Extension of Extragradient Techniques for Variational Inequalities
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
Algorithm 1: |
For . Assume the sequence has been constructed. Compute the next iteration by the following manner |
Suppose that the control parameters , , and satisfy the following assumptions:
|
Algorithm 2: |
For initial value . Assume the sequence has been constructed. Compute the next iteration by the following manner |
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stampacchi, G. Formes bilineaires coercivites sur les ensembles convexes. C. R. Acad. Sci. 1964, 258, 4413–4416. [Google Scholar]
- Alber, Y.-I.; Iusem, A.-N. Extension of subgradient techniques for nonsmooth optimization in Banach spaces. Set Valued Anal. 2001, 9, 315–335. [Google Scholar] [CrossRef]
- Bello Cruz, J.-Y.; Iusem, A.-N. A strongly convergent direct method for monotone variational inequalities in Hilbert space. Numer. Funct. Anal. Optim. 2009, 30, 23–36. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Qin, X.; Yao, J.-C.; Yao, Y. Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces. J. Nonlinear Convex Anal. 2018, 19, 251–264. [Google Scholar]
- Dong, Q.-L.; Cho, Y.-J.; Zhong, L.-L.; Rassias, T.-M. Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 2018, 7, 687–704. [Google Scholar] [CrossRef]
- Dong, Q.-L.; Cho, Y.-J.; Rassias, T.-M. The projection and contraction methods for finding common solutions to variational inequality problems. Optim. Lett. 2018, 12, 1871–1896. [Google Scholar] [CrossRef]
- Facchinei, F.; Pang, J.-S. Finite-Dimensional Variational Inequalities and Complementarity Problems; Springer: New York, NY, USA, 2003; Volumes 1 and 2. [Google Scholar]
- He, B.-S.; Yang, Z.-H.; Yuan, X.-M. An approximate proximal-extragradient type method for monotone variational inequalities. J. Math. Anal. Appl. 2004, 300, 362–374. [Google Scholar] [CrossRef] [Green Version]
- Bello Cruz, J.-Y.; Iusem, A.-N. Convergence of direct methods for paramonotone variational inequalities. Comput. Optim. Appl. 2010, 46, 247–263. [Google Scholar] [CrossRef]
- Iiduka, H.; Takahashi, W. Weak convergence of a projection algorithm for variational inequalities in a Banach space. J. Math. Anal. Appl. 2008, 339, 668–679. [Google Scholar] [CrossRef]
- Li, C.-L.; Jia, Z.-F.; Postolache, M. New convergence methods for nonlinear uncertain variational inequality problems. J. Nonlinear Convex Anal. 2018, 19, 2153–2164. [Google Scholar]
- Lions, J.-L.; Stampacchia, G. Variational inequalities. Comm. Pure Appl. Math. 1967, 20, 493–517. [Google Scholar] [CrossRef]
- Lu, X.; Xu, H.-K.; Yin, X. Hybrid methods for a class of monotone variational inequalities. Nonlinear Anal. 2009, 71, 1032–1041. [Google Scholar] [CrossRef]
- Solodov, M.-V.; Svaiter, B.-F. A new projection method for variational inequality problems. SIAM J. Control Optim. 1999, 37, 765–776. [Google Scholar] [CrossRef]
- Solodov, M.-V.; Tseng, P. Modified projection-type methods formonotone variational inequalities. SIAM J. Control Optim. 1996, 34, 1814–1830. [Google Scholar] [CrossRef]
- Thakur, B.-S.; Postolache, M. Existence and approximation of solutions for generalized extended nonlinear variational inequalities. J. Inequal. Appl. 2013, 2013, 590. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-H.; Zhao, M.-L.; Kumam, P.; Cho, Y.-J. A viscosity extragradient method for an equilibrium problem and fixed point problem in Hilbert space. J. Fixed Point Theory Appl. 2018, 20, 19. [Google Scholar] [CrossRef]
- Xu, H.-K.; Kim, T.-H. Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl. 2003, 119, 185–201. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, R.; Xu, H.-K. Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 2010, 72, 3447–3456. [Google Scholar] [CrossRef]
- Yao, Y.; Liou, Y.-C.; Kang, S.-M. Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method. Comput. Math. Appl. 2010, 59, 3472–3480. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Liou, Y.-C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 2018, 67, 1309–1319. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Liou, Y.C. Variant extragradient-type method for monotone variational inequalities. Fixed Point Theory Appl. 2013, 2013, 185. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Postolache, M.; Liou, Y.-C.; Yao, Z.-S. Construction algorithms for a class of monotone variational inequalities. Optim. Lett. 2016, 10, 1519–1528. [Google Scholar] [CrossRef]
- Yao, Y.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
- Yao, Y.; Shahzad, N. Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012, 6, 621–628. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpath. J. Math. 2018, 34, 459–466. [Google Scholar]
- Zegeye, H.; Yao, Y. Minimum-norm solution of variational inequality and fixed point problem in Banach spaces. Optimization 2015, 64, 453–471. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, Y.-S.; Liu, Y.-L.; Cho, Y.-J. Split equilibrium, variational inequality and fixed point problems for multi-valued mappings in Hilbert spaces. Appl. Comput. Math. 2018, 17, 271–283. [Google Scholar]
- Yao, Y.; Postolache, M.; Yao, J.-C. An iterative algorithm for solving the generalized variational inequalities and fixed points problems. Mathematics 2019, 7, 61. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Yao, J.-C. Iterative algorithms for generalized variational inequalities. Univ. Politeh. Buch. Ser. A 2019, in press. [Google Scholar]
- Korpelevich, G.-M. An extragradient method for finding saddle points and for other problems. Ekon. Matorsz. Metod. 1976, 12, 747–756. [Google Scholar]
- Bnouhachem, A.; Noor, M.-A.; Hao, Z. Some new extragradient iterative methods for variational inequalities. Nonlinear Anal. 2009, 70, 1321–1329. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 2011, 26, 827–845. [Google Scholar] [CrossRef]
- Iusem, A.-N.; Svaiter, B.-F. A variant of Korpelevich’s method for variational inequalities with a new search strategy. Optimization 1997, 42, 309–321. [Google Scholar] [CrossRef]
- Iusem, A.-N.; Lucambio Peŕez, L.-R. An extragradient-type algorithm for non-smooth variational inequalities. Optimization 2000, 48, 309–332. [Google Scholar] [CrossRef]
- Khobotov, E.-N. Modification of the extra-gradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 1989, 27, 120–127. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 2012, 61, 1119–1132. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 2011, 148, 318–335. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. A von Neumann alternating method for finding common solutions to variational inequalities. Nonlinear Anal. 2012, 75, 4596–4603. [Google Scholar] [CrossRef] [Green Version]
- Zaslavski, A.-J. The extragradient method for finding a common solution of a finite family of variational inequalities and a finite family of fixed point problems in the presence of computational errors. J. Math. Anal. Appl. 2013, 400, 651–663. [Google Scholar] [CrossRef]
- Takahashi, W.; Toyoda, M. Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 2003, 118, 417–428. [Google Scholar] [CrossRef]
- Suzuki, T. Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. 2005, 2005, 103–123. [Google Scholar] [CrossRef]
- Xu, H.-K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Wang, K.; Qin, X.; Zhu, L.-J. Extension of Extragradient Techniques for Variational Inequalities. Mathematics 2019, 7, 111. https://doi.org/10.3390/math7020111
Yao Y, Wang K, Qin X, Zhu L-J. Extension of Extragradient Techniques for Variational Inequalities. Mathematics. 2019; 7(2):111. https://doi.org/10.3390/math7020111
Chicago/Turabian StyleYao, Yonghong, Ke Wang, Xiaowei Qin, and Li-Jun Zhu. 2019. "Extension of Extragradient Techniques for Variational Inequalities" Mathematics 7, no. 2: 111. https://doi.org/10.3390/math7020111
APA StyleYao, Y., Wang, K., Qin, X., & Zhu, L. -J. (2019). Extension of Extragradient Techniques for Variational Inequalities. Mathematics, 7(2), 111. https://doi.org/10.3390/math7020111