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Abstract

:

In this paper, we discuss the existence of fixed points for new classes of mappings. Some examples are presented to illustrate our results.
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1. Introduction


The Banach contraction principle is one of the most famous and important results in metric fixed point theory. It is a useful tool in establishing existence results in nonlinear analysis. This principle has been extended and generalized by several authors in many directions (see e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], and the references therein).



In [16], the author introduced the class of F-contractions, and established a fixed point result for this class of mappings, which generalizes the Banach contraction principle. The main result in [16] can be stated as follows.



Theorem 1.

Let   ( X , d )   be a complete metric space, and let   T : X → X   be a mapping satisfying


   τ + F ( d ( T x , T y ) ) ≤ F ( d ( x , y ) ) ,   



(1)




for all   ( x , y ) ∈ X × X   with   d ( T x , T y ) > 0  , where   τ > 0   is a constant and   F : ( 0 , + ∞ ) → R   is a function satisfying




	(a)

	
F is nondecreasing.




	(b)

	
For every sequence    {  t n  }  ⊂  ( 0 , + ∞ )   , we have


    lim  n → + ∞   F  (  t n  )  = − ∞ ⟺  lim  n → + ∞    t n  = 0 .   












	(c)

	
There exists   k ∈ ( 0 , 1 )   such that    lim  t →  0 +     t k  F  ( t )  = 0  .









Then T has a unique fixed point. Moreover, for any   x ∈ X  , the Picard sequence   {  T n  x }   converges to this fixed point.





Observe that, if   T : X → X   is a q-contraction for some   0 < q < 1  , i.e.,


  d ( T x , T y ) ≤ q d ( x , y ) ,  ( x , y ) ∈ X × X ,  








then T satisfies (1) with   F ( t ) = ln t  ,   t > 0  , and   τ = − ln q  . Therefore, the Banach contraction principle follows from Theorem 1.



For different extensions and generalizations of Theorem 1, we refer the reader to [17,18,19,20,21,22,23,24,25,26,27], and the references therein.



In [5], Ćirić introduced a class of mappings with a non-unique fixed point and he established the following fixed point result.



Theorem 2.

Let   ( X , d )   be a complete metric space, and let   T : X → X   be a continuous mapping satisfying


   min { d ( T x , T y ) , d ( x , T x ) , d ( y , T y ) } − min { d ( x , T y ) , d ( y , T x ) } ≤ q d ( x , y ) ,   



(2)




for all   ( x , y ) ∈ X × X  , where   0 < q < 1   is a constant. Then, for any   x ∈ X  , the Picard sequence   {  T n  x }   converges to a fixed point of T.





An example was presented in [5] to show that the set of fixed points of mappings satisfying the condition of Theorem 2 contains in general more than one element.



In this paper, we first introduce the class of generalized Ćirić-contractions by combining the ideas in [5,16]. Next, a fixed point result is established for this class of mappings. Our result generalizes Theorem 2 and extends Theorem 1. Next, we introduce a more general class of mappings using the concept of  α -admissibility introduced in [28] (see also [29]). Our fixed point result for this class of mappings has several consequences. It is not only a generalization of Theorems 1 and 2, but generalizes most fixed point theorems dealing with F-contractions, linear contractions, and many others. Several examples are presented to illustrate this fact.



Throughout this paper, we denote by  N  the set of natural numbers, that is,   N = { 0 , 1 , 2 , ⋯ }  . We denote by   N *   the set   N ∖ { 0 }  . Let   T : X → X   be a certain self-mapping on X. For   n ∈ N  , we denote by   T n   the nth-iterate of T (we suppose that   T 0   is the identity mapping on X).




2. The Class of Generalized Ćirić-Contractions


Let  Ψ  be the set of functions   ψ : [ 0 , + ∞ ) → ( − ∞ , 0 )   such that  ψ  is upper semi-continuous from the right. We denote by  Φ  the set of functions   φ : ( 0 , + ∞ ) → R   such that




	(  Φ 1  )

	
 φ  is non-decreasing, i.e.,   0 < t < s ⇒ φ ( t ) ≤ φ ( s )  .




	(  Φ 2  )

	
For every sequence    {  t n  }  ⊂  ( 0 , + ∞ )   ,


   lim  n → + ∞   φ  (  t n  )  = − ∞  








if and only if


   lim  n → + ∞    t n  = 0 .  












	(  Φ 3  )

	
There exists   k ∈ ( 0 , 1 )   such that    lim  t →  0 +     t k  φ  ( t )  = 0  .









Let   ( X , d )   be a metric space. For a given mapping   T : X → X  , let


   M T   ( x , y )  = min  { d  ( T x , T y )  , d  ( x , T x )  , d  ( y , T y )  }  − min  { d  ( x , T y )  , d  ( y , T x )  }  ,   ( x , y )  ∈ X × X .  











Definition 1.

A mapping   T : X → X   is said to be a generalized Ćirić-contraction, if there exists   ( φ , ψ ) ∈ Φ × Ψ   such that


   φ  (  M T   ( x , y )  )  ≤ φ  ( d  ( x , y )  )  + ψ  ( d  ( x , y )  )  ,   



(3)




for all   ( x , y ) ∈ X × X   with    M T   ( x , y )  > 0  .





We have the following fixed point result.



Theorem 3.

Let   ( X , d )   be a complete metric space, and let   T : X → X   be a continuous mapping. If T is a generalized Ćirić-contraction for some   ( φ , ψ ) ∈ Φ × Ψ  , then for any   x ∈ X  , the Picard sequence   {  T n  x }   converges to a fixed point of T.





Proof. 

Let   x ∈ X   be fixed, and let   {  x n  } ⊂ X   be the sequence defined by


   x n  =  T n  x ,  n ∈ N .  











If    x  p + 1   =  x p    for some   p ∈ N  , then   x p   will be a fixed point of T. Therefore, we may assume that


  d (  x n  ,  x  n + 1   ) > 0 ,  n ∈ N .  



(4)







On the other hand, for every   n ∈ N  , we have


      M T   (  x n  ,  x  n + 1   )     =     M T   (  T n  x ,  T  n + 1   x )        =    min { d  (  T  n + 1   x ,  T  n + 2   x )  , d  (  T n  x ,  T  n + 1   x )  , d  (  T  n + 1   x ,  T  n + 2   x )  }         − min { d  (  T n  x ,  T  n + 2   x )  , d  (  T  n + 1   x ,  T  n + 1   x )  }       =    min { d  (  x  n + 1   ,  x  n + 2   )  , d  (  x n  ,  x  n + 1   )  } .     











Therefore, from (4), we have


   M T   (  x n  ,  x  n + 1   )  > 0 ,  n ∈ N .  











From (3), we obtain


  φ  (  M T   (  x n  ,  x  n + 1   )  )  ≤ φ  ( d  (  x n  ,  x  n + 1   )  )  + ψ  ( d  (  x n  ,  x  n + 1   )  )  ,  n ∈ N .  











If for some   n ∈ N  , we have    M T   (  x n  ,  x  n + 1   )  = d  (  x n  ,  x  n + 1   )   , then we obtain


  φ  ( d  (  x n  ,  x  n + 1   )  )  ≤ φ  ( d  (  x n  ,  x  n + 1   )  )  + ψ  ( d  (  x n  ,  x  n + 1   )  )  ,  








that is,


  0 ≤ ψ ( d  (  x n  ,  x  n + 1   )  ) ,  








which is a contradiction with the fact that   ψ ( t ) < 0  , for all   t > 0  . As a consequence, we have


   M T   (  x n  ,  x  n + 1   )  = d  (  x  n + 1   ,  x  n + 2   )  ,  n ∈ N .  











Hence, we find


  φ  ( d  (  x  n + 1   ,  x  n + 2   )  )  ≤ φ  ( d  (  x n  ,  x  n + 1   )  )  + ψ  ( d  (  x n  ,  x  n + 1   )  )  ,  n ∈ N .  



(5)







Taking   n = 0   in (5), we obtain


  φ  ( d  (  x 1  ,  x 2  )  )  ≤ φ  ( d  (  x 0  ,  x 1  )  )  + ψ  ( d  (  x 0  ,  x 1  )  )  .  











Taking   n = 1   in (5) and using the above inequality, we obtain


     φ ( d  (  x 2  ,  x 3  )  )    ≤    φ  ( d  (  x 1  ,  x 2  )  )  + ψ  ( d  (  x 1  ,  x 2  )  )        ≤    φ  ( d  (  x 0  ,  x 1  )  )  + ψ  ( d  (  x 0  ,  x 1  )  )  + ψ  ( d  (  x 1  ,  x 2  )  )  .     











Continuing this process, by induction we have


  φ  ( d  (  x n  ,  x  n + 1   )  )  ≤ φ  ( d  (  x 0  ,  x 1  )  )  +  ∑  i = 0   n − 1   ψ  ( d  (  x i  ,  x  i + 1   )  )  ,  n ∈  N *  .  



(6)







Next, let us denote by   {  u n  }   the real sequence defined by


   u n  = d  (  x n  ,  x  n + 1   )  ,  n ∈ N .  











Observe that from (5), and using (  Φ 1  ) and the fact that   ψ ( t ) < 0   for all   t > 0  , we deduce that   {  u n  }   is a decreasing sequence. Therefore, there exists some   r ≥ 0   such that


   u n   ↓ r  as  n → + ∞ .   











Since  ψ  is upper semi-continuous from the right, there exists some   N ∈ N   such that


  ψ  (  u p  )  < ψ  ( r )  −   ψ ( r )  2  =   ψ ( r )  2  ,  p ≥ N .  



(7)







Further, using (6) and the fact that   ψ ( t ) < 0   for all   t > 0  , we obtain


  φ  (  u n  )  ≤ φ  (  u 0  )  +  ∑  i = N   n − 1   ψ  (  u i  )  ,  n ≥ N + 1 .  











Therefore, from (7) we deduce that


  φ  (  u n  )  ≤ φ  (  u 0  )  +   ( n − N )  2  ψ  ( r )  ,  n ≥ N + 1 .  



(8)







Let   n → + ∞   in (8) and we obtain


   lim  n → + ∞   φ  (  u n  )  = − ∞ ,  








which implies from (  Φ 2  ) that


   lim  n → + ∞    u n  = 0 = r .  



(9)







Next, we prove that   {  x n  }   is a Cauchy sequence. From (  Φ 3  ) and (9), there exists some   k ∈ ( 0 , 1 )   such that


   lim  n → + ∞    u n k  φ  (  u n  )  = 0 .  



(10)







Using (8), we obtain


   u n k  φ  (  u n  )  −  u n k  φ  (  u 0  )  ≤   ( n − N )  2  ψ  ( r )   u n k  ≤ 0 ,  n ≥ N + 1 .  











Let   n → + ∞  , and using (9) and (10), we deduce that


   lim  n → + ∞   n  u n k  = 0 .  











Then there exists some   q ∈ N   such that


   u n  <  1  n  1 / k    ,  n ≥ q .  



(11)







Using (11) and the triangle inequality, for   n ≥ q   and   m ∈  N *   , we have


  d  (  x n  ,  x  n + m   )  ≤  ∑  i = n   n + m − 1    u i  ≤  ∑  i = n   + ∞    1  i  1 / k    .  











The convergence of the Riemann series    ∑ n   1  n  1 / k      (since   0 < k < 1  ) yields   {  x n  }   is a Cauchy sequence. Since   ( X , d )   is complete, there exists some   ω ∈ X   such that


   lim  n → + ∞   d  (  T n  x , ω )  =  lim  n → + ∞   d  (  x n  , ω )  = 0 .  











The continuity of T yields


   lim  n → + ∞   d  (  T  n + 1   x , T ω )  = 0 .  











Finally, the uniqueness of the limit implies that   ω = T ω  , i.e.,  ω  is a fixed point of T. □





Let us give some examples to illustrate the result given by Theorem 3.



Example 1.

Let   ( X , d )   be a complete metric space, and let   T : X → X   be a continuous mapping. Let   F : ( 0 , + ∞ ) → R   be a function that belongs to Φ. Suppose that there exists a constant   τ > 0   such that


   τ + F  (  M T   ( x , y )  )  ≤ F  ( d  ( x , y )  )  ,   



(12)




for all   ( x , y ) ∈ X × X   with    M T   ( x , y )  > 0  . Then for any   x ∈ X  , the Picard sequence   {  T n  x }   converges to a fixed point of T. In order to prove this result, we apply Theorem 3 with   ( φ , ψ ) = ( F , − τ )  .





Example 2.

Suppose that all the assumptions of Theorem 2 are satisfied. Then T satisfies (3) with   φ ( t ) = ln t  ,   t > 0  , and   ψ ≡ ln q  . Therefore, the result of Theorem 2 follows from Theorem 3.





Example 3.

Let


   X =   x n  =   n ( n + 1 )  2  :  n ∈  N *   .   











We endow X with the metric


   d ( x , y ) = | x − y | ,  ( x , y ) ∈ X × X .   











Then   ( X , d )   is a complete metric space. Consider the mapping   T : X → X   defined by


   T  x 1  =  x 1    a n d   T  x  n + 1   =  x n  ,  n ∈  N *  .   











One observes easily that


    {  ( x , y )  ∈ X × X :   M T   ( x , y )  > 0 }  =  {  (  x n  ,  x  n + 1   )  :  n ∈  N *  }  .   











Furthermore, for all   n ∈  N *   , one has


      M T   (  x n  ,  x  n + 1   )    d (  x n  ,  x  n + 1   )   =  n  n + 1   → 1   a s   n → ∞ ,   








which shows that (2) is not satisfied. Hence Theorem 2 cannot be applied in this case. On the other hand, taking   τ = 1   and


   F ( t ) = t + ln t ,  t > 0 ,   








one obtains


      τ + F (  M T   (  x n  ,  x  n + 1   )  )    =    1 + F ( n )       =    1 + n + ln n       ≤    1 + n + ln ( n + 1 )       =    F ( d  (  x n  ,  x  n + 1   )  ) ,      








for all   n ∈  N *   . Hence (12) is satisfied for all   ( x , y ) ∈ X × X   with    M T   ( x , y )  > 0  . Therefore, by Example 1, one deduces that T has a fixed point    x *  ∈ X  . In this case, one observes that    x *  =  x 1  = 1  .






3. A Larger Class of Mappings


In this part, we discuss the existence of fixed points for a larger class of mappings than the one studied in the previous section. First, let us recall some concepts introduced recently by Samet in [29] (see also [28]).



Let   ( X , d )   be a metric space, and let   α : X × X → R   be a given function.



Definition 2.

Let   {  x n  } ⊂ X   be a given sequence. We say that   {  x n  }   is α-regular if


   α (  x n  ,  x  n + 1   ) ≥ 1 ,  n ∈ N .   













Definition 3.

We say that   T : X → X   is α-admissible if


   ( x , y ) ∈ X × X ,  α ( x , y ) ≥ 1 ⇒ α ( T x , T y ) ≥ 1 .   













Definition 4.

We say that   T : X → X   is α-continuous if for every α-regular sequence   {  x n  } ⊂ X   and   u ∈ X  ,


    lim  n → + ∞   d  (  x n  , u )  = 0   








implies that there exists a sub-sequence   {  x  n k   }   of   {  x n  }   such that


    lim  k → + ∞   d  ( T  x  n k   , T u )  = 0 .   













Definition 5.

Let   {  x n  } ⊂ X   be a given sequence. We say that   {  x n  }   is α-Cauchy if




	(i) 

	
  {  x n  }   is α-regular.




	(ii) 

	
  {  x n  }   is a Cauchy sequence.











Definition 6.

We say that   ( X , d )   is α-complete if every α-Cauchy sequence is convergent.





Next, we introduce the following class of mappings.



Let   T α   be the class of mappings   T : X → X   satisfying the following conditions:




	(  T 1  )

	
T is  α -continuous.




	(  T 2  )

	
There exists   ( φ , ψ ) ∈ Φ × Ψ   such that for all   ( x , y ) ∈ X × X   with   d ( T x , T y ) > 0  ,


  α  ( x , y )  exp  φ ( d ( T x , T y ) )  ≤ exp  φ ( d ( x , y ) ) + ψ ( d ( x , y ) )  .  

















We now give some examples of mappings   T : X → X   that belong to the set   T α  , for some   α : X × X → R  . Let   ( X , d )   be a metric space.



Proposition 1 (The class of generalized Ćirić-contractions).

Let   T : X → X   be a continuous mapping. If T is a generalized Ćirić-contraction, then there exists a function   α : X × X → R   such that   T ∈  T α   .





Proof. 

Let us consider the function   α : X × X → R   defined by


     α  ( x , y )  =     1    if     y = T x ,      0    if     y ≠ T x .          



(13)







Let   ( x , y ) ∈ X × X   be such that   d ( T x , T y ) > 0  . We discuss two possible cases.



Case 1:   y ≠ T x  . In this case,


  α  ( x , y )  exp  φ ( d ( T x , T y ) )  = 0 ≤ exp  φ ( d ( x , y ) ) + ψ ( d ( x , y ) )  .  











Case 2:   y = T x  . In this case, we have


      M T   ( x , y )     =     M T   ( x , T x )        =    min { d  ( T x ,  T 2  x )  , d  ( x , T x )  } .     











Since   d  ( T x ,  T 2  x )  = d  ( T x , T y )  > 0  , we have   d ( x , T x ) > 0  . Therefore,    M T   ( x , y )  > 0  . Using the fact that T is a generalized Ćirić-contraction, we deduce that


  φ  (  M T   ( x , T x )  )  ≤ φ  ( d  ( x , T x )  )  + ψ  ( d  ( x , T x )  )  ,  








that is,


  φ  ( min  { d  ( T x ,  T 2  x )  , d  ( x , T x )  }  )  ≤ φ  ( d  ( x , T x )  )  + ψ  ( d  ( x , T x )  )  ,  








which yields (since   ψ ( t ) < 0  , for all   t > 0  )


  φ  ( d  ( T x ,  T 2  x )  )  ≤ φ  ( d  ( x , T x )  )  + ψ  ( d  ( x , T x )  )  .  











Hence, we obtain


  α  ( x , T x )  exp  φ ( d  ( T x ,  T 2  x )  )  ≤ exp  φ ( d ( x , T x ) ) + ψ ( d ( x , T x ) )  .  











Therefore, T satisfies (  T 2  ) with  α  given by (13). Obviously, since T is continuous, then T is  α -continuous. Then T satisfies (  T 1  ). As a consequence, we have   T ∈  T α   . □





Proposition 2 (The class of F-contractions).

Let   T : X → X   be an F-contraction, for some   F ∈ Φ  , that is, there exists a constant   τ > 0   such that


   τ + F ( d ( T x , T y ) ) ≤ F ( d ( x , y ) ) ,   








for all   ( x , y ) ∈ X × X   with   d ( T x , T y ) > 0  . Then there exists a function   α : X × X → R   such that   T ∈  T α   .





Proof. 

Let


  α ( x , y ) = 1 ,  ( x , y ) ∈ X × X .  



(14)







Let   φ = F   and   ψ ≡ − τ  . Then   ( φ , ψ ) ∈ Φ × Ψ  . Let   ( x , y ) ∈ X × X   be such that   d ( T x , T y ) > 0  . Then


  φ ( d ( T x , T y ) ) ≤ φ ( d ( x , y ) ) + ψ ( d ( x , y ) ) ,  








which yields


  α  ( x , y )  exp  φ ( d ( T x , T y ) )  ≤ exp  φ ( d ( x , y ) ) + ψ ( d ( x , y ) )  .  











Then T satisfies   T 2   with  α  given by (14). On the other hand, it can be easily seen that any F-contraction is continuous, so it is  α -continuous. Then T satisfies also   T 1  . As a consequence, we have   T ∈  T α   . □





Proposition 3.

Let   T : X → X   be an orbitally continuous mapping, that is, for every   x ∈ X  , if


    lim  n → + ∞   d  (  T n  x , u )  = 0 ,  u ∈ X ,   








then


    lim  n → + ∞   d  ( T  T n  x , T u )  = 0 .   











Suppose that there exist   F ∈ Φ   and a constant   τ > 0   such that


   τ + F  ( d  ( T x , T y )  )  ≤ F  (  N T   ( x , y )  )  ,   



(15)




for all   ( x , y ) ∈ X × X   with   d ( T x , T y ) > 0  , where


    N T   ( x , y )  = max  d  ( x , y )  , d  ( x , T x )  , d  ( y , T y )  ,   d ( x , T y ) + d ( y , T x )  2   .   











Then there exists a function   α : X × X → R   such that   T ∈  T α   .





Proof. 

Let   α : X × X → R   be the function defined by (13). Let   φ = F   and   ψ ≡ − τ  . Then   ( φ , ψ ) ∈ Φ × Ψ  . Let   ( x , y ) ∈ X × X   be such that   d ( T x , T y ) > 0  . We discuss two possible cases.



Case 1.   y ≠ T x  . In this case,


  α  ( x , y )  exp  φ ( d ( T x , T y ) )  = 0 ≤ exp  φ ( d ( x , y ) ) + ψ ( d ( x , y ) )  .  











Case 2.   y = T x  . In this case,


   N T   ( x , y )  = max  d  ( x , T x )  , d  ( T x ,  T 2  x )  ,   d ( x ,  T 2  x )  2   .  











On the other hand, by the triangle inequality, we have


    d ( x ,  T 2  x )  2  ≤   d  ( x , T x )  + d  ( T x ,  T 2  x )   2  ≤ max  { d  ( x , T x )  , d  ( T x ,  T 2  x )  }  .  











Therefore,


   N T   ( x , y )  = max  d  ( x , T x )  , d  ( T x ,  T 2  x )   .  











Suppose that    N T   ( x , y )  = d  ( T x ,  T 2  x )   . Then by (15), we have


  τ + φ  ( d  ( T x ,  T 2  x )  )  ≤ φ  ( d  ( T x ,  T 2  x )  )  ,  








which yields   τ ≤ 0  , which is a contradiction. Then we have    N T   ( x , y )  = d  ( x , T x )   . Again, by (15), we deduce that


  φ  ( d  ( T x ,  T 2  x )  )  ≤ φ  ( d  ( x , T x )  )  + ψ  ( d  ( x , T x )  )  ,  








which yields


  α  ( x , T x )  exp  φ ( d  ( T x ,  T 2  x )  )  ≤ exp  φ ( d ( x , T x ) ) + ψ ( d ( x , T x ) )  .  











Then T satisfies   T 2   with  α  given by (13). Next, we prove that T is  α -continuous. Let   {  x n  } ⊂ X   be an  α -regular sequence. By the definition of  α , this means that


   x  n + 1   = T  x n  ,  n ∈ N ,  








that is,


   x n  =  T n   x 0  ,  n ∈ N .  











Suppose that there exists   u ∈ X   such that


   lim  n → + ∞   d  (  x n  , u )  =  lim  n → + ∞   d  (  T n   x 0  , u )  = 0 .  











Since T is orbitally continuous, we obtain


   lim  n → + ∞   d  ( T  x n  , T u )  = 0 .  











Then T is  α -continuous, and it satisfies (  T 1  ). As a consequence, we have   T ∈  T α   . □





Remark 1.

Let   T : X → X   be a given mapping. Suppose that there exists a constant   0 < q < 1   such that


   d  ( T x , T y )  ≤ q  N T   ( x , y )  ,   ( x , y )  ∈ X × X .   











It can be easily seen that T is orbitally continuous mapping, and it satisfies (15) with   τ = − ln q   and   F ( t ) = ln t  ,   t > 0  . Therefore,   T ∈  T α   , where α is given by (13) and   ( ϕ , ψ ) = ( F , − ln q )  .





Proposition 4.

Let   T : X → X   be an orbitally continuous mapping. Suppose that there exist   F ∈ Φ   and a constant   τ > 0   such that


   τ + F  ( d  ( T x , T y )  )  ≤ F  (  μ T   ( x , y )  )  ,   



(16)




for all   ( x , y ) ∈ X × X   with   d ( T x , T y ) > 0  , where


    μ T   ( x , y )  = max  d  ( x , y )  , d  ( y , T y )    1 + d ( x , T x )   1 + d ( x , y )    .   











Then there exists a function   α : X × X → R   such that   T ∈  T α   .





Proof. 

Let   α : X × X → R   be the function defined by (13). Let   φ = F   and   ψ ≡ − τ  . Then   ( φ , ψ ) ∈ Φ × Ψ  . Let   ( x , y ) ∈ X × X   be such that   d ( T x , T y ) > 0  . We discuss two possible cases.



Case 1.   y ≠ T x  . In this case, we have


  α  ( x , y )  exp  φ ( d ( T x , T y ) )  = 0 ≤ exp  φ ( d ( x , y ) ) + ψ ( d ( x , y ) )  .  











Case 2.   y = T x  . In this case,


   μ T   ( x , y )  = max  d  ( x , T x )  , d  ( T x ,  T 2  x )   .  











If    μ T   ( x , y )  = d  ( T x ,  T 2  x )   , then by (16), we have


  τ + F  ( d  ( T x ,  T 2  x )  )  ≤ F  ( d  ( T x ,  T 2  x )  )  ,  








that is


  τ ≤ 0 ,  








which is a contradiction. Therefore,    μ T   ( x , y )  = d  ( x , T x )   . Again, by (16), we deduce that


  φ  ( d  ( T x ,  T 2  x )  )  ≤ φ  ( d  ( x , T x )  )  + ψ  ( d  ( x , T x )  )  ,  








which yields


  α  ( x , T x )  exp  φ ( d  ( T x ,  T 2  x )  )  ≤ exp  φ ( d ( x , T x ) ) + ψ ( d ( x , T x ) )  .  











Then T satisfies   T 2   with  α  given by (13). Since T is orbitally continuous, from the proof of Proposition 3, T is  α -continuous, and it satisfies   T 1  . As a consequence, we have   T ∈  T α   . □





Remark 2.

Let   T : X → X   be a given mapping. Suppose that there exists a constant   0 < q < 1   such that


   d  ( T x , T y )  ≤ q  μ T   ( x , y )  ,   ( x , y )  ∈ X × X .   











It can be easily seen that T is orbitally continuous mapping, and it satisfies (16) with   τ = − ln q   and   F ( t ) = ln t  ,   t > 0  . Therefore,   T ∈  T α   , where α is given by (13) and   ( ϕ , ψ ) = ( F , − ln q )  .





Proposition 5 (The class of almost F-contractions).

Let   T : X → X   be an almost F-contraction (see [22]), that is, there exist   F ∈ Φ  ,   τ > 0   and   L ≥ 0   such that


   τ + F ( d ( T x , T y ) ) ≤ F ( d ( x , y ) + L d ( y , T x ) ) ,   



(17)




for all   ( x , y ) ∈ X × X   with   d ( T x , T y ) > 0  . Then there exists a function   α : X × X → R   such that   T ∈  T α   .





Proof. 

Let   α : X × X → R   be the function defined by (13). Let   φ = F   and   ψ ≡ − τ  . Then   ( φ , ψ ) ∈ Φ × Ψ  . Let   ( x , y ) ∈ X × X   be such that   d ( T x , T y ) > 0  . We discuss two possible cases.



Case 1.   y ≠ T x  . In this case, we have


  α  ( x , y )  exp  φ ( d ( T x , T y ) )  = 0 ≤ exp  φ ( d ( x , y ) ) + ψ ( d ( x , y ) )  .  











Case 2.   y = T x  . In this case, from (17), we have


  φ  ( d  ( T x ,  T 2  x )  )  ≤ φ  ( d  ( x , y )  )  + ψ  ( d  ( x , y )  )  ,  








which yields


  α  ( x , T x )  exp  φ ( d  ( T x ,  T 2  x )  )  ≤ exp  φ ( d ( x , T x ) ) + ψ ( d ( x , T x ) )  .  











Then T satisfies   T 2   with  α  given by (13). Next, we shall prove that T is  α -continuous. Let   {  x n  } ⊂ X   be an  α -regular sequence, i.e.,


   x  n + 1   = T  x n  ,  n ∈ N .  











Suppose that there exists   u ∈ X   such that


   lim  n → + ∞   d  (  x n  , u )  = 0 .  











Let us define the set


  I = { n ∈ N :  d  (  x n  , T u )  = 0 } .  











If   | I | < + ∞  , then there exists some   N ∈ N   such that


  d (  x  n + 1   , T u ) > 0 ,  n ≥ N .  











From (17) and (  Φ 1  ), we have


  d  (  x  n + 1   , T u )  ≤ d  (  x n  , u )  + L d  ( u ,  x  n + 1   )  ,  n ≥ N .  











Let   n → + ∞   and we obtain


   lim  n → + ∞   d  (  x  n + 1   , T u )  = 0 .  











If   | I | = + ∞  , then there exists a sub-sequence   {  x  n k   }   of   {  x n  }   such that


  d (  x  n k   , T u ) = 0 ,  k ∈ N .  











Therefore, we have


   lim  k → + ∞   d  ( T  x  n k   , T u )  =  lim  k → + ∞   d  (  x   n k  + 1   , T u )  = 0 .  











Then T is  α -continuous, and it satisfies   T 1  . As a consequence, we have   T ∈  T α   . □





Remark 3.

Let   T : X → X   be a mapping that belongs to the class of Berinde mappings (see [2]), that is, there exist   0 < q < 1   and   ℓ ≥ 0   such that


   d ( T x , T y ) ≤ q d ( x , y ) + ℓ d ( y , T x ) ,  ( x , y ) ∈ X × X .   











It can be easily seen that T is an almost F-contraction with   F ( t ) = ln t  ,   t > 0  , and   ( τ , L ) = ( − ln q , ℓ / q )  . Therefore,   T ∈  T α   , where α is given by (13) and   ( ϕ , ψ ) = ( F , − ln q )  .





Now, we state and prove the main result of this section.



Theorem 4.

Let   ( X , d )   be a metric space, and let   T : X → X   be a given mapping. Suppose that




	(i) 

	
There exists   α : X × X → R   such that   ( X , d )   is α-complete.




	(ii) 

	
There exists   ( φ , ψ ) ∈ Φ × Ψ   such that   T ∈  T α   .




	(iii) 

	
T is α-admissible.




	(iv) 

	
There exists some    x 0  ∈ X   such that   α (  x 0  , T  x 0  ) ≥ 1  .









Then there exists a sub-sequence   {  T  n k    x 0  }   of   {  T n   x 0  }   that converges to a fixed point of T.





Proof. 

Let   {  x n  }   be the Picard sequence defined by


   x n  =  T n   x 0  ,  n ∈ N .  











Without loss of generality, we may suppose that


  d (  x n  ,  x  n + 1   ) > 0 ,  n ∈ N .  











From (  T 2  ), we have


  α  (  x  n − 1   ,  x n  )  exp  φ ( d  (  x n  ,  x  n + 1   )  )  ≤ exp  φ  ( d  (  x  n − 1   ,  x n  )  )  + ψ  ( d  (  x  n − 1   ,  x n  )  )   ,  n ∈  N *  .  











On the other hand, from   ( i i i )   and   ( i v )  , we have


  α  (  x  n − 1   ,  x n  )  ≥ 1 ,  n ∈  N *  .  



(18)







Therefore, we obtain


  exp  φ ( d  (  x n  ,  x  n + 1   )  )  ≤ exp  φ  ( d  (  x  n − 1   ,  x n  )  )  + ψ  ( d  (  x  n − 1   ,  x n  )  )   ,  n ∈  N *  ,  








which yields


  φ  ( d  (  x n  ,  x  n + 1   )  )  ≤ φ  ( d  (  x  n − 1   ,  x n  )  )  + ψ  ( d  (  x  n − 1   ,  x n  )  )  ,  n ∈  N *  .  











Next, following the same argument as in the proof of Theorem 3, we can prove that   {  x n  }   is a Cauchy sequence. Moreover, from (18),   {  x n  }   is  α -Cauchy. Since   ( X , d )   is  α -complete, there exists some   ω ∈ X   such that


   lim  n → + ∞   d  (  x n  , ω )  = 0 .  











From (  T 1  ), there exists a sub-sequence   {  x  n k   }   of   {  x n  }   such that


   lim  k → + ∞   d  (  x   n k  + 1   , T ω )  = 0 .  











The uniqueness of the limit yields   T ω = ω  , i.e.,  ω  is a fixed point of T. □





Remark 4.

From the proof of Theorem 4, it can be easily seen that if we replace (  T 1  ) by the continuity of T, then the Picard sequence   {  T n   x 0  }   converges to a fixed point of T.





Next, we will show that most fixed point results from the literature involving F-contraction mappings follow easily from Theorem 4.



The following lemma will be used later.



Lemma 1.

Let   T : X → X   be a given mapping. Let   α : X × X → R   be the function defined by (13). Then T is α-admissible.





Proof. 

Let   ( x , y ) ∈ X × X   be such that   α ( x , y ) ≥ 1  . By the definition of  α , this means that   y = T x  . Then   T y =  T 2  x  , which yields   α ( T x , T y ) = 1  . This proves that T is  α -admissible. □





Corollary 1.

Theorem 4 ⇒ Theorem 3.





Proof. 

Suppose that all the assumptions of Theorem 3 are satisfied. By Proposition 1, we know that   T ∈  T α   , where   α : X × X → R   is given by (13). Since   ( X , d )   is complete, then it is  α -complete. From Lemma 1, T is  α -admissible. From the definition of  α , we have   α ( x , T x ) = 1  , for all   x ∈ X  . Therefore, all the assumptions of Theorem 4 are satisfied. In particular   ( i v )   is satisfied for every   x ∈ X  . Taking in consideration Remark 4, we obtain that for any   x ∈ X  , the Picard sequence   {  T n  x }   converges to a fixed point of T. □





Corollary 2.

Theorem 4 ⇒ Theorem 1.





Proof. 

It follows from Proposition 2, Lemma 1 and Remark 4. □





Corollary 3.

Let   ( X , d )   be a complete metric space, and let   T : X → X   be an orbitally continuous mapping. Suppose that there exist   F ∈ Φ   and a constant   τ > 0   such that (15) is satisfied. Then, for any   x ∈ X  , there exists a sub-sequence   {  T  n k   x }   of   {  T n  x }   such that   {  T n  x }   converges to a fixed point of T.





Proof. 

It follows from Proposition 3, Lemma 1, and Theorem 4. □





Remark 5.

By Remark 4, if we replace the assumption T is orbitally continuous with T is continuous, then for any   x ∈ X  , the Picard sequence   {  T n  x }   converges to a fixed point of T. Such a result was established by Wardowski and Van Dung in [27].





Corollary 4.

Let   ( X , d )   be a complete metric space, and let   T : X → X   be an orbitally continuous mapping. Suppose that there exist   F ∈ Φ   and a constant   τ > 0   such that (16) is satisfied. Then, for any   x ∈ X  , there exists a sub-sequence   {  T  n k   x }   of   {  T n  x }   such that   {  T n  x }   converges to a fixed point of T.





Proof. 

It follows from Proposition 4, Lemma 1, and Theorem 4. □





The next result was established by Minak et al. [22].



Corollary 5.

Let   ( X , d )   be a complete metric space, and let   T : X → X   be an almost F-contraction, that is, there exit   F ∈ Φ  ,   τ > 0   and   L ≥ 0   such that (17) is satisfied. Then, for any   x ∈ X  , there exists a sub-sequence   {  T  n k   x }   of   {  T n  x }   such that   {  T n  x }   converges to a fixed point of T.





Proof. 

It follows from Proposition 5, Lemma 1, and Theorem 4. □





Next, we will show that we can deduce easily from Theorem 4 several fixed point results in partially ordered metric spaces.



Corollary 6.

Let   ( X , d )   be a complete metric space, and let   T : X → X   be continuous mapping. Suppose that X is partially ordered by a certain binary relation ⪯. Suppose that




	(i) 

	
T is non-decreasing with respect to ⪯, i.e.,


   T x ⪯ T y ,   








for all   ( x , y ) ∈ X × X   with   x ⪯ y  .




	(ii) 

	
There exists    x 0  ∈ X   such that    x 0  ⪯ T  x 0   .




	(iii) 

	
There exist   F ∈ Φ   and   τ > 0   such that


   τ + F ( d ( T x , T y ) ) ≤ F ( d ( x , y ) ) ,   








for all   ( x , y ) ∈ X × X   with   x ⪯ y   and   d ( T x , T y ) > 0  .









Then   {  T n   x 0  }   converges to a fixed point of T.





Proof. 

Let   α : X × X → R   be the function defined by


     α  ( x , y )  =     1    if     x ⪯ y ,      0    if     x ⋠ y .          



(19)







From   ( i )   and the definition of  α , it can be easily seen that T is  α -admissible. Since T is continuous, it is  α -continuous. Since   ( X , d )   is complete, it is  α -complete. On the other hand, from   ( i i i )  , we have


  exp  F ( d ( T x , T y ) )  ≤ exp  F ( d ( x , y ) ) − τ  ,  








for all   ( x , y ) ∈ X × X   with   x ⪯ y   and   d ( T x , T y ) > 0  . Let   ( φ , ψ ) = ( F , − τ )  . Then   ( φ , ψ ) ∈ Φ × Ψ  . Further, by the definition of  α , for all   ( x , y ) ∈ X × X   with   ( d ( T x , T y ) > 0  , we have


  α  ( x , y )  exp  φ ( d ( T x , T y ) )  ≤ exp  φ ( d ( x , y ) ) + ψ ( d ( x , y ) )  .  











Therefore,   T ∈  T α   , where  α  is given by (19). Note that by (ii), we have   α (  x 0  , T  x 0  ) = 1  . Applying Theorem 4 and taking in consideration Remark 4, we obtain the desired result. □





Corollary 7

(Ran–Reurings fixed point theorem [13]). Let   ( X , d )   be a complete metric space, and let   T : X → X   be continuous mapping. Suppose that X is partially ordered by a certain binary relation ⪯. Suppose that




	(i) 

	
T is non-decreasing with respect to ⪯.




	(ii) 

	
There exists    x 0  ∈ X   such that    x 0  ⪯ T  x 0   .




	(iii) 

	
There exists   0 < q < 1   such that for all   ( x , y ) ∈ X × X   with   x ⪯ y  ,


  d ( T x , T y ) ≤ q d ( x , y ) .  

















Then   {  T n   x 0  }   converges to a fixed point of T.





Proof. 

We have observe that T satisfies the condition   ( i i i )   of Corollary 6 with   F ( t ) = ln t  ,   t > 0  , and   τ = − ln q  . Therefore, the result follows immediately from Corollary 6. □





Remark 6.

Note that several other fixed point results can be deduced from Theorem 4. For example, we mention the Banach fixed point theorem, the Berinde fixed point theorem [2], the Dass–Gupta fixed point theorem [7], the Chatterjea fixed point theorem [4], the Kannan fixed point theorem [11], the Reich fixed point theorem [14], the Hardy–Rogers fixed point theorem [8], etc.
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