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Abstract: The dynamic behaviours of an artificial neural network (ANN) system are strongly
dependent on its network structure. Thus, the output of ANNs has long suffered from a lack
of interpretability and variation. This has severely limited the practical usability of the logical
rule in the ANN. The work presents an integrated representation of k-satisfiability (kSAT) in a
mutation hopfield neural network (MHNN). Neuron states of the hopfield neural network converge
to minimum energy, but the solution produced is confined to the limited number of solution spaces.
The MHNN is incorporated with the global search capability of the estimation of distribution
algorithms (EDAs), which typically explore various solution spaces. The main purpose is to
estimate other possible neuron states that lead to global minimum energy through available output
measurements. Furthermore, it is shown that the MHNN can retrieve various neuron states with the
lowest minimum energy. Subsequent simulations performed on the MHNN reveal that the approach
yields a result that surpasses the conventional hybrid HNN. Furthermore, this study provides a new
paradigm in the field of neural networks by overcoming the overfitting issue.

Keywords: Mutation Hopfield Neural Network; Hopfield neural network; k-satisfiability

1. Introduction

In recent years, the high dimensional neural network has been developed by researchers in
various mathematical fields. Although many optimization approaches have been proposed to achieve a
global solution, several problems have arisen associated with overfitting and lack of solution variation.
In another development, the artificial neural network (ANN) approach provides feasible solutions to
useful optimization problem such as Very Large-Scale Integration (VLSI) [1], pattern recognition [2],
image processing [3], classification problems [4] and knowledge discoveries [5]. Inspired by the
biological human brain, the Hopfield neural network (HNN) was originally proposed by Hopfield and
Tank [6] to solve optimization problems. Due to the simplicity of the network, the HNN has attracted
much attention [7,8]. The HNN utilizes a dynamic system in which the possible solution of the HNN
will be reduced to a minimum Lyapunov energy function. In this case, if the solution achieves the
lowest minimum energy, the solution is likely to be optimal. Although the energy function always
converges to minimum energy, neurons oscillate with the same energy and are ultimately trapped in
the local minima [9]. The main disadvantages of the HNN are the storage capacity problem [10] and
that it is easily trapped to the local minimum solution [11]. Motivated by these weaknesses, researchers
have proposed various hybrid systems to increase the accuracy and stability of the HNN. Silva and
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Bastos-Filho [7] proposed the hierarchical HNN to reduce the network structure and mitigate the
convergence problem of the normal HNN. The proposed hybrid HNN increased the storage capacity
issue in solving various practical applications. Yang et al. [12] proposed a hybrid metaheuristic with the
HNN to solve the assignment problem. In this study, a hybrid genetic algorithm with HNN managed
to overcome the problem constraints by searching for high quality solutions with the minimum
possible cost. Jayashree and Kumar [8] proposed a gravitational search algorithm with a genetically
optimized HNN to diagnose diabetes patients. The proposed method is able to create a diabetic expert
system which consists only of induced feature interpretation. In terms of quality of the neuron states,
Zhang et al. [13] proposed an impulsive and switching HNN by using the B-equivalence method.
The proposed method has enhanced global stability by altering the state of the neuron. In addition,
gradient descent learning has been used by Kobayashi [14] in a quaternionic HNN. In his work,
proposed gradient descent learning incorporated with an activation function outperformed a projection
rule in noise tolerance in a computer simulation. The common denominator in these studies is the
implementation of the optimal learning method in the HNN.

The estimation distribution algorithm (EDA) has been applied to many optimization problems.
This algorithm generally chooses some high fitness solution from the current population to form the
parent population. Hence, the EDA implements a probability model from the parent population
and the next generation is sampled from this probabilistic model [15,16]. The EDA has been widely
introduced in various practical applications, such as the job scheduling problem [17], the economic
dispatch problem [18], traffic modelling [19] and species modelling [20]. Wang [21] proposed an
interesting hybrid HNN with the EDA. In the proposed hybrid network, the neuron state that achieved
local minimum energy is perturbed based on the EDA. The act of perturbation for the neuron state
will generate the new starting point for the HNN and reduce the possible local minimum solution.
Hu et al. [22] proposed the mutation hopfield neural network (MHNN) to solve max-cut and aircraft
landing schedule (ALS) problems. In this work, the proposed model utilized the EDA to explore other
solution spaces that fulfil the given cost function. Unfortunately, most EDAs have focused on finding
the solution to the problem instead of creating a learning model for the problem.

Representing the nondeterministic polynomial time (NP) problems by reducing them to a
proportional satisfiability (SAT) logical rule is a powerful strategy that is widely used in a range
of research disciplines and to tackle various industrial problems. Recently, SAT representation has
been proposed in mathematical formulation [23,24], model checking [25], protein bioinformatics [26],
social networking [27], disease detection [28], ANN [29] and many industrial automations [30]. In order
to create an intelligent system, SAT is an important language in propositional logic. The introduction
of SAT as propositional logic in the ANN is a step towards understanding human intelligence.
Propositional logic has been embedded in the HNN as a single intelligent unit [31]. The proposed
method was further implemented with Horn clauses [32]. The developed model is able to achieve
more than 90% global minimum energy. In another development, the proposed model utilized the
unbounded McCulloch–Pitts (MCP) neuron to retrieve the final state of neurons. Although the MCP
neuron helps the network to converge to global minima, it was shown by some researchers [33]
that the MCP neuron is prone to a number of weaknesses, such as computational burdening and
lack of efficiency when the complexity of the logic program increased. Sathasivam [34] upgraded
the MCP neuron by incorporating the effective relaxation method in generating the optimum final
neuron states. Such realization lead Sathasivam [35] to develop a stochastic energy distribution
method in determining the neuron state. This proposed approach reduces the neuron oscillations
during the retrieval phase deployed by the HNN. Mansor and Sathasivam [36] and Kasihmuddin and
Sathasivam [37] proposed unipolar and bipolar activation functions, respectively, to reduce neuron
oscillation during the retrieval phase. Yoon and Lee [38] utilized the sub-planner algorithm in reducing
the local minima, which indicated the possibility of escaping the local minima in the HNN. Velavan et
al. [39] constructed a feasible method using mean field theory (MFT) to reduce the local minima in the
HNN. Alzaeemi and Sathasivam [40] used the kernel method in the HNN as a systematic classification
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of the state of neurons. The proposed method manages to achieve 99% accuracy in terms of global
minimum energy. To this end, the implementation of the mentioned work only manages to retrieve the
correct and redundant neuron states.

Unfortunately, there has been no recent effort to discover other possible neuron states in the solution
space. A detailed comparison of different retrieval phases may reveal better possibilities in terms of
theoretical assumptions, modelling frameworks and computational processes. Thus, the contributions
of the present paper are: (1) A novel mutation hopfield neural network (MHNN) is proposed by
implementing the EDA into the Hopfield neural network. (2) Implementation of propositional
satisfiability in the MHNN and determination of the effectiveness of the retrieval properties of the
proposed MHNN. (3) A comprehensive comparison of the MHNN with five established HNN models
with two different retrieval models. By constructing an effective ANN work model, the proposed
network will be beneficial in finding the correct approximate solution for various mathematical
formulations, such as Runge–Kutta, the Lie group integrator and control theory. Our results showed
that the proposed MHNN displays the best performance in terms of propositional satisfiability
compared to other well-established existing work.

2. Propositional Satisfiability

Satisfiability (SAT) can be defined as a logical rule that comprises clauses containing variables.
The three components of general SAT problems are summarized as follows:

1. Consist of a set of l variables, x1, x2, . . . ., xl, where xi ∈ {1,−1}. All the variables in the clause will
be connected by logical OR (∨).

2. A set of literals. A literal is a variable or a negation of variable.
3. A set of n distinct clauses, C1, C2, . . . ., Cn. Each clause consists of only literals combined by logical

AND (∧).

Generalized k-satisfiability (kSAT) has demonstrated the ability to represent real life applications.
Thus, [41] has noted that generalized kSAT can be reduced to maximum satisfiability (MAX2SAT),
and the 2SAT logical rule is a step toward exploring an ANN based on the MAX2SAT logical rule.
The general formula of 2SAT is given as:

P2SAT = ∧n
i=1C (1)

where P2SAT is a 2-satisfiability logical rule that consists of clause Ci given as:

Ci = ∨
2
j=1(xi j, yi j) (2)

with l variables and n clauses denoted by Fk(n, m). In this case, Fk is a Conjunctive Normal Form (CNF)
formula where the clauses are chosen uniformly, independently and without replacement among all

2k
(

n
k

)
non-trivial clauses of length k. Note that variable x occurs in a clause, if the clause contains

either x or ¬x. A mapping α : V(Fk)→ {−1, 1} is called logical interpretation. If α maps all variables to
a Boolean value, it is considered complete. A true literal is a literal that evaluates true under the given
interpretation. A given clause is considered satisfied if it has at least one true literal under the given
interpretation and falsified if it has no true literal under the given interpretation. The comprehensive
summary of the implementation of propositional satisfiability is given in Figure 1.
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3. Discrete Hopfield Neural Network

The usage of the Hopfield neural network (HNN) in solving various NP problems was proposed
by Hopfield and Tank [6]. The first task of the newly introduced HNN demonstrated the computational
power in solving travelling salesman and circuit problems. The HNN comprises N interconnected
neurons, each described by an Ising spin variable [42,43]. Conventional neuron update in the HNN is
as follows:

Si =


1 if

∑
j

Wi jS j > ψi

−1 Otherwise
(3)

where Wi j is the synaptic weight from unit j to i, S j is the state of unit j and ψi is the pre-defined
threshold of unit i. Several studies [43] have defined ψi = 0 to ensure the energy of the network
decreases monotonically. Each time a neuron is connected with Wi j, the value of the connection will be

stored in an interconnection matrix where W(2) =
[
W(2)

i j

]
n×n

and W(1) =
[
W(1)

i

]
n×n

for N dimensional

column vectors ψ = (ψ1,ψ2,ψ3, . . . ,ψN)
T. As indicated in [44], the constraint of matrix W(1) and

W(2) does not permit self neuron connection, W(2)
ii = W(2)

j j = W(2)
kk = 0, and symmetrical neuron

connection, W(2)
i j = W(2)

ji . The simple features of the HNN, such as fault tolerance [6] and content
addressable memory [11], make it suitable for integration of propositional satisfiability. The HNN
utilizes the usage of logical rules to instruct the behaviour of the network using the synaptic weight
(neuron connection). In this case, the logical formula consists of variables represented in terms of N
neurons. The implementation of the 2SAT logic rule in the HNN is abbreviated HNN-2SAT and the
primary aim of the network is to reduce logical inconsistencies by minimizing the cost function of the
network. The cost function EP of the logic rule in the HNN is given by:

EP2SAT =
NC∑
i=1

NV∏
j=1

Li j (4)

where NC and NV denote the number of clauses and variables, respectively. The inconsistencies of
logic clause Li j is given as follows:

Li j =

{ 1
2 (1− Sx), i f ¬x
1
2 (1 + Sx), Otherwise

(5)
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The synaptic weight represents the connection between the variable and the clauses in the logical
formula. In order to calculate the synaptic weight of the HNN, Abdullah [41] described the most
straightforward measure by comparing EP2SAT with the final energy function HP2SAT . Denoting the state
of neuron for each variable in the logic rule Si at time t as Si(t), the local field of the network can be
represented as follows:

hi(t) =
N∑

j=1,i, j,k

W(2)
i j S j + W(1)

i (6)

Si(t + 1) =


1,

N∑
j=1,i, j

W(2)
i j S j + W(1)

i ≥ 0

−1,
N∑

j=1,i, j
W(2)

i j S j + W(1)
i < 0

(7)

Equations (6) and (7) guarantee the energy will decrease monotonically with the network. The final
energy of the HNN is given by:

HP2SAT = −
1
2

N∑
i=1,i, j

N∑
j=1,i, j

W(2)
i j SiS j−

N∑
i=1

W(1)
i S j (8)

In this case, the updating rule proposed in [6] is as follows.

Theorem 1. Let W be a symmetric matrix with a non-negative diagonal. The neurons in the discrete HNN
N = (W, T) that operate in asynchronous mode will always converge to a stable state. Under this circumstance,
the HNN is considered stable.

The synaptic weight of HNN-2SAT is always symmetrical. Hence the final neuron state of the
proposed HNN will converge to minimum energy. In this approach, the energy value of each logical
rule embedded to the HNN, HP2SAT is used to separate local minimum and global minimum solutions.
Global minimum energy, Hmin

P2SAT
, can be pre-calculated because the total magnitude of the energy

that corresponds to any logic clause is always a constant [35,45]. The implementation of the discrete
Hopfield neural network is summarized in the block diagram as shown in Figure 2.Mathematics 2019, 7, x FOR PEER REVIEW 6 of 22 
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4. Mutation Hopfield Neural Network

The conventional HNN has a high chance of being trapped in local minima as the number
of neurons involved increases. For decades, several scholars have incorporated genetic algorithm
(GA) into the HNN [8,46,47] to increase the searching capability of the HNN. However, the usage
of genetic algorithm during the retrieval phase of the HNN is considered inefficient due to the
complexity of several operators, such as crossover and mutation. These two operators require
more generations/iterations before the apparent improvement can take place [22]. Several studies
indicate [48–50] that GAs entail a higher complexity, leading to premature convergence. Recently, the
EDA was proposed to avoid premature convergence of the system [16,51,52]. The EDA utilizes a
probability model to learn and sampling to optimize the entire swarm. In this case, the crossover and
mutation operators are not required in the EDA. The complete implementation of the EDA in the HNN
is as follows:

Step 1: The input of the HNN, Si = (Si1, Si2, . . . . . . , SiN) is randomly initialized.
Step 2: The output hi = (h1, h2, h3, . . . ., hN) of the HNN for every Si, i = 1, 2, . . . , n is computed

using Equation (6). When the HNN converges to a single stable state, the output of the HNN will be
mutated with a univariate marginal Gaussian distribution probability model [52].

hMi
i =

1√
2πσi2

exp (−
(hi − µi)

2

2σi2
) (9)

where µ and σ2
i are defined as:

µi =
1
N

N∑
i=1

hi (10)

σ2
i =

1
N − 1

N∑
i=1

(hi − µi)
2 (11)

The mutation creates a minor perturbation to the neuron and helps the neuron to escape the
current stable state of the HNN.

Step 3: Obtain the new state SMi
i by using hMi

i . Check the solution fitness using the
following equation:

fi =
NC∑
i=1

Ci (12)

where Ci is defined as follows:

Ci =

{
1, True
0, False

(13)

The best solution of SMi
i will be updated.

Step 4: New output SMi
i based on hM

i and SMi
i will be retained.

Step 5: Steps 2–5 are repeated until termination criteria are satisfied. The best individual is chosen.
In this paper, the implementation of the EDA in the HNN is named the MHNN. The MHNN will

be embedded with the logic rules stated in Equations (1) and (2). The primary aim of the MHNN is to
increase the variation of logic rules produced by neurons and explore more global minimum energy in
the search space.

5. HNN Model Performance Evaluation

To test the effectiveness of the proposed method, the performance of all HNNs will be evaluated
based on error analysis, energy analysis and similarity analysis of the retrieval neurons. The equations
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for root mean squared error (RMSE), mean absolute error (MAE) and mean absolute percentage error
(MAPE) analysis are as follows:

RMSE =
NC∑
i=1

√
1
n
(Hmin

P2SAT
−HP2SAT )

2 (14)

MAE =
NC∑
i=1

1
n

∣∣∣∣Hmin
P2SAT

−HP2SAT

∣∣∣∣ (15)

MAPE =
NC∑
i=1

100
n

∣∣∣∣Hmin
P2SAT

−HP2SAT

∣∣∣∣∣∣∣∣Hmin
P2SAT

∣∣∣∣ (16)

Zm =
1
tc

NN∑
i=1

NHP2SAT
(17)

where the global minimum energy HP
i is given in Equation (6) and

∣∣∣∣Hmin
P2SAT

−HP2SAT

∣∣∣∣ ≤ ∂. In general,
the bipolar state of the retrieved neuron represents the interpretation of the logic rule. For similarity
analysis, the key component of analyzing the final state of the neuron is from comparing the retrieved
state with a benchmark neuron state. The benchmark state is defined as the ideal neuron state retrieved
from the HNN model. The benchmark neuron state is given as follows:

Smax
i =

{
1 , A
−1 ,¬A

(18)

where A and¬A are positive and negative literals in the logic clause, respectively. Based on Equation (17),
if the logic rule reads P = (A∨¬B∨¬C)∧ (D∨ E∨¬F), the benchmark state of the neuron is given
as Smax

A = 1, Smax
B = −1, Smax

C = −1, Smax
D = 1, Smax

E = 1, Smax
F = −1 or Smax

i = (1,−1,−1, 1, 1,−1).

Notably, the final energy of Smax
i is always a global minimum solution or

∣∣∣∣∣∣HPSmax
i
−Hmin

PSmax
i

∣∣∣∣∣∣ ≤ ∂ [22].

∂ is a tolerance value for energy difference in the HNN. By using a benchmark state, the variation of
the HNN model is formulated as follows:

V =
λ∑

i=0

Fi (19)

Fi =

{
1 , Si , Smax

i
0 , Si = Smax

i
(20)

where λ is a total solution produced by the HNN model and Fi is a scoring mechanism to evaluate
the difference between the benchmark state and the final state of neuron. Since most of the neuron
states retrieved in the HNN achieve global minimum energy [53], Smax

i is a perfect benchmark state in
comparing the final states of different HNN models. In this section, the final neuron state retrieved that
corresponds to the 2SAT logic rule will be analyzed using similarity metrics. Despite its mathematical
simplicity, several similarity metrics were implemented to identify which HNN model maximized the
value of V. In particular, instead of comparing logic with logic, the comparison will be made based on
the individual neuron state. Hence, the general comparison between benchmark state and the final
neuron state is as follows:

CSmax
i Si =

{(
Smax

i , Si
)∣∣∣∣i = 1, 2, . . . ., n

}
(21)

The further specifications of the variables are defined as follows:

l is the number of (Smax
i , Si) where both elements have the value 1 in CSmax

i Si ;
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m is the number of (Smax
i , Si) where Smax

i is 1 and Si is −1 in CSmax
i Si ;

n is the number of (Smax
i , Si) where Smax

i is −1 and Si is 1 in CSmax
i Si ;

o is the number of (Smax
i , Si) where both elements have the value −1 in CSmax

i Si .

Note that the size of the neuron string is given as n = l + m + n + o. Using the above information,
the similarity coefficient for all HNN models is summarized in Table 1.

Table 1. Similarity coefficient for neuron state.

No Similarity Coefficient Similarity Representation (Smax
i ,Si)

1 Jaccard’s Index [54] J(Smax
i , Si) =

l
l+m+n

2 Sokal Sneath 2 [55] SS(Smax
i , Si) =

l
l+2(m+n)

3 Dice [56] D(Smax
i , Si) =

2l
2l+m+n

6. Simulation

To further investigate the performance of the proposed model for propositional logic, the proposed
MHNN was compared with the standard Hopfield neural network (HNN), the kernel Hopfield neural
network (KHNN), the hybrid Boltzman Hopfield neural network (BHNN) and the Hopfield neural
network incorporated with mean field theory (MFTHNN). The simulation dynamic is divided into
two parts. Firstly, the performance of all hybrid models will be implemented without internal noise
on the retrieval phase. In this case, the HNN will retrieve the final state of neurons by following the
network dynamic proposed by Sathasivam [34] and Mansor et al. [35]. The full flowchart of HNN is
enclosed in the Appendix A, specifically in Figure A1. Si will be updated using Equations (6) and (7)
and the final energy will be computed. Secondly, each HNN model will be incorporated with a noise
function [57] given as follows:

hi(t + 1) = hi(t) + β(t) (22)

where hi is a local field of the network and β(t) is the noise function incorporated in every HNN
model. In this experiment, the noise function will be implemented for the range β(t) ∈ [−0.05, 0.05].
In both simulations, the quality of the retrieval phase for the HNN model will be tested based on
RMSE, MAE and MAPE. Similarity analysis will be conducted to identify different global minimum
solutions produced by the HNN model. The HNN with a different initial neuron state might contribute
to the biasedness of the retrieval state because the network simply memorizes the final state without
producing a new state [58]. In this respect, possible positive and negative bias can be reduced by
generating all the neuon states randomly:

(S1, S2, S3, . . . . . . , SN) =

{
1 , rand(0, 1) < 0.5
−1 , otherwise

(23)

where the states of true and false are given as 1 and −1, respectively. In this case, the simulated dataset
will be obtained by generating random clauses and literals for each 2SAT logic rule. The parameters
for each HNN model are listed in Tables 2–6.

Table 2. List of Parameters in MHNN.

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1
Mutation Rate 0.01
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Table 3. List of Parameters in HNN [49].

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1

Table 4. List of Parameters in KHNN [38].

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1
Type of Kernel Linear Kernel

Table 5. List of Parameters in BHNN [34].

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1
Temperature (T) 70

Table 6. List of Parameters in MFTHNN [37].

Parameter Parameter Value

Neuron Combination 100
Tolerance Value (∂) 0.001

Number of Learning (Ω) 100
No_Neuron String 100

Selection_Rate 0.1
Temperature (T) 70

Activation Function Hyperbolic Tangent (HTAF)

The mutation rate in our proposed model, MHNN, plays a prominent role in determining the
nature of final neuron states. If the mutation rate is more than 0.1, the neuron tends to converge to one
state only, Si → a, a = ±1 . Meanwhile, if the mutation rate is between 0.05 and 0.1, the neuron will

undergo state oscillation that will produce local minima solutions EP2SAT , 0 or

∣∣∣∣∣∣HPSmax
i
−Hmin

PSmax
i

∣∣∣∣∣∣ ≤ ∂.

On the contrary, the effect of the mutation in the HNN can be seen to be significant when the mutation
rate is within 0.01 until 0.04. Thus, the ideal mutation rate was chosen to be 0.01 to effectively investigate
the impact of a mutation in the HNN. The choice of mutation rate has good agreement with [22].
A non-common parameter such as T was utilized in the BHNN and MFTHNN as the simulated
annealing effect takes place in both models. Theoretically, if we select the temperature, T > 75, the
neuron states tend to oscillate and affect the final states of the neuron attained after the simulation. On
the contrary, if T < 70, the effect of simulated annealing will vanish, and the network will be reduced to
the ordinary HNN, as proposed by [34]. Therefore, the value of T was selected according to [35] for the
BHNN and [39] for the MFTHNN. According to Table 4, the linear kernel is applied due to the good
agreement with the logic programming problem as outlined in the work of [40]. Based on Table 6, the
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hyperbolic tangent (HTAF) was selected due to the differentiable nature of the function and the ability
to establish the non-linear relationship among the neuron connections [42]. The comparison among
the MHNN, HNN, KHNN, BHNN, and MFTHNN was made on the same basis, which is utilized in
propositional satisfiability problems. Thus, the important parameters, including the non-common
parameter, must comply with the previous studies dealing with the similar problem.

All HNN models were implemented in Dev C++ Version 5.11 in Windows 10 (Bloodshed), using
an Intel Core i3 with 1.7 GHz processor. To make an impartial comparison, all HNN models were
terminated after being executed for not more than 24 h. All models were stopped after the computation
time reached 24 h. In order to make an overall comparison, the original exhaustive search method was
deployed during the learning phase of the HNN model. The learning model remained constant and
the results only measured the influence of the retrieval property.

7. Results and Discussion

In this experiment, the retrieval property for the MHNN model against the other existing
HNN models in the literature will be investigated. The simulation will be divided into two parts.
First, the restricted learning model of propositional logic [59] will be used to examine the accuracy
and stability of the network. Secondly, a non-restricted learning model will be used to examine the
quality of the solution produced by the HNN models [34]. This is an interesting question since relying
on a single learning model does not provide an actual performance measure of the proposed model.
Hence, the main contribution of our work is to show the effectiveness of the MHNN in outperforming
the existing HNN models.

In most studies of the HNN, the quality of the neuron state is not well assessed since the focus is
to attain the final state. For instance, the studies of Sathasivam [35] and Velavan et al. [39] achieved
global minimum energy 98% of the time but the quality of the final neuron state was not effectively
measured. In this section, learning iteration will be restricted to NH ≤ Ω. In this case, learning in the
HNN will terminated when NH = Ω. Hence, all the HNN models exhibit the same learning phase via
the Wan Abdullah method [31]. According to Figures 3–6, for 0 ≤ NN ≤ 60, the MHNN is the best
model in terms of Zm, RMSE, MAE and MAPE. Although the MHNN underwent restricted iteration
during the learning phase, the MHNN is still able to locate a state that leads to global minimum energy∣∣∣∣∣∣HPSmax

i
−Hmin

PSmax
i

∣∣∣∣∣∣ ≤ ∂. In this case, the MHNN only requires a fragment of correct synaptic weight

to retrieve the optimal final state during the learning phase. A similar perturbation strategy was
utilized by Hu et al. [22] in solving the max-cut problem. On the other hand, the EDA in the MHNN
creates minor neuron oscillations and retrieves the state independently, although the network trained
the suboptimal synaptic weight. Hence, the synergistic property of the learning phase of the HNN
and the EDA reduces the number of local minima. The neuron perturbation reduces the effect of the
suboptimal synaptic weight during the learning phase. Other HNN models, such as the BHNN [35]
and MFTHNN [40], reduced the number of local minima but failed to achieve optimal global minimum
energy as the number of clauses increased. According to Figures 4–6, the conventional HNN has the
highest error at NN = 60 because the network retrieved the suboptimal synaptic weight. Structurally,
the conventional HNN has no second optimization layer and focuses solely on the MCP neuron in
retrieving the final state of neurons [60]. Similar to the BHNN and MFT, the suboptimal synaptic
weight reduces the effectiveness of the Boltzmann machine in retrieving the correct final state. In
addition, MHNN is minimally affected when more negative or positive noise is added to the retrieval
phase. The EDA in the MHNN independently locates several possible neuron states that leads to a
global minimum solution. In addition, at NN ≥ 20, the conventional HNN failed to obtain at least
10% global minimum energy and the learned synaptic weight has no effect on the retrieval phase.
Although the BHNN and MFTHNN utilized energy to overcome the barrier of local minima, the energy
from the temperature increment does not compensate for the incorrect synaptic weight. Although the
direction of the Boltzmann machine in the BHNN and MFTHNN can be improved, as seen in other
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work such as [61], it can be argued that it will create more unnecessary free parameters. Additional
optimization algorithms, such as a metaheuristics algorithm, is required to find the optimal value of the
free parameter. In addition, low values of Zm (refer to Figure 3) accompanied by high values of RMSE,
MAE and MAPE (refer Figures 4–6) were recorded in the KHNN. Unfortunately, the kernel function
in the KHNN is largely dependent on the quality of the neuron state retrieved. In fact, at NN = 20,
more than 50% of the states retrieved were trapped at local minima. Similar to other HNN models,
a suboptimal synaptic weight also reduces the effectiveness of the kernel function in the KHNN by
retrieving the final state that contributes to inconsistent interpretation. As can be seen, the MHNN
increases the fault tolerance property of the conventional HNN model and is comparatively different
from other metaheuristics algorithms, such as the genetic algorithm and artificial bee colony, that
focus on gradual solution improvement. Gradual solution improvement requires several layers of
optimization, such as local and global search operators. The implementation of multiple layers in the
metaheuristic algorithm will increase the complexity of the HNN. Additional random parameters
are required to avoid premature convergence. In addition, this simulation only takes into account
the effect of the retrieval property of HNN models due to incorrect synaptic weight. In this context,
all HNN models utilized a conventional exhaustive search method during the learning phase and
computation time for all HNN model was not considered.
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In this section, non-restricted learning will be implemented in all HNN models. Learning will
iterate until the consistent interpretation is obtained NH→ (EP = 0) . Note that the similarity indexes
only evaluate the neuron state that achieves the global minimum solution. High similarity values
signify low variation value in generating the final state of the neuron for the HNN model. According to
Figures 7–11, the MHNN has the lowest index value for Jaccard, Socal Sneath 2 and Dice compared to
other HNN models in a given benchmark state. The lower value of similarity index for the MHNN was
supported by a high value of variability. With the same amount of global minimum energy, the MHNN
generated more different neuron final states compared to other HNN models. Figures 11–16 illustrate
the performance error of HNN models in terms of RMSE, MAE and MAPE with and without β(t). It can
be observed from these figures that the learning error (in RMSE, MAE and MAPE) increase rapidly as
the number of neuron exceeds 10. The conventional HNN has the worst performance, as 83% of the final
states produced contain EP , 0. A similar pattern is reported in energy analysis for all HNN models (in
Zm). It is apparent that an improvement in Zm is achieved using the MHNN in comparison with other
HNN model. For instance, the Zm value for the BHNN, MFTHNN and KHNN reduced dramatically
to leass than 50% as the number of NN ≥ 20. In this case, the retrieval power of other HNN models
reduces because the introduction of β(t) as an extra bias to Equation (6) increases the probability of the
local field to achieve the suboptimal state. According to Figure 17, the conventional HNN has the lowest
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variability value compared to other HNN models. The Boltzmann component in both the BHNN and
MFTHNN showed similar retrieval patterns which are relatively low compared to the MHNN. β(t) is
observed to reduce the effectiveness of the BHNN and MFTHNN (low Zm value) and the global solution
retrieved has lower variation value. In this case, the BHNN and MFTHNN were only effective if the
desired solution space is small. A similar variation pattern is reported in the KHNN. Although several
studies [58] showed the beneficial effect of the noise in an ANN, β(t) contributed a minimal impact
in retrieving more global solutions in HNN models. On the other hand, all the existing HNN models
failed to achieve a 70% variation value and explored less than 50% of neuron configurations. The energy
penalty for the evaluation of the HNN model is given in Figure 16, where the global minimum energy
will be penalized if the state is Smax

i = Si. From Figure 18, it is clear that:

1. The MHNN has the lowest energy penalty value compared to other HNN models
2. With the same number of neurons, such as NN = 60, the energy penalty of the HNN has the largest

value, followed by the KHNN, BHNN and HNN, indicating that the EDA has the significant
effect on the performance of the MHNN.

3. β(t) has little impact on the MHNN in terms of the energy penalty.
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The limitation of the MHNN is the computation time due to the complexity of the learning phase.
Metaheuristics and accelerating algorithms, such as in [29,62], are required to reduce the learning
complexity. Since all HNN models used the same learning model to find the correct interpretation,
computation time is not a significant factor. In the case of NN ≥ 60, the MHNN was trapped in a
trial and error state; this phenomenon was explained in [53]. In addition, this simulation only limits
the initial state to random initial points. All consistent initial states do not play a significant role
in comparing the effectiveness of the proposed network. The Euclidean distance is not favored in
calculating the similarity index because it is not effective in high dimensional data. For instance,
both Euclidean distances for (1, 1, 1,−1) and (1,−1, 1, 1) with respect to Smax

i = (1, 1,−1, 1) are 2
√

2.
This observation lacks a consensus between HNN models with different logical rules. In addition,
other established logical rules, such as MAXSAT [29], MinSAT [63] and HornSAT [64], must be
investigated in depth to further verify the effectiveness of propositional logic in the MHNN.

8. Conclusions

The primary aim of an ANN is to find an optimal solution in an infinite space. Thus, we believe
that the output of this study widened the ability of the conventional neural network in various
mathematical perspectives, such as complex analysis [65], stability analysis [66] and forecasting
analysis [67–70]. In this article, the core solution diversification principle of the EDA was found to
be beneficial for ANN optimization tasks. Using this principle, we presented an efficient MHNN
based on the beneficial features of the HNN and EDA. In this case, comprehensive coverage via EDA
was utilized to optimize the retrieval phase of a regular HNN. The proposed MHNN was tested
using both non-restricted and restricted learning models, and the comparison in terms of various
performance metrics between the proposed MHNN and other established HNN models was presented.
The evaluation of the results showed the superiority of the proposed MHNN model for all performance
metrics. Presenting a satisfactory and efficient MHNN model was a challenging task, particularly for a
large number of neurons. Therefore, the efficient learning phase of the MHNN is a subject of great
importance, and future research needs to be directed to training the learning phase of the MHNN
using metaheuristic algorithms, such as the genetic algorithm, artificial bee colony, artificial immune
system, and ant colony optimization.
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Appendix A

The complete implementation of HNN models is demonstrated as follows:
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