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Abstract: The velocity and thermal slip impacts on the magnetohydrodynamics (MHD) nanofluid
flow and heat transfer through a stretched thin sheet are discussed in the paper. The no slip condition
is substituted for a new slip condition consisting of higher-order slip and constitutive equation.
Similarity transformation and Lie point symmetry are adopted to convert the derived governed
equations to ordinary differential equations. An approximate analytical solution is gained through
the homotopy analysis method. The impacts of velocity slip, temperature jump, and other physical
parameters on flow and heat transfer are illustrated. Results indicate that the first-order slip and
nonlinear slip parameters reduce the velocity boundary layer thickness and Nusselt number, whereas
the effect on shear stress is converse. The temperature jump parameter causes a rise in the temperature,
but a decline in the Nusselt number. With the increase of the order, we can get that the error reaches
10−6 from residual error curve. In addition, the velocity contours and the change of skin friction
coefficient are computed through Ansys Fluent.

Keywords: velocity-slip; temperature-jump; homotopy analysis method; nanofluids; power-law fluids

1. Introduction

In a heat transfer mechanism, fluid is a main medium as a heat transfer carrier. Therefore,
improving the thermal transfer efficiency of the fluid used is a vital challenge in the industry.
Certain experiments have shown that the thermal conductivity of fluids containing metal and oxide
particles is higher than that of traditional base liquids such as oil, water, and ethylene glycol [1–3].
For the sake of improving the heat transfer efficiency of the fluid, researchers have added metal
and non-metallic nanoparticles into the traditional base liquid to form a new compound “nanofluid”.
Nanofluids are made up of base fluids and nanoparticles, but not a simple mixture, which are composed
of nano-sized solid particle or tubes suspended in the base fluids, are solid–liquid composite materials.
Nanoparticles have high surface-activity and tend to aggregate together with time. The idea was
first proposed by Choi and Eastman [4]. Nanofluids are important in the fields of energy, chemical,
microelectronics, and information. Recently, the flow and conduct heat of nanofluids have been studied
by certain scholars. A quick overview is given here. Sheremet et al. [5] discussed natural convection of
alumina-water nanofluid in an inclined wavy-walled cavity. Nanofluids flow in microchannels with
heat conduction was discussed by Bowers et al. [6]. Hashim et al. [7] discussed the mixed convection
and heat conduction of Williamson nanofluids under unsteady condition. Mahdy [8] presented
the effects of magnetohydrodynamics (MHD) and variable wall temperature on non-Newtonian
Casson nanofluid flow. Asadi et al. [9] presented the latest progress of preparation methods and
thermophysical properties of oil-based nanofluids. Pourfattah et al. [10] simulated water/CuO
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nanofluid fluid flow and heat transfer inside a manifold microchannel. Alarifi et al. [11] investigated
the effects of solid concentration of nanoparticles, temperature, and shear rate on the rheological
properties of nanofluid. For a traditional base fluid, there are two main types: Newtonian fluids
and non-Newtonian fluids. In industry, non-Newtonian fluids play an important role, such as juices,
starch solutions, egg whites, and apple pulp. To understand behavious of non-Newtonian fluids,
certain models have been presented. Power law model is relatively simple, widely used among
these models. Researchers have further investigated the flow and conduct heat of power law fluids.
Javanbakht et al. [12] studyed the heat conduction on the surface of a power law fluid. Turan et al. [13]
discussed mixed convection of power-law liquids in enclosures. The heat conduction of power law
liquid in various section tubes was considered by Zhang et al. [14]. Ahmedet et al. [15] addressed
MHD power law liquid flow in a Darcy–Brinkmann porous medium.

In this paper, the base fluid of a nanofluid is power law fluid. When nanoparticles are added
into the traditional base liquid, local velocity slip may happen as an effect of high shear force between
the fluid and the wall, and the slip condition is no longer negligible in the nanometer or micro
scales. The velocity slip is a finite velocity boundary condition between the fluid and the solid [16].
Researchers have done certain studies on the slipping problems of nanofluids. Ramya et al. [17]
studied the viscous flow and heat transfer of nanofluid through a stretched sheet with the effect of
magnetic field, velocity, and thermal slip. Abbas et al. [18] discussed the stagnation flow of micropolar
nanofluids through a cylinder with slip. The effect of heat and velocity slip on the flow of Carson
nanofluids through a cylinder was discussed by Usman et al. [19]. Babu et al. [20] investigated the
three-dimensional MHD nanofluid flow over a variable thickness slendering stretching sheet with
the effect of thermophoresis, Brownian motion, and slip parameter. The above studies all discussed
the first-order slip model, whereas higher-order slips should be considered when the velocity and
temperature profiles of an average free path are nonlinear. It is now known that the inclusion of
higher-order slip yields results closer to those by experiments [21]. Thus, various investigations on
higher-order slip flows were published by Uddin et al. [22], Kamran et al. [23], Farooq et al. [24],
and Yasin et al. [25]. These all suggest that the power law constitutive equation should be considered
on the basis of high order slip for a power law nanofluid.

In the aforementioned literature, there are few papers about the flow and heat transfer of
magnetic nanofluids with higher-order slip parameters. Therefore, a new mathematical model is
proposed. With the help of similarity transformation variables, governing equations are converted to
ordinary differential equations, whose solution is solved using homotopy analysis method. The effects
of nanofluid velocity, temperature, concentration, skin friction coefficient and Nusselt number on
various physical parameters are simulated. In addition, the fluid flow situation is visualized by the
computational fluid dynamics (CFD) software Ansys Fluent.

2. Mathematical Modelling Formulation

2.1. Flow Behavior

Consider a steady, two-dimensional, incompressible MHD fluid flow with copper through a
stretching thin plate. All variables mentioned are presented in Tables 1 and 2 [26] gives some physical
capabilities of the base liquid and nanoparticles. Meanwhile, a transverse magnetic field is utilized,
where the strength is Bx and the presence of surface tension is also considered. Given the above
hypotheses, the governing equations composed of continuity equation and momentum equation can
be given as

∂U
∂X

+
∂V
∂Y

= 0, (1)

U
∂U
∂X

+ V
∂U
∂Y

= − 1
ρn f

∂P
∂X

+
∂SXX

∂X
+

∂SXY
∂Y

+
σB2

ρn f
(Ue −U), (2)
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U
∂V
∂X

+ V
∂V
∂Y

= − 1
ρn f

∂P
∂Y

+
∂SYX
∂X

+
∂SYY
∂Y

, (3)

Sij = 2µn f (2Dml Dml)
n−1

2 Dij, Dij =
1
2

(
∂Ui
∂Xj

+
∂Uj

∂Xi

)
. (4)

Table 1. Nomenclature.

Symbol Description Symbol Description

Bx magnetic field strength cp heat capacity
U field velocity Ue free stream speed
T temperature in the boundary layer T∞ temperature far away from the sheet

Tw unified temperature C concentration
C∞ fluid concentration in the free stream Cw unified concentration
Sij deviatoric part of the stress tensor δij unit tensor
Dij rate-of-strain tensor σ electrical conductivity
DT thermophoresis diffusion coefficient λ1, λ2, λ3 slip parameters of velocity
ϕ nanoparticle volume fraction ρ density
α thermal diffusivity k thermal conductivity
P pressure µ dynamic viscosity

Nu Nusselt number C f skin friction coefficients
Pr Prandtl number Nt thermophoresis parameter
Nb Brownian motion parameter Sc Schmidt number
M Hartmann number Re Reynolds number
DB Brownian diffusion Sh Sherwood number

f fluid phase s solid phase
n f nanofluid η similarity variable

U, V velocity components X, Y Cartesian coordinates

In the above, X and Y are the Cartesian coordinates along and normal to the extension sheet,
respectively. U is the velocity field. U and V are the x and y components of U. P is the pressure,
σ the electric conductivity, Bx the magnetic field along the forward direction of Y-axis, Ue the free
stream speed, Sij the deviatoric part of the stress tensor ςij = −Pδij + Sij, δij the unit tensor, and Dij
the rate-of-strain tensor. ρn f the effective density and µn f the effective dynamic viscosity given by [27]

ρn f = (1− ϕ)ρ f + ϕρs, µn f =
µ f

(1− ϕ)2.5 . (5)

The other parameters of nanofluid (ρCp)n f , αn f , kn f are given [27]

(ρCp)n f = (1− ϕ)(ρCp) f + ϕ(ρCp)s, αn f =
kn f

(ρCp)n f
, (6)

kn f

k f
=

ks + 2k f − 2ϕ(k f − ks)

ks + 2k f + ϕ(k f − ks)
, (7)

where subscripts s, f , and n f represent the solid particle, base liquid, and the thermophysical properties
of nanofluid, respectively. ϕ is the solid volume fraction of nanoparticles, (ρCp)n f the effective heat
capacity. The thermal conductivity is kn f and the thermal diffusivity is αn f .

For the sake of analyzing the boundary layer in a better way, the following nondimensional
variables are introduced,

x =
X
L

, y =
Y
δ

, u =
U

Uw
, v =

LV
δUw

, p =
P

ρ f U2
w

, τij =
Sij

ρ f U2
w

, (8)
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where L and δ represent the characteristic length in the X and Y direction, respectively. Uw denotes the
velocity in the X-direction.

Thus, Equations (1)–(4) become

∂u
∂x

+
∂v
∂y

= 0, (9)

u
∂u
∂x

+ v
∂u
∂y

= −
ρ f

ρn f

∂p
∂x

+
∂

∂y
(

µn f ρ f

ρn f

∣∣∣∣∂u
∂y

∣∣∣∣n−1 ∂u
∂y

) +
ρ f σB2

ρn f
(ue − u), (10)

∂p
∂y

= 0. (11)

From Equation (11), it can be concluded that the pressure p is identical with the pressure of
mainstream flow.

− ∂p
∂x

= ue
∂ue

∂x
. (12)

For a power law nanofluid, velocity slip effect need be considered. In many investigations,
the first-order model is adopted widely. The model is suitable under the assumption that temperature
and velocity profiles are linear through a average free path. However, when temperature and
velocity profiles are nonlinear through a average free path, higher-order slip would become possible.
Mitsuya [28] has obtained a second-order slip model from a physical phenomenon by considering the
accommodation coefficient:

F = α f1m1[(
2
3

λ)
∂u
∂y

+
1
2
(

2
3

λ)2 ∂2u
∂y2 + uslip]|y=0, (13)

where F is the shear stress, α an accommodation coefficient relative to momentum, f1 the frequency of
molecular bombardment, m1 the molecular mass density, and λ the local molecular average free path.

In this paper, as the base fluid is a power flow fluid, namely, the shear stress F = µn f

∣∣∣ ∂u
∂y

∣∣∣n−1
∂u
∂y ,

the constitutive equation of a power flow fluid with a higher-order slip is considered. The enhanced
slip model is written as

u(x, 0) = Uw +

(
A1

∂u
∂y

+ A2
∂2u
∂y2 + A3

∣∣∣∣∂u
∂y

∣∣∣∣n−1 ∂u
∂y

)
|y=0, (14)

v(x, 0) = 0, u(x, ∞) = ue = axm, (15)

where A1, A2, and A3 denote the velocity slip coefficients; Uw is the the speed of the stretch plate; and
Uw = cxm.

For the sake of deriving a simplified model by converting governing equations into ordinary
differential equations, a stream function ψ(x, y) is introduced in this paper such that u = ∂ψ

∂y , v = − ∂ψ
∂x .

Then Lie-group transformationsis also introduced to obtain a new set of similar variables.

Γ :x∗ = xeεα1 , y∗ = yeεα2 , ψ∗ = ψeεα3 , u∗ = ueεα4 , v∗ = veεα5 , u∗e = ueeεα6 . (16)

Equation (16) can be considered as a point-transformation of coordinates (x, y, ψ, u, v, ue) into
coordinates (x∗, y∗, ψ∗, u∗, v∗, u∗e ). Substituting Equation (16) in Equation (10), we get
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eε(α1+2α2−2α3)(
∂ψ∗

∂y∗
∂2ψ∗

∂x∗∂y∗
− ∂ψ∗

∂x∗
∂2ψ∗

∂y∗2 )

= −eε(α1−2α6)
ρ f
ρn f

u∗e
du∗e
dx∗

+ eε(3α2−α3)
µn f ρ f

ρn f

∂3ψ∗

∂y∗3 eε(n−1)(2α2−α3)(−∂2ψ∗

∂y∗2 )
n−1

+
ρ f σB2

ρn f
(e−α6εu∗e − e(α2−α3)ε

∂ψ∗

∂y∗
).

(17)

The boundary condition Equations (14) and (15) become

∂ψ∗

∂y∗ (x∗, 0) = eε(α3−α2−mα1)cx∗m + A1eεα2
∂2ψ∗

∂y∗2 + A2eεα2
∂3ψ∗

∂y∗3

+ A3e(nε(2α2−α3)+α3−α2)(−∂2ψ∗

∂y∗2 )
n−1(−∂2ψ∗

∂y∗2 ), at y∗ = 0;
(18)

∂ψ∗

∂x∗
(x∗, 0) = 0, at y∗ = 0; (19)

∂ψ∗

∂y∗
(x∗, ∞) = eε(α3−α2−mα1)ax∗m, at y∗ → ∞. (20)

The system will remain unaltered under the group of transformations Γ, so the parameters have
the following relations, namely,

α2 + α4 − α3 = α1 + α5 − α3 = α3 − α1 −mα2 = α3 − α2 −mα1 = 0, (21)

2α2 − 2α3 + α1 = n(2α2 − α3) + α2 = (n + 1)α2 − nα4 = α2 − α4 − α5. (22)

Thus, Equation (16) becomes

Γ : x∗ = xeεα1 , y∗ = ye
mn−2m+1

n+1 α1ε, ψ∗ = ψe
2mn−m+1

n+1 α1ε,

u∗ = uemα1ε, v∗ = ve
2mn−m−n

n+1 α1ε.
(23)

Based on the above Lie-group transformations, the stream function and similar parameter can be
prescribed as follows,

η =

(
c2−n

µ f

) 1
n+1

x
2m−mn−1

n+1 y, ψ =

(
µ f

c1−2n

) 1
n+1

x
2mn+1−m

n+1 f (η). (24)

After further similarity transformations, a nonlinear ordinary differential equation is obtained.

n f ′′′| f ′′|n−1 + mϕ1(d2 − f ′ f ′) + ϕ1 ϕ2
2mn−m + 1

n + 1
f f ′′ + ϕ1M(d− f ′) = 0. (25)

The boundary condition Equations (14) and (15) now develop into

f (0) = 0, f ′(∞) = d, (26)

f ′(0) = 1 + λ1 f ′′(0) + λ2 f ′′′(0) + λ3
∣∣ f ′′(0)∣∣n−1 f ′′(0), (27)

where d = a
c , M is the Hartmann number with M =

σB2
0

c , λ1, λ2, and λ3 are velocity slip parameters;
these parameters and ϕ1, ϕ2 [27] can now be written as
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λ1 = A1(
c2−n

µ f
)

1
n+1 x

2m−mn−1
n+1 , λ2 = A2(

c2−n

µ f
)

2
n+1 x

2(2m−mn−1)
n+1 , (28)

λ3 = A3

(
cxm(

c2−n

µ f
)

1
n+1 x

2m−mn−1
n+1

)n

, (29)

ϕ1 = (1− ϕ)2.5, ϕ2 = 1− ϕ + ϕ
ρs

ρ f
, (30)

where A1, A2, and A3 are arbitrary positive constants.

2.2. Heat and Mass Transfer Behavior

The heat and mass equations can now be formulated as follows,

U
∂T
∂X

+ V
∂T
∂Y

=
∂

∂Y

(
k(T)

∂T
∂Y

)
+

τ

µ f
C f

3
n + 1

(C3x3m−1)

n− 1
n + 1

(
DB

∂C
∂Y

∂T
∂Y

+
DT
T∞

(
∂T
∂Y

)2
)

,
(31)

U
∂C
∂X

+ V
∂C
∂Y

= µ f
2

n+1 (C3x3m−1)
n−1
n+1

(
DB

∂2C
∂Y2 +

DT
T∞

∂2T
∂Y2

)
, (32)

k(T) =
kn f

(ρCp)n f
(Tw − T∞)1−nUn−1

w

∣∣∣∣ ∂T
∂Y

∣∣∣∣n−1
. (33)

The boundary conditions are as follows,

T(X, 0) = Tw + kn f (Tw − T∞)1−n
∣∣∣∣ ∂T
∂Y

∣∣∣∣n−1 ∂T
∂Y
|y=0, (34)

C(X, 0) = Cw, T(X, ∞) = T∞, C(X, ∞) = C∞, (35)

where T shows temperature in the boundary layer, T∞ denotes the temperature away from the sheet
and is a constant, and Tw indicates the unified temperature of the fluid. C is the concentration of the
fluid, C∞ is the fluid concentration in the free stream, and Cw the unified concentration of the fluid.

For the sake of gaining the similarity solutions of equations, the following similarity variables
are introduced,

θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C− C∞

Cw − C∞
. (36)

Then, Equations (31)–(33) become

nϕ4θ′′|θ′|n−1 +
2mn−m + 1

n + 1
Prϕ3 f θ′ + PrNbϕ3φ′θ′ + PrNtϕ3θ′2 = 0, (37)

φ′′ +
2mn + 1−m

n + 1
Sc f φ′ +

Nt
Nb

θ′′ = 0. (38)

The boundary conditions Equations (34) and (35) are converted to

θ(0) = 1 + βθ′(0)|θ′(0)|n−1, θ(∞) = 0, (39)

φ(0) = 1, φ(∞) = 0, (40)

where Pr denotes Prandtl number, Nt represents thermophoresis parameter, Sc is Schmidt number,
and Nb is Brownian motion parameter. The above parameters, ϕ3, ϕ4, and β, are defined as
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Pr =
µ f

α f
, Nb =

τDB(Cw − C∞)

µ f
, Nt =

τDT(Tw − T∞)

µ f T∞
, (41)

ϕ3=1− ϕ + ϕ
(ρCp)s
(ρCp) f

, ϕ4 =
ks + 2k f − 2ϕ(k f − ks)

ks + 2k f + ϕ(k f − ks)
, (42)

β =
kn f

µ
n

n+1
n f

(C2n−1X2mn−n−m)
1

n+1 , Sc =
µ f

DB
. (43)

Momentous physical parameters are expressible as follows,

C f =
µn f | ∂u

∂y |
n−1 ∂u

∂y |y=0

1
2 ρ f u2

w
=
| f ′′(0)|n−1 f ′′(0)

(1− ϕ)2.5 Rex
− 1

n+1 , (44)

C f Rex
− 1

n+1 =
| f ′′(0)|n−1 f ′′(0)

(1− ϕ)2.5 , (45)

Nux = −
xkn f

∂T
∂y |y=0

k f (Tw − T∞)
= −

ks + 2k f − 2ϕ(k f − ks)

ks + 2k f + ϕ(k f − ks)
Rex

1
n+1 θ′(0), (46)

NuxRex
− 1

n+1 = −
ks + 2k f − 2ϕ(k f − ks)

ks + 2k f + ϕ(k f − ks)
θ′(0), (47)

Shx = −
xDB

∂C
∂y |y=0

DB(Cw − C∞)
= −Rex

1
n+1 φ′(0), (48)

ShxRex
− 1

n+1 = −φ′(0). (49)

3. Solution Procedures

In this section, the homotopy analysis method (HAM) [29] is used to solve this problem.
The initial guess solutions of velocity, temperature, and concentration, based on boundary conditions,
are, respectively,

f0 = B1 + B2e−η + B3η, θ0 = Be−η , φ0 = e−η . (50)

Three linear operators are selected as

L f = f ′′′ + f ′′, Lθ = θ′′ + θ′, Lφ = φ′′−φ. (51)

These operators satisfy some properties:

L f (C1 + C2e−η + C3η) = 0, Lθ(C4e−η + C5) = 0, Lφ(C6e−η + C7eη) = 0 (52)

where Ci(i = 1, 2, · · · , 7) are arbitrary constants.
The 0-th order deformation equations and its boundary conditions are derived and the expressions

are written as

(1− p)L[F(η, p)− f0(η)] = ph f H f (η)N f [F(η, p)], (53)

(1− p)L[Θ(η, p)− θ0(η)] = phθ Hθ(η)Nθ [F(η, p), Θ(η, p), Φ(η, p)], (54)

(1− p)L[Φ(η, p)− φ0(η)] = phφ Hϕ(η)Nφ[F(η, p), Θ(η, p), Φ(η, p)]; (55)
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F(0, p) = 0, F′(∞, p) = d, Θ(∞, p) = 0, Φ(0, p) = 1, Φ(∞, p) = 0, (56)

F′(0, p) = 1 + λ1F′′(0, p) + λ2F′′′(0, p) + λ3|F′′(0, p)|n−1F′′(0, p), (57)

Θ(0, p) = 1 + βΘ0
′(0, p)|Θ0

′(0, p)|n−1. (58)

In the above equations, p ∈ [0, 1] is the embedding parameter; h f , hθ , and hφ are auxiliary non-zero
parameters; and H f (η), Hθ(η), and Hϕ(η) are nonzero auxiliary functions [30]. Obviously, for p = 0
and p = 1, we have

F(η, 0) = f0(η), F(η, 1) = f (η),
Θ(η, 0) = θ0(η), Θ(η, 1) = θ(η),
Φ(η, 0) = φ0(η), Φ(η, 1) = φ(η).

(59)

As p increases from 0 to 1, F(η, p) is from the initial guess f0(η) to the exact solution f (η), Θ(η, p)
is from the initial guess θ0(η) to the exact solution θ(η), and Φ(η, p) is from the initial guess φ0(η) to
the exact solution φ(η) [30]. With Taylor’s theorem, they can write

F(η, p) = F(η, 0) +
+∞
∑

k=1
fk(η)pk, fk(η) =

1
k!

∂kF(η, p)
∂pk |p=0, (60)

Θ(η, p) = Θ(η, 0) +
+∞
∑

k=1
θk(η)pk, θk(η) =

1
k!

∂kΘ(η, p)
∂pk |p=0. (61)

Φ(η, p) = Φ(η, 0) +
+∞
∑

k=1
φk(η)pk, φk(η) =

1
k!

∂kΦ(η, p)
∂pk |p=0. (62)

Assuming that the auxiliary parameters h f , hθ , and hφ are appropriate chosen, we can obtain
convergent solutions in the following form.

f (η) = f0(η) +
∞

∑
k=1

fk(η), θ(η) = θ0(η) +
∞

∑
k=1

θk(η), φ(η) = φ0(η) +
∞

∑
k=1

φk(η). (63)

For the sake of getting the higher order deformation equation, differentiating the 0-th order
deformation Equations (53)–(55) k times with regard to p, set p = 0 and divide by k!, to attain

L f ( fk(η)− χk fk−1(η)) = h f H f (η)R f ,k(η), (64)

Lθ( fθ(η)− χθ fθ−1(η)) = hθ Hθ(η)Rθ,k(η), (65)

Lφ( fφ(η)− χφ fφ−1(η)) = hφHφ(η)Rφ,k(η), (66)

where R f ,k(η), Rθ,k(η), and Rφ,k(η) are, respectively,

R f ,k(η)

= χk
k−2
∑

l=0
fl
′′′ k−l

∑
j=2

k−1
∑

i1,i2,··· ,ik=0
i1+i2+···ik−1=j−1

i1+2i2+···+(k−1)ik−1=k−1−l

n(n−1)···(n−j+1)
i1!i2!···ik−1! | f0

′′|n−j
k−1
∏

q=1
| fq
′′|iq

+n fk−1
′′′| f0

′′|n−1 −mϕ1 ϕ2
k−1
∑

i=0
fi
′ fk−1−i

′

+ϕ1 ϕ2
2mn−m+1

n+1

k−1
∑

i=0
fi fk−1−i

′′ − ϕ1M fk−1
′,

(67)
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Rθ,k(η)

= χk
k−2
∑

l=0
θl
′′ k−l

∑
j=2

k−1
∑

i1,i2,··· ,ik=0
i1+i2+···ik−1=j−1

i1+2i2+···+(k−1)ik−1=k−1−l

n(n−1)···(n−j+1)ϕ4
i1!i2!···ik−1! |θ0

′|n−j
k−1
∏

q=1
|θq
′|iq

+nϕ4θk−1
′′|θ0

′|n−1 + 2mn−m+1
n+1 Pr ϕ3

k−1
∑

i=0
fiθk−1−i

′

+Pr Nbϕ3
k−1
∑

i=0
φiθk−1−i

′ + Pr Ntϕ3
k−1
∑

i=0
θi
′θk−1−i

′,

(68)

Rφ,k(η) = φk−1
′′ +

2mn + 1−m
n + 1

Sc
k−1

∑
i=0

fiφk−1−i
′ +

Nt
Nb

θk−1
′′, (69)

χk =

{
0 k ≤ 1,
1 k > 1.

(70)

Boundary conditions Equations (56)–(58) become

fk(0) = 0, fk
′(∞) = 0, θk(∞) = 0, φk(0) = 0, φk(∞) = 0, (71)

fk
′(0)

=
k−1
∑

l=0
fl
′′(0)

k+1−l
∑

j=2

k
∑

i1,i2,··· ,ik=0
i1+i2+···+ik=j−1

i1+2i2+···+kik=k−l

λ3(n−1)(n−2)···(n−j+1)
i1!i2!···ik ! | f0

′′(0)|n−j
k

∏
q=1
| fq
′′(0)|iq

+λ3 fk
′′(0)| f0

′′(0)|n−1 + λ1 fk
′′(0) + λ2 fk

′′′(0),

(72)

θk(0)

=
k−1
∑

l=0
θl
′(0)

k+1−l
∑

j=2

k
∑

i1,i2,··· ,ik=0
i1+i2+···+ik=j−1

i1+2i2+···+kik=k−l

β(n−1)(n−2)···(n−j+1)
i1!i2!···ik ! |θ0

′(0)|n−j
k

∏
q=1
|θq
′(0)|iq

+βθk
′(0)|θ0

′(0)|n−1.

(73)

4. Results and Discussion

In homotopy analysis, the h-curves are ploted to select the effective region of parameter h. For the
sake of obtaining the convergent parameters h f , hθ , and hφ, Figures 1–3 plot the h-curves of various
orders for f ′′(0), θ(0) and φ(0). Ranges of h-curves are [−0.4, 0], [−0.5,−0.3], [−0.5, 0.3], that is,
the horizontal segment of the curves, which is called the effective region, so h f = hθ = hφ = h = −0.35
is selected in the paper.

For the sake of proving the accuracy and effectiveness of homotopy analysis after determining
values of h f , hθ , and hφ, Figure 4 plots the error curves of various power law index by the “BVPh2.0”
procedure software package. As can be seen from Figure 4, the errors have reached 10−4 in the
second order, meeting the standards of engineering calculation. The larger the order, the smaller the
error becomes. Further, surface friction coefficients are compared with the literature [31] for various
first-order slip parameter λ1 in Table 3.
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Table 2. The physical capabilities of base fluid and nanoparticles [26].

Base Fluid (0.0–0.4%) Cu

Cp/(J· kg−1· K−1) 4179 385
ρ/(kg·m−3) 997.1 8933

k/(W·m−1· K−1) 0.613 400
σ/(Ω−1·m−1) 0.05 5.96× 107

Table 3. Comparisons of C f R
1

n+1
e for various λ1 as n = 1, m = 1, d = 1.5, λ2 = λ3 = 0, ϕ = 0.

λ1
C f R

1
2
e

Ul Haq et al. [31] Present Research Percent Difference

0.5 0.34153 0.341678 0.043%
1 0.34153 0.341215 0.092%

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-1.0

-0.5

0.0

0.5

1.0

h f

f¢
¢
H0
L

Figure 1. h f -curves.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

hΘ

Θ
¢
H0
L

Figure 2. hθ-curves.

After attesting the accuracy and effectiveness of homotopy analysis, the impacts of various
physical parameters are analyzed, such as nondimensional velocity f ′(η), temperature θ(η), etc.
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Meanwhile, the flow of power law nanofluid is numerically simulated by the widely used software
Ansys Fluent to further explore the flow properties.

-1.5 -1.0 -0.5 0.0 0.5
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

hΦ

Φ
¢ H

0L

Figure 3. hφ-curves.
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n=0.5
n=1
n=1.2
n=1.5
n=2

Figure 4. Total error of approximation for various powers n.

4.1. Behavior of Velocity Profiles

Figures 5 and 6 demonstrate effects of power law exponential of the plate m and Hartmann
number M on nondimensional velocity f ′(η). The velocity distribution for various m is showed in
Figure 5. By increasing the power exponent of the plate m, the tensile speed of the plate increases.
Greater deformation is effected in the fluid, leading to the increase of f ′(η). As pointed out in [32],
the effects of M on f ′(η) are visible in Figure 5. Recall that Hartmann number M expresses the ratio of
electromagnetic force to viscous force. Due to the fact that greater Hartmann number corresponds to
larger Lorenz force, the velocity f ′(η) increases.

When the fluid is pseudoplastic and expansive, impacts of d on f ′(η) are illustrated in Figure 7.
In Figure 7, the velocity of the fluid has upward tendency for various d. Whereas, the velocity
of expansive fluid increases slower than that of pseudoplastic fluid due to the increase of the
fluid viscosity.
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m=0,1�12,2�12,3�12,4�12
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f¢
HΗ
L

Figure 5. Impacts of m on f ′(η).

M=4�10,7�10,1,13�10,3�2
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0.70
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0.80

0.85

0.90

0.95

1.00

Η

Figure 6. Impacts of M on f ′(η).

n < 1 n > 1

Figure 7. Impacts of d on f ′(η) for n < 1 and n > 1.

Figure 8 clearly presents the impacts of various power law index n on f ′(η). As seen in Figure 8,
the buoyancy becomes larger as the power law index n increases, which causes the increase of velocity.

Influences of different velocity slip parameters λ1, λ2, and λ3 on f ′(η) are illustrated in
Figures 9–11, respectively. Velocity slip mainly affects slip loss and, in a cascade, fluid velocity.
With the increases of the second-order slip parameter λ2, velocity f ′(η) also increases; however,
the results are contradictory when the first-order linear slip parameter λ1 and nonlinear slip parameter
λ3 increase.
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Figure 8. Impacts of n on f ′(η).

η

0 1 2 3 4 5 6 7 8 9 10
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1
=1/4,1/2,3/4,15/4

Figure 9. Effects of λ1 on f ′(η).

Figure 10. Effects of λ2 on f ′(η).
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η
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1
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3
=1,5/4,6/4,7/4,2

Figure 11. Effects of λ3 on f ′(η)).

4.2. Behavior of Temperature Profiles

Figures 12 and 13 indicate various temperature behavior for different Nb and Nt. Figure 12
displays the effects of Nb on temperature. Fluid particles generate more heat through random motions
when Nb increases, which causes the rise in temperature. Figure 13 clearly shows temperature
distribution for various thermophoresis parameter Nt. Thermophoresis indicates that particles move
from a high temperature part to a low temperature one in a fluid with temperature gradient. Thus,
the temperature increases with the enhancement of the parameter Nt.

Figure 12. Impacts of Nb on θ(η).

Figure 13. Impacts of Nt on θ(η).
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Figures 14 and 15 show temperature distribution for diverse temperature jump parameter β and
power law index n. Figure 14 plots the temperature curves for diverse β. Increasing temperature jump
parameter β leads to a rise in the thickness of temperature boundary layer. Thus, the temperature has an
upward tendency. Figure 15 demonstrates the temperature distribution for various n. The temperature
diminish when the power law index rises. In other words, temperature boundary layer becomes
thinner with the enhancement of n.

Figure 14. Impacts of β on θ(η).

Figure 15. Impacts of n on θ(η).

4.3. Behavior of Concentration Profiles

Figures 16 and 17 show the concentration distribution for diverse values of the Brownian
motion parameter Nb and the thermophoresis parameter Nt. From Figure 16, the collision of fluid
particles rises with the stronger Brown motion, which leads to the reduction of fluid concentration.
Figure 17 indicates the concentration field for various thermophoresis parameter Nt. The magnitude
of concentration variation is greater under the influence of thermophoresis parameter.
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Figure 16. Impacts of Nb on φ(η).

Figure 17. Impacts of Nt on φ(η).

4.4. Analysis of Skin Friction and Nusselt Number

In the study of fluids, vital physical parameters, such as skin friction coefficient and local Nusselt
number, are discussed. In this paper, the impacts of various parameters on these two parameters
are demonstrated in Table 4. Skin friction coefficients have ascending behavior with the increase of
ϕ, λ1 and λ3. On the contrary, the downward trend is seen with the raise of λ2. For local Nusselt
number, when ϕ and λ2 rise, the local Nusselt numbers have an upward trend, whereas the local
Nusselt numbers diminish with the rise of λ1, λ3 and β.

4.5. Simulated Behavior

In this subsection,the laminar model is used to solved governing equations. Ansys Fluent uses the
Gauss-–Siedel point-by-point iterative method combined with the algebraic multigrid (AMG) method
to solve the algebraic equations. The effects of various parameters on the flow of power-law nanofluid
over a stretched thin sheet are simulated. The computational results obtained by using CFD solver are
compared with the available results of Chen [33] for some limiting conditions. The present results are
proved to be in good agreement as shown in Table 5. The effects of various parameters such as power
law exponential of the plate m, nanoparticle volume fraction ϕ, and power law index n on Nusselt
number Nu and skin friction coefficient are shown in Figures 18–22.
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Table 4. Effects of ϕ, λ1, λ2, λ3, and β on C f Re
1

n+1
x and NuxRe

− 1
n+1

x for n = 1/2, m = 0, M = 1, d = 1,
Pr = 1, Nb = 1, Nt = 1, and Sc = 1.

ϕ λ1 λ2 λ3 β C f Re
1

n+1
x NuxRe

− 1
n+1

x

0 2 1 1 0 0.499647 0.187766
1.5% 2 1 1 0 0.515072 0.194264
3% 2 1 1 0 0.541362 0.200764
0 1/4 5 1 0 0.28862 0.209897
0 3/4 5 1 0 0.366794 0.209846
0 1 5 1 0 0.396051 0.20919
0 1 5 1 0 0.396051 0.20919
0 1 21/4 1 0 0.359076 0.210207
0 1 22/4 1 0 0.297825 0.210503
0 1 5 1 0 0.396051 0.20919
0 1 5 5/4 0 0.452515 0.201034
0 1 5 6/4 0 0.493526 0.188581
0 2 1 1 0 0.499647 0.187766
0 2 1 1 1.5 0.499647 0.137537
0 2 1 1 8/3 0.499647 0.0804748

Table 5. Comparisons of C f R
1

n+1
e for various n with m = 0.5.

n C f R
1

n+1
e

Chen [33] Present Research Percent Difference

0.5 −1.831551 −1.831768 0.012%
1 −1.54073 −1.54079 0.003%

1.5 −1.39441 −1.39578 0.098%

The velocity contours for nonlinear slip are simulated in Figure 18. From these diagrams, the flow
produces velocity boundary layer near the entrance. Besides, the velocity boundary layer of the
pseudoplastic fluid is thicker than that for a Newton and expansive fluid.

n = 0.5 n = 1 n = 1.5
Figure 18. Velocity contours with n = 0.5, n = 1, n = 1.5.

Figures 19 and 20 present the effect of nanoparticle volume fraction on Nusselt number Nu
and skin friction coefficient C f at fixed values of inlet velocity, power law index. From Figure 19,
the local Nusselt number increases at any x-location When nanoparticles are added to the base fluid.
This is because a lower local temperature difference between the sheet walls and fluid can be achieved.
Therefore, the high thermal conductivity of Cu nanoparticles enhances the thermal performance of the
fluid. As the viscosity of the liquid can be increased by adding Cu nanoparticles into the base fluid,
the C f along the thin sheet increases when using higher concentrations of nanoparticles, as shown in
Figure 20.
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Figure 19. Effect of ϕ on Nu.
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Figure 20. Effect of ϕ on C f .

Figure 21 shows the effect of power law index n on skin friction coefficient C f . The skin
friction coefficient decreases with the increase of x-location for a given power law index. However,
for a constant x-location, the skin friction coefficient have an upward tendency as the power law
index increases.

Figure 22 demonstrates the skin friction coefficient distribution for various ϕ. The skin friction
coefficient increases as the fluid behavior changes from shear-thinning to shear-thickening for a certain
ϕ. As the ϕ increases the skin friction coefficient increases for a constant power law index.
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Figure 21. Effect of n on skin friction coefficient.
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Figure 22. Variation of the skin friction coefficient at different ϕ.

5. Conclusions

The flow and heat transfer of magnetic nanofluid through a stretched thin sheet with higher-order
slip parameters are discussed in the paper. The model contains the influences of Brown motion and
thermophoresis impacts. Simplified ODEs are obtained by a series of similarity transformations.
The similar solutions are solved through homotopy analysis theory and the stability of the solutions is
analyzed. Moreover, the current results are shown to be in good agreement with the literature results,
the error of Nusselt number and skin friction coefficient is less than 0.1%. The key conclusions follow.

• Velocity, temperature, and concentration have an upward tendency as the second-order velocity
slip parameter, thermophoresis parameter, and temperature jump parameter increase, but a
downward trend like the first-order linear slip parameter and nonlinear slip parameters.

• The rise of power law index causes the enhancement of velocity and reduction of temperature.
• Skin friction has increasing behavior due to the enhancement of volume fraction of nanoparticles,

the first-order linear slip parameter and nonlinear slip parameter, but decreasing behavior as a
result of the second order slip parameter.
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• The Nusselt number is found to rise upon the rise of the second order slip parameter, volume
fraction, whereas impacts of the first-order linear slip parameter, temperature jump parameter,
and nonlinear slip parameter are converse.

• The skin friction coefficient have an upward tendency as the power law index increase at a certain
volume fraction of nanoparticles, and also increases as volume fraction of nanoparticles increases
at a constant power law index.

Author Contributions: J.Z. conducted the original research, modified the model and contributed analysis tools.
X.H. analyzed the data, simulated the modified model and prepared original draft. Y.X. made numerical simulation
with ANSYS software. J.Z. and Y.X. revised the manuscript.

Funding: This paper was supported by the National Natural Science Foundation of China (No. 11772046;
No. 81870345).

Acknowledgments: The authors would like to express their gratitude to the reviewers for their suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moreira, T.A.; Nascimento, F.J.D.; Ribatski, G. An investigation of the effect of nanoparticle composition
and dimension on the heat transfer coefficient during flow boiling of aqueous nanofluids in small diameter
channels. Exp. Therm. Fluid Sci. 2017, 89, 72–89. [CrossRef]

2. Srinivas Rao, S.; Srivastava, A. Whole field measurements to understand the effect of nanoparticle
concentration on heat transfer rates in a differentially-heated fluid layer. Exp. Therm. Fluid Sci. 2018,
92, 326–345. [CrossRef]

3. Ho, M.X.; Pan, C. Experimental investigation of heat transfer performance of molten HITEC salt flow with
alumina nanoparticles. Int. J. Heat Mass Transf. 2017, 107, 1094–1103. [CrossRef]

4. Stephen, U.S.; Choi, J.A.E. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech.
Eng. Congr. Exp. 1995, 66, 99–105.

5. Sheremet, M.A.; Trimbitas, R.; Grosan, T.; Pop, I. Natural convection of an alumina-water nanofluid
inside an inclined wavy-walled cavity with a non-uniform heating using Tiwari and Das′ nanofluid model.
Appl. Math. Mech. 2018, 39, 1425–1436. [CrossRef]

6. Bowers, J.; Gao, H.; Qiao, G. Flow and heat transfer behavior of nanofluids in microchannels. Prog. Nat. Sci.
2018, 28, 225–234. [CrossRef]

7. Hamid, A.; Khan, M. Unsteady mixed convective flow of Williamson nanofluid with heat transfer in the
presence of variable thermal conductivity and magnetic field. J. Mol. Liq. 2018, 260, 436–446.

8. Mahdy, A. Simultaneous impacts of MHD and variable wall temperature on transient mixed Casson
nanofluid flow in the stagnation point of rotating sphere. Appl. Math. Mech. 2018, 39, 1327–1340. [CrossRef]

9. Asadi, A.; Aberoumand, S.; Moradikazerouni, A.; Pourfattah, F.; Zyla, G.; Estelle, P.; Mahian, O.;
Wongwises, S.; Nguyen, H.M.; Arabkoohsar, A. Recent advances in preparation methods and thermophysical
properties of oil-based nanofluids: A state-of-the-art review. Powder Technol. 2019, 352, 209–226. [CrossRef]

10. Pourfatta, H.F.; Arani, A.A.A.; Babaie, M.R.; Nguyen, H.M.; Asadi, A. On the thermal characteristics of
a manifold microchannel heat sink subjected to nanofluid using two-phase flow simulation. Int. J. Heat
Mass Transf. 2019, 143, 1–13. [CrossRef]

11. Alarifi, I.M.; Alkouh, A.B.; Ali, V.; Nguyen, H.M.; Asadi, A. On the rheological properties of
MWCNT-TiO2/oil hybrid nanofluid: An experimental investigation on the effects of shear rate, temperature,
and solid concentration of nanoparticles. Powder Technol. 2019, 355, 157–162. [CrossRef]

12. Javanbakh, T.M.; Moosavi, A. Heat transfer on topographically structured surfaces for power law fluids.
Int. J. Heat Mass Transfer 2018, 121, 857–871. [CrossRef]

13. Turan, O.; Yigit, S.; Liang, R.; Chakraborty, N. Laminar mixed convection of power-law fluids in cylindrical
enclosures with heated rotating top wall. Int. J. Heat Mass Transf. 2018, 124, 885–899. [CrossRef]

14. Zhang, H.; Kang, Y.; Xu, T. Study on Heat Transfer of Non-Newtonian Power Law Fluid in Pipes with
Different Cross Sections. Procedia Eng. 2017, 205, 3381–3388. [CrossRef]

15. Ahmed, F.; Iqbal, M. MHD power law fluid flow and heat transfer analysis through Darcy Brinkman porous
media in annular sector. Int. J. Mech. Sci. 2017, 130, 508–517. [CrossRef]

http://dx.doi.org/10.1016/j.expthermflusci.2017.07.020
http://dx.doi.org/10.1016/j.expthermflusci.2017.12.001
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.015
http://dx.doi.org/10.1007/s10483-018-2377-7
http://dx.doi.org/10.1016/j.pnsc.2018.03.005
http://dx.doi.org/10.1007/s10483-018-2365-9
http://dx.doi.org/10.1016/j.powtec.2019.04.054
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118518
http://dx.doi.org/10.1016/j.powtec.2019.07.039
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.01.018
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.03.088
http://dx.doi.org/10.1016/j.proeng.2017.09.845
http://dx.doi.org/10.1016/j.ijmecsci.2017.05.042


Mathematics 2019, 7, 1199 21 of 21

16. Khan, M.; Hafeez, A. A review on slip-flow and heat transfer performance of nanofluids from a permeable
shrinking surface with thermal radiation: Dual solutions. Chem. Eng. Sci. 2017, 173, 1–11. [CrossRef]

17. Ramya, D.; Raju, R.S.; Rao, J.A. Effects of velocity and thermal wall slip on magnetohydrodynamics
(MHD) boundary layer viscous flow and heat transfer of a nanofluid over a non-linearly-stretching sheet:
A numerical study. Propuls. Power Res. 2018, 7, 182–195. [CrossRef]

18. Abbas, N.; Saleem, S.; Nadeem, S. On stagnation point flow of a micro polar nanofluid past a circular cylinder
with velocity and thermal slip. Results Phys. 2018 9, 1224–1232. [CrossRef]

19. Usman, M.; Soomro, F.A.; Ul Haq, R. Thermal and velocity slip effects on Casson nanofluid flow over an
inclined permeable stretching cylinder via collocation method. Int. J. Heat Mass Transf. 2018, 122, 1255–1263.
[CrossRef]

20. Jayachandra Badu, M.; Sandeep, N. Three-dimensional MHD slip flow of nanofluids over a slendering
stretching sheet with thermophoresis and Brownian motion effects. Adv. Powder Technol. 2016, 27, 2039–2050.
[CrossRef]

21. Beskok, A.; Karniadakis, G.E. Rarefaction and compressibility effects in gas microflows. J. Fluids Eng. 1996,
118, 448–456. [CrossRef]

22. Uddin, M.J.; Khan, W.A.; Ismail, A.I.M. Melting and second order slip effect on convective flow of nanofluid
past a radiating stretching/shrinking sheet. Propuls. Power Res. 2018, 7, 60–71. [CrossRef]

23. Kamran, M.; Wiwatanaoataphee, B. Chemical reaction and Newtonian heating effects on steady convection
flow of a micropolar fluid with second order slip at the boundary. Eur. J. Mech.-B/Fluids 2018, 71, 138–150.
[CrossRef]

24. Farooq, S.; Hayat, T.; AlsaedI; A; Ahmad, B. Numerically framing the features of second-order velocity
slip in mixed convective flow of Sisko nanomaterial considering gyrotactic microorganisms. Int. J. Heat
Mass Transf. 2017, 112, 521–532. [CrossRef]

25. Yasin, M.H.M.; Ishak, A.; Pop, I. Boundary layer flow and heat transfer past a permeable shrinking surface
embedded in a porous medium with a second-order slip: A stability analysis. Appl. Therm. Eng. 2017, 115,
1407–1411. [CrossRef]

26. Mustafa, M.; Khan, J.A. Numerical study of partial slip effects on MHD flow of nanofluids near a convectively
heated stretchable rotating disk. J. Mol. Liq. 2017, 234, 287–295. [CrossRef]

27. Hayat, T.; Ijaz, M.; Qayyum, S.; Ayub, M.; Alsaedi, A. Mixed convective stagnation point flow of nanofluid
with Darcy-Fochheimer relation and partial slip. Results Phys. 2018, 9, 771–778. [CrossRef]

28. Mitsuya, Y. Modified Reynolds Equation for Ultra-Thin Film Gas Lubrication Using 1.5-Order Slip-Flow
Model and Considering Surface Accommodation Coefficient. J. Tribol. 1993, 115, 289–294. [CrossRef]

29. Liao, S.J. Homotopy Analysis Method in Nonlinear Differential Equations; Shanghai Jiao Tong University:
Shanghai, China, 2012.

30. Zhu, J.; Zheng, L.C.; Zhang, X.X. Analytical solution to stagnation-point flow and heat transfer over a
stretching sheet based on homotopy analysis. Appl. Math. Mech. 2009, 30, 463–474. [CrossRef]

31. Ul Haq, R.; Nadeem, S.; Khan, Z.H.; Akbar, N.S. Thermal radiation and slip effects on MHD stagnation point
flow of nanofluid over a stretching sheet. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 65, 17–23. [CrossRef]

32. Lin, Y.H.; Zheng, L.C.; Li, B.T.; Ma, L.X. A new diffusion for laminar boundary layer flow of power law
fluids past a flat surface with magnetic effect and suction or injection. Int. J. Heat Mass Transf. 2015, 90,
1090–1097. [CrossRef]

33. Chen, C.H. Effects of magnetic field and suction/injection on convection heat transfer of non-Newtonian
power-law fluids past a power-law stretched sheet with surface heat flux. Int. J. Therm. Sci. 2008, 47, 954–961.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ces.2017.07.024
http://dx.doi.org/10.1016/j.jppr.2018.04.003
http://dx.doi.org/10.1016/j.rinp.2018.04.017
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.02.045
http://dx.doi.org/10.1016/j.apt.2016.07.013
http://dx.doi.org/10.1115/1.2817779
http://dx.doi.org/10.1016/j.jppr.2018.01.003
http://dx.doi.org/10.1016/j.euromechflu.2018.04.005
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.05.005
http://dx.doi.org/10.1016/j.applthermaleng.2016.08.080
http://dx.doi.org/10.1016/j.molliq.2017.03.087
http://dx.doi.org/10.1016/j.rinp.2018.02.073
http://dx.doi.org/10.1115/1.2921004
http://dx.doi.org/10.1007/s10483-009-0407-2
http://dx.doi.org/10.1016/j.physe.2014.07.013
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.067
http://dx.doi.org/10.1016/j.ijthermalsci.2007.06.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Modelling Formulation
	Flow Behavior
	Heat and Mass Transfer Behavior

	Solution Procedures
	Results and Discussion
	Behavior of Velocity Profiles
	Behavior of Temperature Profiles
	 Behavior of Concentration Profiles
	Analysis of Skin Friction and Nusselt Number
	Simulated Behavior

	Conclusions 
	References

