) = k(t,s).

(4) Assume HI and H2 hold, then k(t + wy,s) = k(t,s) = k(t,s + wy).

Proof. (1) We only need to show that {g(t, s + nwy) } ,en is a Cauchy sequence for each pair (t,s) €
RT x RT. Lete > 0. By Hypothesis of H1, for fixed t € RT, there exists N; € N such that || f(t +
pwi,s) —g(t,s)|| < § uniformly for s € RT when p > Nj. For the above t, choose p > Nj, and fix
s € RT. By Definition 1, there exists N, € Nsuch that || f(t + pw1,s + nwy) — h(t + pwy,s)|| < § when
n > N». Therefore,

1g(t,s +nwy) — g(t, s + mws)||
<[lg(t,s +nwa) — f(t+ pwi,s +nwa) || + || f(t + pwy, s + nwy) — h(t + pwy,s)||

+ 1A (t + pwr,s) — f(t + pwi, s +mewa) || + || f(t 4 pwy, s + mawa) — g(t, s + mawy) ||
<&

when m,n > Nj.
(2) In a similar way as (1), one can show (2).
(3) Lete > 0, and fix (t,s) € RT x R*. By Hypothesis H1, there exists N; € N such that:

€

1f (4 ner, o) = (8, sl < g 2
uniformly for s’ € R™ when n > Nj. By Hypothesis H2, there exists N, € N such that:

LF(#5 4 nws) = ()| < ®)
uniformly for ' € R when n > Nj. By the conclusion of (1), there exists N3 € N such that:

Ig(t,s +nen) = k(t,s)]| < 5 @
when n > N3. By the conclusion of (2), there exists Ny € N such that:

it +neor, ) =K(t,5)] < 5 (5)

when n > Nj. Select N5 = max{Nj, N2, N3, Ny }. (2), (3), (4), and (5) imply:

[k(t,s) — k(t,s)]]
<||k(t,s) — g(t,s + Nswa)|| + [|g(t,5 + Nswz) — f(t + Nswy, s + Nsws) ||

+ || f(t + Nswy, s + Nswy) — h(t + Nswy, s)|| + ||h(t + Nswy, s) — k(t,s)]|
<g,

which shows k(t,s) = k(t,s).
(4) k(t,s) = limy—e0 g(t, 5 + nwy) = limy 00 §(t + w1, 5 + nwy) = k(t + wy, s). Similarly, k(t,s) =
k(t,s+wyp). O

Hypothesis 3 (H3). f is uniformly continuous.
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Proposition 3. Let f be a (wy,wy)-periodic limit function. Assume H3 holds, then g and h are
uniformly continuous.

Proof. For ¢ > 0 given, there exists § > 0 such that ||f(t,s) — f(#,s')|| < § when |t — /| < 4,
|s —§'| < dfort,t,s,s € RT. Chooset,t',s,s’ € RT such that [t — | < §, |s —s'| < J, then there
exists Ni € Nsuch that ||g(t,s) — f(t + nwy,s)|| < § whenn > Ny, and there exists N, € N such that
g(t',s") = f(t' +nwy,s")|| < § whenn > N,. Choose N3 = max{ Ny, N, }. Then, one has:

Ig(t,5) — g (¥, s
<lig(t,s) = f(t+ Nawr, s) || + || f(t + Nawi, s) = (' + Nawy, s')[| + [ f(£' + Naw,s') = g (¢, s")]]
<e.

Therefore, g is uniformly continuous. Similarly, & is uniformly continuous. O

In the following propositions, if F is a (w1, w;)-quasi-periodic limit function, then f, g, h are
defined in Definition 2, and k is defined in Proposition 2.

Proposition 4. Let F be a (w1, wy)-quasi-periodic limit function.  Assume H3 holds, then k is
uniformly continuous.

Proof. Let ¢ > 0. Since f is uniformly continuous, g is uniformly continuous by Proposition 3.
Therefore, there exists § > 0 such that ||g(t,s) — g(t/,s")|| < § when [t —t| < §, |s —s'| < ¢ for
t,t',s,s' € RT. Chooset,t',s, s’ € R such that |t — t'| < 6, |s —s'| < &, then by Proposition 2 (1), there
exists N1 € N such that ||k(t,s) — g(t,s + nwy)|| < § when n > Ny, and there exists N> € N such that
|k(t',s") — g(t',s" + nw,)|| < § whenn > Np. Choose N3 = max{Ny, N>}. Then, one has:

lk(t,s) — k(¢ s")|
<|[k(t,5) — 8(t,s + Nawa) | + [Ig(t, s + Nswz) — g(',s" + Nsws) || + [Ig(',s" + Nawz) — k(#',s")]|
<e.

Thus, k is uniformly continuous. O

Proposition 5. Let F be a (w1, w,)-quasi-periodic limit function. Assume H3 holds, and denote r(t,s) =
f(t,s) —k(t,s), thenr € Co(RT x R, X), that is for any € > 0, there exists M > 0 such that ||r(t,s)|| < e
whent > M, s > M.

Proof. Itis equivalent to show that for any € > 0, there exists N € N such that || f (¢ + nwq,s + mwy) —
k(t 4+ nwy, s + mwy)|| < € uniformly for t € [0,w;], s € [0,w,] when n,m > N. By Proposition 2 (4),
one has k(t,s) = k(t 4+ nwy, s + mw,) for any m,n € N. Note that:

f(t+nwy, s + mwy) — k(t + nwy, s + mawy)
=f(t+nwy,s +mwy) — g(t,s + mwy) + g(t,s + mwy) — k(t,s).

Let € > 0. By Proposition 3 and Proposition 4, ¢ and k are uniformly continuous. Thus, there
exists & > 0 such that || f(t,s) — f(¥,s')|| < ¢ lg(t,s) —g(t,s")| < e |[[k(t,s) —k(t,s')|| < e when
[t —t| <9, |s—s'| <dfortt,s,s € RT.

Divide [0, w;] into p equal intervals such that <!

P
2%,- by = %,tp = wj. Then, there exists Ny € Nsuch that || f(¢; + nwy, s + mwy) — g(t;,s +

mw,)|| < € uniformly fors € [0,wy] and m € N,i=0,1,2,--- ,p whenn > Nj. Choose any ¢ € [0, w1],
one can pick t;, € {t;} such that |t —t; | < J. Then, one has:

< 6, p € N. Define tg = 0,t; = %,tz =
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[f(t+ nwy, s +mwsy) — g(t, s + mw,)||

<|f(t+ nwy, s + mwy) — f(ti, + nws, s + mws)|| + || f(ti, + nwy, s + mwy) — g(ti,, s + mws) |
+ |18 (tiy, s + mwy) — g(t,5 + mw,)||

<3¢

when 1 > Nj uniformly for s € [0, w;] and m € N.
Fixt € R*. In a similar way, by dividing the interval [0, w;] and using the uniform continuousness
of g, k, one can show there exists N, € N such that:

llg(t, s +mwy) —k(t,s)| < 3e (6)

when m > N, uniformly for s € [0, ws].

In a similar way again, by dividing the interval [0, w;] and using (6), one can show there exists
N3 € N such that ||g(t,s + mwy) — k(t,s)|| < 5¢ when m > N3 uniformly for s € [0,w;] and t €
[0, wq]. Note that g(t + nwy,s) = g(t,s), k(t + nwy,s) = k(t,s). Therefore, for any t € RT, one has
llg(t, s +mwy) —k(t,s)|| < 5e when m > N3 uniformly for s € [0, ws].

Choose Ny = max{Ny, N3}; one has:

Ilf (t + nwq, s + mwy) — k(t + nwy, s + mws) ||
<[If(t+nwr, s+ mawy) — &(t s + maws)|| +[8(t, s + mews) — k(t,s) ||
<8¢

when n,m > Ny uniformly for t € [0,wq] and s € [0,w,]. O

Proposition 6. Let F be a (wy, wy)-quasi-periodic limit function. Assume H3 holds, then F is asymptotically
quasi-periodic.

Proof. Denote K(t) = k(t,t), R(t) = r(t,t). By Proposition 5, F(t) = K(t) + R(t), R € Co(R™, X).

By Proposition 2 (4) and Proposition 4, K is quasi-periodic. Therefore, F is asymptotically
quasi-periodic. O

Let us introduce the following conditions.
Hypothesis 4 (H4). lim, s« f(t + nwy,s) = g(t,s) uniformly for t € R and s € RT.
Hypothesis 5 (H5). limy_« f(t, 5 + nwy) = h(t,s) uniformly for t € R and s € RT.

Proposition 7. Let f be a (w1, wy)-periodic limit function. Assume H4 and H5 hold, then:

(1) k(t,s) = limy 0 §(t, s + nws) uniformly for t € R* and s € R,
(2)  k(t,s) = limy_ye0 h(t + 1wy, s) uniformly for t € R* and s € RY;
(3) k(t,s) =k(t,s);

(4)  k(t+wy,s) =k(t,s) =k(t,s+ wy).

Proof. (1) We only need to show that {g(t,s + nwy) },en is a Cauchy sequence uniformly for t € R*
and s € RT. Lete > 0. By Hypothesis H4, there exists N; € N such that ||f(t + pwy,s) — g(t,s)| < §
uniformly for t € R and s € RT when p > Nj. By Hypothesis H5, there exists N; € N such that
| f(t s 4+ nwy) —h(t,s)|| < § uniformly for t € R* and s € RT whenn > N».
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Therefore,

Ig(t, s+ nwy) — g(t,s + mew)||
<||g(t,s +nwy) — f(t+ pwy,s + nwy)|| + ||f(t + pw1, s + nwy) — h(t + pwy, s)||

+ ||h(t + pawr,s) — f(t + pwr, s + maws)|| + [ f(t + pwr, s + mws) — g(t,s + maw) ||
<&

uniformly for t € Rt and s € Rt whenm,n > Nj.
(2) In a similar way as (1), one can show (2).
(3) and (4) are the conclusions of Proposition 2 (3) (4). O

Proposition 8. Let F be a (w1, wy)-quasi-periodic limit function. Assume H4 and H5 hold, then F is
asymptotically quasi-periodic.

Proof. Denote r(t,s) = f(t,s) — k(t,s); we first show that r € Co(R* x RT, X).

We only need to show that for any € > 0, there exists N € N such that || f(t + nwy, s + mw;) —
k(t + nwy, s + mw,)|| < € uniformly for t € [0,w;], s € [0, wp] when n,m > N. By Proposition 7 (4),
one has k(t,s) = k(t + nwy,s + mw,) for any m,n € N.

By Hypothesis H4, there exists Ny € N such that || f(t + nwy,s) — g(t,s)|| < 5 uniformly for t € Rt
and s € RT when n > Nj. By Proposition 7, there exists N> € N such that ||g(t,s +mw>) —k(t,s)| < §
uniformly for t € R* and s € RT when m > N,. Choose N = max{Nj, N, }. Therefore,

| f(t + nwy, s + mwy) — k(t + nwq, s + mw,) ||
<[If(t+nwr, s + mawy) = g(t s + mewa)|| +[g(t, s + mewr) = k(t,s) ||
<e

uniformly for t € [0,wq], s € [0, wy] when n,m > N.
Next, we show that k is continuous. Take any #(,sp € R™. Since f is continuous, there exists § > 0
such that:

| f(to + Niw1, 50 + Nows) — f(t' + Niwy, 8" 4+ Nows)|| < €

when |tg — /| < §, [sg — §'| < 6. Therefore,

[k(to, s0) — k(',s")|
=||k(to, s0) — g(to, 50 + Nows2) || + [|g(to, 50 + Nowz) — f(to + N1w, so + Nows) |
+ || f(to + N1wy, 0 + Naws) — f(' + Niwy,s" + Nows) ||
+ (' + Niwy, s + Nowz) = g(t,5" + Nows) || + [[g (8" + Nown) — k(t, ') |
<3¢

when |ty — /| < 6, |so —'| < 6.

Denote K(t) = k(t,t), R(t) = r(t,t). Then, F(t) = K(t) + R(t), R € Cy(R",X), and K is
quasi-periodic. Therefore, F is asymptotically quasi-periodic. [

The collection of all (wy, wy)-periodic limit functions that satisfies H4 and H5 will be denoted by
AQP R x R, X).

w1 ,UJZ) (

Theorem 1. AQP,, «,,)(R* x R", X) is a Banach space.
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Proof. Let {f} C AQP(y, w,)(RT x R, X) such that:
lim fi(t,s) = f(,s)
k—o0

uniformly in t,s € RT.
Since {fr} C AQP(y,w,)(RT x R, X), for each k € N, one has:

;}grgofk(t + 1’1(01,5) = gk(t,s)

uniformly for t € R* and s € R™.
At the same time, for each k € N, one has:

Bim fi(t s+ nwy) = hy(t,s)
uniformly for t € R* and s € R*.
Then, the sequence of {gk(t,s)} is a Cauchy sequence in X uniformly for t € RT and s € R™

because the following inequality:

18k (t,5) — gn(t,8)I| < lIgx(t,8) — fie(t+ncwr, s)[| + | fi(t + newr, s) = fu(t 4 newr, s) || + || (¢ + neor, s) — gn(t, ).

Thus, the sequence {gx(t,s)} converges to a function ¢(t,s) uniformly for t € RT and s € R™.
Now, we only need to show:

lim f(t+nwy,s) = g(t,s)

n—o0

uniformly for t € R™ and s € R™. However, we can get it from the following inequality.

1f(t+ncwr,s) =g(Es)|| < |[f(t+nwy,s) = fie(t+new, )| + || fi(t+newr, s) = g(E s) || + |8k (t 5) — g (8, 5)]]-

In a similar way, we can show that there exists a function / such that:
lim f(t,5 + nw;) = h(t,s)
uniformly for t € R* and s € R*. Therefore, f € AQP(,, «,)(R* x R, X). O

3. Existence of Asymptotically Quasi-Periodic Solutions of Abstract Cauchy Problems

In this section, we first introduce the following definition:

Definition 3. A function x € C,(R™, X) is said to be a mild solution of Problem (1) if:
t
x(t) = T(H)xo + / T(t —s)F(s)ds, t € R,
0
where (T(t))s>0 is an exponentially stable Co-semigroup.

Lemma 1. Let F be a (wq,wy)-quasi-periodic limit function and (T(t));>0 be an exponentially stable
Co-semigroup, then U(t) = fot T(t — s)F(s)ds is asymptotically quasi-periodic.

Proof. By the definition of the (w1, w;)-quasi-periodic limit function, there exists a f € Cp(R™ x
R, X) such that for each t € RT, limy,_ye0 f(t + nwy,s) = g(t,s) uniformly for s € R*, for each
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s € R, limy o0 f(t,8 + nwy) = h(t,s) uniformly for t € R™ and F(t) = f(¢t,t). Assume ||f(t,s)|| < K
fort,s € RT. Then, ||g(t,s)|| < Kand ||h(t,s)|| < Kfort,s € RT.
Define:
s,s+y—x)ds, y>x, x,y €RT,
u(ry) = {fo $)f(s,5+y —x)ds, y y )

3TW— s)f(s+x—y,s)ds, x>y, x,y € RT.

Clearly, u is continuous and bounded.

Note that U(t) = u(t,t) fO (t—s)f(s,s)ds = fot T(t —s)F(s)ds. By Proposition 8, we only
need to show that H4 and H5 hold for u. Next, we only show that H4 holds for u because the case for
H5 is similar.

Define f(t,s) = f(t,0) and g(t,s) = g(¢,0) when s < 0. Then, we obtain lim;, .« f(t + nwi,s) =
lim, o0 f(t + nwy,0) = g(t,0) = g(t,s) when s < 0. Moreover, lim,_, f(t + nwy,s) = g(t,s)
uniformly for s € R. Note that [ T(y —s)f(s + x — y,s)ds = f;iy T(x—s)f(s,s +y — x)ds when
x > y. Then, one has:

u(x,y) = I T s)f(s,s+y—x)ds, y > x, x,y € RT,
' LT $)f(s,s+y—x)ds— [y T(x—s)f(s,s+y—x)ds, x >y, x,y € R

Denote 11 (x, y) fo (x —s)f(s,s +y — x)ds and:

u(x )_ O/yzx/ o O,yzx,
2 Jo P T(x—=s)f(s,5+y—x)ds, x>y, Jo Y T(x—5)f(s,0)ds, x > y.

To show limy,_ye0 u(x + 11wy, y) = v(x,y) uniformly for x € R and y € R™, we only need to show
limy, o0 11 (x + nwy,y) = v1(x,y) uniformly for x € RT and y € R and limy,_ye0 t2(x + 1wy, y) =
v2(x, y) uniformly for x € RT and y € R*.

Step 1. Letx € RT, y € RT.

X+nwq
ul(x+nw1,y):/o T(x +nwy —s)f(s,s +y—x —nwi)ds

X

= T(x —s)f(s+nwy,s+y—x)ds

—nwi
0
= T(x—s)f(s+nw1,s+y—xds+/ (x =s)f(s+nwy,s+y—x)ds

—nwl
—/ T(x+s)f nwl—sy—x—sds+/ (x —s)f(s+nwy,s+y—x)ds
=hL(x,y,n) + L(x,y,n).

We discuss the terms I;(x,y,n) (i = 1,2) separately. First, we show that I;(x,y, n) is a Cauchy
sequence in X for each x € R and each y € R*.
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Forany p € N, n € N, one has:

Lix,y,n+p)—hL(xyn)
(n+p)wr
= [ T+ phor — s,y —x = s)ds

_/Onw] T(x+s)f(nwy —s,y—x—s)ds

(n+p)wr
- T(x+8)f (1 + p)wn — 5,y — x — 5)ds

nwq
—i—/ T(x+s)[f((n+p)wr —s,y—x—s) — f(nwy —s,y —x —s)]ds
=L(x,y,n,p) + L(x,y,n,p).

We see that:

(n+p)w
113(x, y,m,p)| S/w IT(x + )l f((n + p)wr —s,y — x —s)]||ds
nwy
<KM/ H-‘rp € T(X+S)ds

<KM / —r(x+s)gg
KM

< e—mwl

r

Let ¢ > 0. We can choose N; € N such that @e_r”“’l < ¢ when n > Nj. Then, one gets
L(x,y,n, < ewhen n > Nj uniformly forx € Rt andy € R™.
y.n,p y y
For n > N;, we consider:

oy p) = [ Tl [+ per — sy = x - 5) = flmer s, —x - 5))is
[ TG ) (O phn =,y — ¥ =) = Flnwr =,y — x = )]s

=I5(x,y,n,p) + Ie(x,y,n,p).
Now, we estimate the term I5(x, y, 1, p).
[ 5(x, y,m,p)|l
lel
S/O [T(x+s)|[[If((n+p)wr —s,y —x—s) = f(nwy —s,y —x —s)|ds
N](Ul
:/O IT(x + Niw; — )|l f (1 — Ny + p)awr +5,5 — Nywy +y — x)
— f((n—=Np)wy +5s,5s — Nyw1 +y — x)||ds
Nijw
<M/ e~ "(Niwi=s) Ilf((n—= N1+ p)wy+s,s— Nywi +y —x) — g(s,s — Nywy +y — x)||ds
+M/ ¢~ " (N1w1—s) Ilf((n—N1)wy +s,s — Nywi +y —x) —g(s,s — Nywy +y — x)||ds.
For each s € [0, Njw;], we have:

(N9 || £((n = Ny)wr 45,5 — Nywr +y — x) — g(s,5 — Nywy 4y — x) || < 2Ke " (Nw1=s)
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and:

N
/ oK) gg — —ZK(l — e Ny,
0 r

Since limy, s f (f 4+ 1wy, s) = g(t,s) uniformly for s € R, for each s € [0, Nyw;], one has:
e*r(N1w1*S)||f((n —Npwy +s,s— Njwi +y—x) —g(s,s — Nywy +y—x)|| = 0

as n — oo. By Lebesgue’s dominated convergence theorem, we obtain:

Nywy

Jim [ e NI F((n = N +5,5 = Njws +y = %) = g(5,5 = Niwy +y = x)[ds = 0. (8)
Since limy, o f(t + nwy,s) = g(t,s) uniformly for s € R, (8) holds uniformly for x € R* and
y € RT. Moreover,

Niwq

Jim [ e TN £(n— Nyt plan +5,5 = Niwr +y = x) = 85,5 = Niwr +y = %) [ds = 0
uniformly for x € R* and y € R™. Thus, we can select N; € N (N, > Nj) such that ||I5(x,y, 1, p)| < ¢
when n > N, uniformly for x € R" and y € RT.

Next, we estimate the term Is(x,y, 1, p).

nwq
116 (x,y, n, p) || < ITCx+s)[[[f((n+plwr =5,y —x =s) = f(nwr —s,y —x —s)||ds
lel

<okM [ et gy
lel
<2KM e~ (ts) gg
Nywy
S ZKMeer] w1
»
<2e¢

uniformly for x € RT and y € RT.

Thus, I3 (%, 4+ ) — (.l < [5Gy )+ 155, v, p)1| -+ e, p)]| < 4e when
n > Nj. This shows that I (x,y, n) is a Cauchy sequence, and we denote /1 (x,y) = lim, e 1 (x,y, 1).
Besides, from the proof, we also know that lim, e I1 (x,¥, 1) = I1(x,y) uniformly for x € R* and
y e R,
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Finally, we consider the term I»(x, y,n). Note that fOx T(x —s)g(s,s +y — x)ds is well defined for
each x € R and y € R™. For mw; < x < (m + 1)w;, then one has:

le(x,y,n)—/o T(x—s)g(s,s+y—x)ds”
X
S/O ITCGx =) lI[If (s + nwr,s +y —x) — g(s,5 +y —x)||ds
X
SM/O e 9| f(s + nwy, s +y—x) —g(s,5 +y — x)||ds
<n [ D s man, sy ) — (s +y— )

X
+M | f(s+nwy,s+y—x)—g(s,s+y—x)|ds

mwq

m=1 r(k+1)w
<M Z / 1e*’("*s)Hf(s4—nwl,s+y—x) —g(s,s+y—x)|ds

k=0 ke
(m+1)wy
+ M Ilf(s +nwi,s+y—x)—g(s,s+y—x)|ds
mawi

For each t € [0, w;], we have || f(t + nwy,s) — g(t,s)|| — 0as n — oo uniformly for s € R and
Ilf(t 4+ nwq,s) — g(t,s)|| < 2K. By Lebesgue’s dominated convergence theorem, we obtain:

w
lim [ |f(t+nw,s) —g(ts)|dt =0

n—oo Jo

uniformly for s € R. For ¢ > 0 given, we select N3 € N such that:

w
/0 UL+ e, s) — g(ts)||dE < e

when n > N3 uniformly for s € R. For any i € N, one has:

'(l+l)¢01
[ I, s) - g(e5)
J 1w

W
:/0 I+ i + newn,s) — g(¢t+ i, ) | dt

w
= [ i+ oy 5) — gt e < &

when n > N3 uniformly for s € R.

Therefore,
X
le(x,y,n) — /0 T(x—s)g(s,s+y— x)dsH
<M Z el wn)e 1 Me
1

: (m 1)me
Hence, limy, ;00 I (x,y,1) = [ T(x —5)g(s,s + y — x)ds uniformly for x € R and y € R™.
Therefore,

X
V}l_r}r(}oul(x—f—nw,y) = 1111_1&11(36,}/,”) +nh_r)ro1012(x,y,n) =li(x,y) +/O T(x—s)g(s,s+y—x)ds

uniformly for x € RT and y € RT.
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Step 2. For any x € R*. Firstly, lety € [0, x].

X+nwi;—y
Uy (x + nws, y) :/0 T(x+ nwy —s)f(s,0)ds
=y
= T(x —s)f(s + nwq,0)ds
—nwi
0 x—y
= T(x—s)f(s—i—nwl,O)ds—l—/ T(x —s)f(s + nwq,0)ds
—hnw1
—/ T(x+s)f nwl—sOds—i—/ T(x —s)f(s + nwy,0)ds.
=I;(x,n) + Ig(x,y,n).

In a similar way as the case I;(x, y, 1), we can show that I;(x, n) is a Cauchy sequence, and we
denote Ip(x) = limy s I7(x, 1). Besides, we know I5(x) = lim, s« I7(x, 1) uniformly for x € R*.
Note that:

ng(x,y,n) - /Ox*y T(x— s)g(s,O)dsH
< [T =G5 4 or,0) — (s, 0) s
< [TIT G = )G+ meor, 0) — (5,0) s

<M/ (9| | £ (s + newr, 0) — g(s,0) | ds.

Then, in a similar way as the case I;(x,y,n), we can show lim, . Ig(x,y,n) = fox_y T(x —
5)g(s,0)ds uniformly for x € R and y € [0, x].

Therefore,
nlgr.}o uy(x + nw,y) = nlgxgo I;(x,n) + nlgr.}o Is(x,y,n) = Il(x —i—/ T(x—s)g(s,0)ds

uniformly for x € RT and y € [0, x].
Secondly, let y > x. Let ¢ > 0, and choose N7 € N such that @e_m“’l < e when n > Nj. We now
prove that 1y (x 4+ nwsy, y) is a Cauchy sequence in X for each y € (x, +o0).
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Casel: y —x € (0, Nywy]. Letn > Ny, p € N.

up(x + (n+ p)w,y) — us(x + nwy, y)

x+(n+p)wy—y x+nwi— y
—/ T(x+ (n+p)wy —s)f sOds—/ T(x + nwy —s)f(s,0)ds
0

= [ T )f(s+ (i p)en,0)ds — [ T(x—5)f(s + ey, 0)ds
(n+p)w; —nwy
(n+p)wq nwy
= T(x+s)f(n+p)w —s,O)ds—/ T(x+s)f(nwi —s,0)ds
y—x y—x
— (" T+ 9)[f(n+ p)eor —5,0) — f(newr —s,0)]ds + /(”ﬂ’)w1 T(x+5)f((n + p)wi —s,0)ds
y—x nwy
lel
= - T(x+s)[f((n+p)wy —s,0) — f(nwy —s,0)]ds
[0 TG+ L+ pleon = 5,0) — flne — s, 0)lds
[ T )+ pon —5,0)ds

=Iy(x,y,n,p) + ho(x,y,n,p) + hu(x,y,n,p).
Now, we estimate the term Iy(x, y, 1, p).

Nywq

oy, )l < [ TG 90+ pleos —5,0) = ey —5,0)1ds
N1w1
= [ TG Niwor = 9)[F((n = Ny + p)eor +5,0) = £((n = Ny +5,0)]ds
< [ (0 Ny + pr +5,0) — g(5,0) s
+ M / N9 (1 = NyJeor +5,0) = (s, 0) .
By Lebesgue’s dominated convergence theorem, there exists Ny € N (Ny > Nj) such that
|Io(x,y,n,p)|| < e whenn > Ny uniformly for y — x € (0, Njw;] and x € RF. Since KM¢e=rmwn <

e (n > Np), then we have:

| Io(x, v, 1, p)|| <2KM “ () gg

N1w1

<2KM e ts)gs
lel

<2KM6—7‘N1011

~r

<2e¢

and:
|1 (x,y,m, )| <KM/ L emrats) gg

<KM / —r(x+s) gg
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uniformly for y — x € (0, Nyw;] and x € RT.
Therefore, ||uy(x + (n+ p)wi,y) — uz(x + nws,y)|| < 4e when n > Ny uniformly for y — x €
(0, lel] and x € RT.

Case 2: y — x € (Njwy, Nyw1]. Note that @e_’”‘*’l <e(n>Np).

[uz(x + (n + p)wr,y) — ua(x + nwy, y)|

x+(n+p)wi—y x+nwy—y
< / T(x+ (n+ p)ewr —s)f(s,0)ds T(x +newr —s)f (s, 0)ds|
= / x—s)f(s+(n+p)w1,0)dsH+ ‘/ T(x —s)f(s+nw,0 dsH
n+p wq nwi
(n+p)w
= /y x 1 x+s)f((n+p)w1—s,0)dsH+’ /y_x T(x+s)f(nw1—SOdSH
SKM (}’l P) r(x+s)ds + KM/ —r X+S)d
y—x
<KM ” e ") g + KM e*r(”S)ds
y—x y—x
KM —ry—x) L KM iy

<2

when n > Ny uniformly for y — x € (Nywy, Nywq] and x € R™.

Case 3: y — x € (Nywq,+0). Consider n > Nj. Note that:

ST (x +5)f(nwy —s,0)ds, y < x + nw,

uy(x + nwy,y) = { y

0, yZX'f'le]

and:

it (1t pyong) — 4 BN TE (ot phor 5,05,y < -+ pe,
I 0, y=x+(n+pwr.

Then, one has:

[[u2(x + e, y)|

| /y_a: T(x +5)f (neon —5,0)ds|

nwiq
<KM/ e~ (¥ +8) gg
< e
<KM - e (¥ +s) gg
< Jys
KMy
7
<&
when y — x € (Nywq, nws).

Besides, |luz(x + nwy,y)|| = 0 when y — x € (nwq, +00). Therefore, ||ux(x + nwy,y)|| < €
when y — x € (Nywy, +00). Similarly, ||uz(x + (1 + p)wy,y)|| < e wheny — x € (Nywy, +00). Thus,
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llua(x 4+ (n + p)w1,y) — ua(x + nwy,y)|| < 2¢ when n > Ny uniformly for y — x € (Nywi, +o0) and
x € RT.

Therefore, ||uy(x + (n+ p)wi,y) — uz(x + nwy,y)|| < 4e when n > Ny uniformly for y — x €
(0, +00) and x € R™. This shows that u,(x + nwy, y) is a Cauchy sequence, and we denote I3(x,y) =
limy, ;00 Up (X + nw1, y). Besides, from the proof, we also know that limy, ;e tz(x + nwy,y) = I3(x,y)
uniformly for y € (x,+o0) and x € R™.

Therefore,

L(x)+ [y Y T(x—s)g(s,0)ds, ye€0,x],

lim uy(x + nwy,y) =
s neny) {13<x,y>, y € (x,+o0)

uniformly for x € R" andy € R™.
This completes the proof. O

Theorem 2. Let F be a (w1, w;)-quasi-periodic limit function. Then, the mild solution of Problem (1) is
asymptotically quasi-periodic.

Remark 2. Theorem 4.4 in [21] implies that the mild solution of Problem (1) is asymptotically quasi-periodic
when F = F; + Fp, where F; € P, L(R",X), F, € Py, L(R™, X). However, the method in [21] is not available
when F = B F, where F; € P, L(RT,C), F, € Py, L(RT, X). Therefore, we propose the concept of the
quasi-periodic limit function and develop the method to get a more general result.

Next, consider the following abstract Cauchy problem:

{x’(t) = Ax(t) + F(t,x(t)), t e RT; )

where A is the infinitesimal generator of an exponentially stable Cy-semigroup (T (t))>o.
Let us introduce the following definition.

Definition 4. A joint continuous function f : Rt x RT x X — X is said to be the (w1, wy)-periodic limit
uniformly for x in bounded subsets of X if for every bounded subset K of X, {f(t,s,x) : t,s € RT,x € K}
is bounded, for each t € RT lim,_e0 f(t + nwy,s,x) = g(t,s,x) uniformly for s € R™ and x € K,
for each s € RY limyeo f(t,5 4+ nwy, x) = h(t,s,x) uniformly for t € RT and x € K. Denote by
PL (4, @) (RT X RY x X, X)) the set of all such functions. If we define F(t, x) = f(t,t,x), then F(t,x) is said
to be the (w1, wy)-quasi-periodic limit uniformly for x in bounded subsets of X.

The following is a composition theorem.

Theorem 3. Let f : RT x RT x X — X be the (w1, wy)-periodic limit uniformly for x in bounded subsets of
X, and assume that f satisfies a Lipschitz condition in x uniformly int,s € R™:

1£(t,s,x) = f(t,s,y)|| < Llx =yl

forallx,y € Xandt,s € R, where L > 0. Let ¢ € PL(g,, o) (R" x RY, X). The function F : R* x RT —
X is defined by F(t,s) = f(t,s, ¢(t,s)). Then, F € PL(,, ) (R x R, X).

Proof. Since ¢ € PL(,, ,,)(R" x R, X), we have for each t € R*:
nl1_r>ro10 @(t+nwy,s) = @g(t,s) (10)

uniformly fors € RT.
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Select a bounded subset K of X such that ¢(t,s), p¢(t,s) € K for t,s € RT. Thus, F(t,s) is
bounded.
On the other side, one has for each t € Rt:

nlg]gof(t + nwy, s, x) = g(t,s,x) (11)

uniformly for s € R* and x € K.
Let us consider the function G : R* x Rt — X defined by G(t,s) = g(t,s, ¢4(t,s)). Note that for
eacht € RT:

[E(t +nwr,s) = Gt s)|| <[|f(E+nwy,s, ot +nwi,s)) = f(E+nw,s, gg(ts)) |
| f(E 4 nwy, s, g5(Es)) = g5, 9(E5)) |
<Lljg(t + nwi,s) — @g(£,s) || + [|f (£ + nwi s, g (t,s)) — g(ts, g (t,5)) |

uniformly for s € R*.
We deduce from (10) and (11) that for each t € R™:

lim F(t+ nwy,s) = G(t,s)

n—oo

uniformly for s € R".
In a similar way, we can show there exists a function H such that for each s € R*:

}%F(t,s%—nwz) = H(t,s)

uniformly for t € R*. O

Definition 5. A function x € C,(R", X) is said to be a mild solution of Problem (9) if:
() = T(t)xo + /Ot T(t — §)F(s,x(s))ds, t € RY,
where (T (t))s>0 is an exponentially stable Cy-semigroup.
Now, we can establish the following theorem.
Theorem 4. Let F : R x X — X be the (wq, wy)-quasi-periodic limit uniformly for x in bounded subsets
of X, and assume F(t,x) = f(t,t,x), where f € PL(y, ) (RT x RT x X, X). Assume that f satisfies a

Lipschitz condition in x uniformly in t,s € R":

1£(t,s,%) = f(t,5,y)]| < Lllx = yll

forall x,y € X and t,s € RY, where L > 0. If ML < r, then there exists an asymptotically quasi-periodic mild
solution of Problem (9).

Proof. Define the function T: Rt x RT™ — X by:
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Then, we can define the operator I' on the space AQP(wl,wz) (RT x RT, X) by:
$)f(s;s+y—x,@(s,5+y—x))ds, y > x,
To(x,y) =T(x,y) + f"y
JIT(y—s)f(s+x—y,s@(s+x—y,s))ds, x>y,

where ¢ € AQP(,, ) (RT X RT, X) C PL(4, ) (RT xR, X).

Clearly, T(x,y) € AQP(y, w,)(RT x RT,X). By Lemma 1 and Theorem 3, one has I'p €
AQP (4, ) (RT x R, X). Note that the space AQP(y, o,)(RT x RT,X) is a Banach space by
Theorem 1. Finally, for g1, g2 € AQP ) (R x R, X), one has:

a;1 w2

ML
ITe1 = T2lle < ==¢1 — g2[loo,

which shows that I' is a contraction. By the contraction mapping principle, there exists a unique
9(x,y) € AQP(y, w,) (RT x R, X) such that Tp(x,y) = ¢(x,y), that is:

_ I $)f(s,s+y—x9(s,s+y—x))ds, y > x,
x,y)=T(x,y)+
plxy) (xy) {foyTy— s)f(s+x—y,s,9(s+x—y,s))ds, x >y

If we denote ®(t) = @(t,t), then we have T'®(t) = ®(t), that is:
t
5@2T@@+/T@ﬂﬁ@5@ﬂ&
0

Therefore, ® is a solution of Problem (9). Moreover, ® is asymptotically quasi-periodic by
Proposition 8. [

Remark 3. The operator I' in Theorem 4 may be constructed in a different way, so we cannot show the
uniqueness of the solution of Problem (9).

Example 4. Consider the following problem:

u(t,x) = Lu(t,x) + A1) f(u(t,x)), t € RY,x € [0, 71;
( 0) =u(t,m) =0, t € RF; (12)
u(0,x) = g(x), x € [0, 7.

Q)‘Q}

where the functions g : [0,71] — Rand f : R — R are appropriate bounded continuous functions and A
defined as A(t) = a(t,t), where a € PL 4, ,)(RT x RT,R). Besides, f satisfies:

If(x) = fW)| <Llx—yl, x,y €R,

where L > 0. Let X = L?([0, 7t]), and let A be the operator given by Au = u" with domain D(A) = {u €
X :u" € X,u(0) = u(m) = 0}. Clearly, A is the infinitesimal generator of an analytic semigroup (T (t))s>0
on X. Moreover, A has a discrete spectrum with eigenvalues —n?, n € N, and corresponding normalized
eigenfunctions given by z, (&) = (%)% sin(ng). Furthermore, {z, : n € N} is an orthonormal basis of X and
T(t)x =Y,"4 et (x, Zn)zn for x € X. Therefore, one has ||T(t)|| < e~f,t € R*. Therefore, if ||al|L < 1,
(12) has an asymptotically quasi-periodic mild solution by Theorem 4.
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4. Some Remarks and Questions

Proposition 6 and Proposition 8 make sure that these quasi-periodic limit functions can be
regarded as a generalization of asymptotically quasi-periodic functions. Here, a question arises: Could
we generalize quasi-periodic limit functions again?

It seems more general if we define F(t) = f(t,t) without H1 and H2 in Definition 2. However, we
have the following example.

Example 5. Define:
Axy), y =k,
f(x,y) =19 fa(x,y), kox <y <kx,
),y <k,

where x,y € RT, ky > 1,0 < kp < 1. fy is a continuous function such that lim,_« f1(x,y + nwy) =
21(x,y). f3 is a continuous function such that lim,_,« f3(x + nw1,y) = h3(x,y). f1(0,0) = f3(0,0). fa is
an arbitrary continuous function such that f is continuous on R™ x R*. Then, f is a (w1, wy)-periodic limit
function. However, F(t) = f(t,t) = fo(t,t) (t > to, tg > 0) can be an arbitrary continuous function.

It is interesting to ask whether there is another way to generalize asymptotically quasi-periodic
functions without using a function with several variables.

Let x € Cp(R™, X). If for every ¢ > 0, there exist f; € P, L(R*,C), g; € Py,,L(RT,C), F; €
Py, L(R",X) and G; € P, L(R",X)(i =1,2,--- ,N) such that:

<

N
Hx — ) _(fiFi +8iGi)
i=1
then denote the set of x by QPL, ,)(RT, X).

Note that YN, (fiF; + g:G;) € QPL (¢, w2 (R, X) for each N € N. Therefore, there is a natural

question as follows.

Question 4.2: Does QPL , «,)(R*, X) equal QPL, ) (RT, X)?

w1,W3
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