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Abstract

:

In the present work, we introduce a hybrid Mann viscosity-like implicit iteration to find solutions of a monotone classical variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities and a problem of common fixed points of an asymptotically nonexpansive mapping and a countable of uniformly Lipschitzian pseudocontractive mappings in Hilbert spaces, which is called the triple hierarchical constrained variational inequality. Strong convergence of the proposed method to the unique solution of the problem is guaranteed under some suitable assumptions. As a sub-result, we provide an algorithm to solve problem of common fixed points of pseudocontractive, nonexpansive mappings, variational inequality problems and generalized mixed bifunction equilibrium problems in Hilbert spaces.
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1. Introduction


We suppose that H is a real or complex Hilbert space and let H be with inner product ⟨·,·⟩ and norm ∥·∥. We suppose that C is a convex nonempty closed set of H. We also suppose that PC is the metric projection from H onto C. Since C is a convex nonempty closed set, we conclude that PC is defined. Let T be a mapping on convex nonempty closed set C. Denote by Fix(T) the set of fixed points of T, i.e., Fix(T)={x∈C:(I−T)x=0}. → and ⇀ present strong convergence and weak convergence, respectively. A mapping T:C→C is named to be asymptotically nonexpansive if there exists a sequence {θn}⊂[0,+∞) with limn→∞θn=0 such that


∥Tnx−Tny∥≤∥x−y∥+θn∥x−y∥,∀n≥0,x,y∈C.



(1)




If θ≡0, then T is named to be nonexpansive, that is,




∥Tx−Ty∥≤∥x−y∥,∀x,y∈C.



(2)





Suppose that A is a nonself mapping from convex nonempty closed set C to entire space H. The classical variational inequality (VI) is to find x*∈C such that


⟨μAx*,x−x*⟩≥0,∀x∈C,



(3)




where μ is some positive real number. We denote by VI(C,A) the set of solutions of VI (3).



Assume that B1 is a nonself mapping from convex nonempty closed set C to entire space H and B2 is a nonself mapping from convex nonempty closed set C to entire space H, respectively. we study the system of approximating (x*,y*)∈C×C such that


⟨μ1B1y*−y*+x*,x−x*⟩≥0,∀x∈C,⟨μ2B2x*−x*+y*,x−y*⟩≥0,∀x∈C.



(4)




Here, μ1 and μ2 are two real numbers. The system (4) is named to be a general system of variational inequalities (GSVI). We note that the system (4) can be transformed into a problem of zero points (I−T)x=0, that is, the fixed point of T as following



Lemma 1 

([1]). Fix x*,y*∈C, where (x*,y*) satisfies the system (4) if and only if


x*∈GSVI(C,B1,B2),








where GSVI(C,B1,B2) is the set of solutions of the mapping G:=PC(I−μ1B1)PC(I−μ2B2), and y*=PC(I−μ2B2)x*.





Recently, the variational inequality (3) and the system (4) have been intensively investigated by many authors via fixed-point methods; see [2,3,4,5,6,7,8,9,10,11] and the references therein. A mapping f:C→C is said to be a contraction on C if there exists a constant δ∈[0,1) such that ∥f(x)−f(y)∥≤δ∥x−y∥ for all x,y∈C. A mapping F:C→H is called monotone if ⟨Fx−Fy,x−y⟩≥0∀x,y∈C. It is called η-strongly monotone if there exists a constant η>0 such that ⟨Fx−Fy,x−y⟩≥η∥x−y∥2∀x,y∈C. Moreover, it is called α-inverse-strongly monotone (or α-cocoercive), if there exists a constant α>0 such that




⟨Fx−Fy,x−y⟩≥α∥Fx−Fy∥2,∀x,y∈C.









Furthermore, let X be a real Banach space whose topological dual space is denoted with X*. The normalized duality J:X→2X* is defined through


J(x)={ψ∈X*:⟨x,ψ⟩=∥x∥2=∥ψ∥2},∀x∈X,








where ⟨·,·⟩ denotes the generalized duality pairing. We suppose that T is a mapping. Its domain and range are denoted by D(T) and range R(T), respectively. It called pseudocontractive if


∥x−y∥≤∥x−y+r((I−T)x−(I−T)y)∥,∀x,y∈D(T),∀r>0.








From a result of Kato [12], we know that the notion of pseudocontraction is equivalent to the following definition: There exists j(x−y)∈J(x−y) such that


⟨j(x−y),Tx−Ty⟩≤∥x−y∥2,∀x,y∈D(T).








It is well known that the class of pseudocontractive mappings, whose complementary operators are accretive, is an important and significant generation of nonexpansive mappings (see [13,14,15,16,17,18,19]). In 2011, Ceng et al. [20] introduced an implicit viscosity approximation method for computing approximate fixed points of pseudocontractive mapping T, and obtained the norm convergence of sequence {xn} generated by their implicit method to a fixed-point of T.



The main aim of this paper is to introduce and analyze a hybrid Mann viscosity implicit iteration method for solving a monotone variational inequality with a variational inequality constraint over the common solution set of the GSVI (4) for two inverse-strongly monotone mappings and a common fixed point problem (CFPP) of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces, which is called the triple hierarchical constrained variational inequality (THCVI). Here, the hybrid Mann viscosity implicit iteration method is based on the viscosity approximation method, Korpelevich extragradient method, Mann iteration method and hybrid steepest-descent method. With relatively weak assumptions, the authors prove the strong convergence analysis of the their method to the unique solution of the THCVI. As an application, we list an algorithm to solve problems of common fixed point of pseudocontractive and nonexpansive mappings, classical variational inequalities and generalized mixed equilibrium problems in Hilbert setting.




2. Preliminaries


In this subsection, we suppose H is a Hilbert space. Its inner product denoted by ⟨·,·⟩. We also suppose C is a convex nonempty closed set of H. Here, we list some basic concepts and facts. A nonself mapping F from convex nonempty closed set C to entire space H is said to be κ-Lipschitzian if there is a number κ>0 with ∥F(x)−F(y)∥≤κ∥x−y∥∀x,y∈C. In particular, if κ=1, then the nonself mapping F is named to be a nonexpansive operator. A self mapping A on entire space H is name to be a strongly positive bounded linear operator if we have a number γ>0 with


⟨Ax,x⟩γ≥∥x∥2,∀x∈H.








It is easy to see that the self mapping A is a γ-strongly monotone ∥A∥-Lipschitzian operator. Recall that a self mapping T on convex nonempty closed set C is named to be

	(a)

	
a contraction if we have a number α∈(0,1) with


∥Tx−Ty∥≤α∥x−y∥,∀x,y∈C;












	(b)

	
a pseudocontraction if


⟨Tx−Ty,x−y⟩≤∥x−y∥2,∀x,y∈C;












	(c)

	
strong pseudocontraction if we have a number α∈(0,1) with


⟨Tx−Ty,x−y⟩≤α∥x−y∥2,∀x,y∈C.

















We use the following concept in the sequel.



Definition 1.

Let {Tn}n=0∞ be a mapping sequence of continuous self pseudocontractions on C. Then, {Tn}n=0∞ is said to be a countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings on C if we have a number ℓ>0 such that each Tn is ℓ-Lipschitz continuous.





Fix x∈H, there is a unique element in C, denoted by PCx, with


∥x−PCx∥≤∥x−y∥,∀y∈C.



(5)




where PC stands for a metric projection of entire space H onto convex nonempty closed set C. It is well known that PC is a nonexpansive mapping with




⟨x−y,PCx−PCy⟩≥∥PCx−PCy∥2,∀x,y∈H.



(6)





Nevertheless, PCx has the functions: PCx∈C and


⟨x−PCx,y−PCx⟩≤0,



(7)






∥x−y∥2−∥x−PCx∥2≥∥y−PCx∥2,∀x∈H,y∈C.



(8)







We also have




2⟨x−y,y⟩+∥x−y∥2=∥x∥2−∥y∥2.



(9)





We need the following propositions and lemmas for our main presentation.



Proposition 1 

([21]). We suppose C is a convex nonempty closed set of a Banach space X. We suppose S0,S1,… is an operator sequence on convex nonempty closed C. Let


∑n=1∞sup{∥Snx−Sn−1x∥:x∈C}<∞.











It follows that {Sny} converges strongly to some point of C for each y∈C. Nevertheless, we let S be a mapping on convex nonempty closed C defined through Sy=limn→∞Sny for all y∈C. Then limn→∞sup{∥Sx−Snx∥:x∈C}=0.





Proposition 2 

([22]). We suppose C is a convex nonempty closed set of a Banach space X. We also suppose T is a continuous and strong pseudocontraction on convex nonempty closed C. This shows the fact that T has a fixed point in C. Indeed, it is also unique.





The following lemma is trivial. In fact, it an immediate consequence of the subdifferential of 12∥·∥2.



Lemma 2.

We suppose H is a Hilbert space. In H, we have


∥x+y∥2−∥x∥2≤2⟨y,x+y⟩,∀x,y∈H.













Lemma 3 

([23]). We suppose {an} is a number sequence such that


an+1≤an+λnγn−λnan,∀n≥0,








where {λn} and {γn} are real numbers such that

	(i) 

	
{λn}⊂[0,1] and ∑n=0∞λn=∞; or, equivalently,


∏n=0∞(1−λn):=limn→∞∏k=0n(1−λk)=0;












	(ii) 

	
lim supn→∞γn≤0 or ∑n=0∞|λnγn|<∞.









Then, limn→∞an=0.





Lemma 4 

([24]). We suppose T is a nonexpansive mapping defined on a convex nonempty subset C of a Hilbert space H. Let λ be a number in (0,1]. We suppose F is a self κ-Lipschitzian and η-strongly monotone mapping on entire space H. Define the mapping Tλ:C→H through


Tλx:=Tx−λμF(Tx),∀x∈C.








Then, Tλ is a contraction if 0<μ<2ηκ2; that is,


∥Tλx−Tλy∥≤(1−λτ)∥x−y∥,∀x,y∈C,








where τ=1−1−μ(2η−μκ2)∈(0,1].





Lemma 5.

Let the mapping A:C→H be α-inverse-strongly monotone. Then, for a given λ≥0,


∥x−y∥2+λ(λ−2α)∥Ax−Ay∥2≥∥(I−λA)x−(I−λA)y∥2.











In particular, if 0≤λ≤2α, then I−λA is nonexpansive.





Proof. 



∥(I−λA)y−(I−λA)x∥2=∥λ(Ay−Ax)∥2−2⟨λ(Ay−Ax),y−x⟩+∥y−x∥2≤λ2∥Ay−Ax∥2−2λα∥Ay−Ax∥2+∥y−x∥2=λ(λ−2α)∥Ax−Ay∥2+∥y−x∥2.








 □





Utilizing Lemma 5, we immediately obtain the following lemma.



Lemma 6.

We suppose the nonself mappings B1,B2 is α-inverse-strongly monotone and β-inverse-strongly monotone defined on convex nonempty closed subset C of entire space H, respectively. Let the self mapping G be defined as G:=PC(I−μ1B1)PC(I−μ2B2). If 0≤μ1≤2α and 0≤μ2≤2β, then G:C→C is nonexpansive.





Lemma 7 

([25]). We suppose that X is a real Banach space with a weakly continuous duality and C is a convex nonempty closed set in X. Let T be a self mapping defined the set C and we also suppose it is asymptotically nonexpansive with a empty fixed-point set. Then, T−I is demiclosed at zero, i.e., let {xn} be a sequence in set C converging weakly to some x, where x in C and the sequence {(I−T)xn} converges strongly to 0, then (T−I)x=0, where I is the identity mapping of X.





Lemma 8 

([26]). We suppose C is a convex nonempty closed set in a Hilbert space H and A is a monotone and hemicontinuous nonself mapping defined on convex nonempty closed set C to H. Then, we have

	(i) 

	
VI(C,A)={x*∈C:⟨Ay,y−x*⟩≥0,∀y∈C};




	(ii) 

	
VI(C,A)=Fix(PC(I−λA)) for all λ>0; and




	(iii) 

	
VI(C,A) is singlton, if A is Lipschitz continuous strongly monotone.












3. Main Results


We suppose C is a convex nonempty closed set. Let the mappings A1,Bi be nonself monotone mappings for i=1,2 from C to H. We also let T be a self asymptotically nonexpansive mapping. Suppose {Sn}n=0∞ is a countable family of self mapping. We also assume it is ℓ-uniformly Lipschitzian pseudocontractive on set C. Consider the variational inequality for monotone mapping A1 over the common solution set Ω of the GSVI (4) and the CFPP of {Sn}n=0∞ and T:


Findx¯∈VI(Ω,A1):={x¯∈Ω:⟨A1x¯,y−x¯⟩≥0∀y∈Ω},








where Ω:=⋂n=0∞Fix(Sn)∩GSVI(C,B1,B2)∩Fix(T)≠∅.



This section introduces the following monotone variational inequality with the variational inequality constraint over the common solution set of the GSVI (4) and the CFPP of {Sn}n=0∞ and T, which is called the triple hierarchical constrained variational inequality (THCVI):



Problem 1.

Assume that

	(C1) 

	
T:C→C is an asymptotically nonexpansive mapping with a sequence {θn}.




	(C2) 

	
{Sn}n=0∞ is a countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings on C.




	(C3) 

	
B1:C→H is an α-inverse-strongly monotone operator and B2:C→H is a β-inverse-strongly monotone operator.




	(C4) 

	
GSVI(C,B1,B2):=Fix(G) where G:=PC(I−μ1B1)PC(I−μ2B2) for μ1,μ2>0.




	(C5) 

	
Ω:=⋂n=0∞Fix(Sn)∩GSVI(C,B1,B2)∩Fix(T)≠∅.




	(C6) 

	
∑n=1∞supx∈D∥Snx−Sn−1x∥<∞ for any bounded subset D of C.




	(C7) 

	
S:C→C is the mapping defined by Sx=limn→∞Snx∀x∈C, such that


Fix(S)=⋂n=0∞Fix(Sn).












	(C8) 

	
A1:C→H is an ζ-inverse-strongly monotone operator and A2:C→H is a κ-Lipschitzian and η-strongly monotone operator.




	(C9) 

	
f:C→C is a contraction mapping with coefficient δ∈[0,1).




	(C10) 

	
VI(Ω,A1)≠∅.









Then, the objective is to


findx*∈VI(VI(Ω,A1),A2):={x*∈VI(Ω,A1):⟨A2x*,v−x*⟩≥0∀v∈VI(Ω,A1)}.











Since the original problem is a variational inequality problem, we therefore call it a triple hierarchical constrained variational inequality (THCVI). We introduce the following hybrid Mann viscosity implicit iteration method to find the solution of such a problem.





We show the main result of this paper, that is, the strong convergence analysis for Algorithm 1.








	 Algorithm 1: Hybrid Mann viscosity-like implicit iterative algorithm.



	  Step 0. Take {αn}n=0∞,{βn}n=0∞,{γn}n=0∞,{δn}n=0∞,{σn}n=0∞⊂(0,∞), and μ>0; arbitrarily choose x0∈C; and let n:=0.

  Step 1. Given xn∈C, compute xn+1∈C as


 un=γnxn+(1−γn)Snun, vn=PC(un−μ2B2un), zn=PC(vn−μ1B1vn), yn=σnxn+(1−σn)PC(I−δnA1)zn, xn+1=βnf(yn)+(1−βn)PC(I−αnμA2)Tnyn.



(10)






  Update n:=n+1 and go to Step 1.






Theorem 1.

Assume that μ1∈(0,2α),μ2∈(0,2β), and δ<τ:=1−1−μ(2η−μκ2)∈(0,1] for μ∈(0,2ηκ2). Suppose that {αn},{βn},{γn},{σn}⊂(0,1] and {δn}⊂(0,2ζ] are the sequences such that

	(i) 

	
limn→∞αn=0,∑n=0∞αn=∞ and ∑n=0∞|αn+1−αn|<∞.




	(ii) 

	
limn→∞θnαn=0,limn→∞βnαn=0,∑n=0∞|βn+1−βn|<∞ and ∑n=0∞|δn+1−δn|<∞.




	(iii) 

	
0<lim infn→∞σn≤lim supn→∞σn<1 and ∑n=0∞|σn+1−σn|<∞.




	(iv) 

	
0<lim infn→∞γn≤lim supn→∞γn<1 and ∑n=0∞|γn+1−γn|<∞.




	(v) 

	
δn≤αn and ∑n=0∞∥Tn+1yn−Tnyn∥<∞.









Then, the sequence {xn}n=0∞ generated by Algorithm 1 satisfies the following properties:

	(a) 

	
{xn}n=0∞ is bounded.




	(b) 

	
limn→∞∥xn−yn∥=0,limn→∞∥xn−Gxn∥=0,limn→∞∥xn−Txn∥=0 and



limn→∞∥xn−Sxn∥=0.




	(c) 

	
{xn}n=0∞ converges to the unique solution of Problem 1 if ∥xn−yn∥δn→0 as n→∞.











Proof. 

First, let us show that PVI(Ω,A1)(I−μA2) is a contractive mapping. Indeed, by Lemma 4, we have


(1−τ)∥x−y∥≥∥(I−μA2)x−(I−μA2)y∥≥∥PVI(Ω,A1)(I−μA2)x−PVI(Ω,A1)(I−μA2)y∥,








for any x,y∈C, which implies that PVI(Ω,A1)(I−μA2) is a contraction mapping. Banach’s Contraction Mapping Principle tell us that PVI(Ω,A1)(I−μA2) has a fixed point and further it is unique. For example, x*∈C, that is, x*=PVI(Ω,A1)(I−μA2)x*. Hence, by Lemma 8, we get


{x*}=Fix(PVI(Ω,A1)(I−μA2))=VI(VI(Ω,A1),A2).








That is, Problem 1 has a unique solution. Taking into account that


0<lim infn→∞ γn≤lim supn→∞ γn<1,








we usually suppose {γn}⊂[a,b]⊂(0,1) for some a,b∈(0,1). Note that the mapping G:C→C is defined as G:=PC(I−μ1B1)PC(I−μ2B2), where μ1∈(0,2α) and μ2∈(0,2β). Thus, by Lemma 6, we know that G is nonexpansive. It is easy to see that there exists an element un∈C such that


un=γnxn+(1−γn)Snun.



(11)







In fact, it is a unique element. Thus, we can consider the mapping


Fnx=γnxn+(1−γn)Snx,∀x∈C.











Since Sn:C→C is a continuous pseudocontraction mapping, we deduce that all x,y∈C,


⟨Fnx−Fny,x−y⟩=(1−γn)⟨Snx−Sny,x−y⟩≤(1−γn)∥x−y∥2.











In addition, from {γn}⊂[a,b]⊂(0,1) we get 0<1−γn<1 for all n≥0. Thus, Fn is a continuous and strong pseudocontraction mapping of C into itself. By Proposition 2, we know that there exists a unique element un∈C, for each n≥0, satisfying (11). Thus, it can be readily seen that the hybrid Mann viscosity implicit iterative scheme (10) can be rewritten as


 un=γnxn+(1−γn)Snun, zn=Gun, yn=σnxn+(1−σn)PC(I−δnA1)zn, xn+1=(1−βn)PC(I−αnμA2)Tnyn+βnf(yn),∀n≥0.



(12)







Next, we divide the rest of the proof into several steps.



Step 1. We claim that {xn},{yn},{zn},{un},{vn},{Tnyn} and {A2(Tnyn)} are bounded. Indeed, take an element p∈Ω=⋂n=0∞Fix(Sn)∩GSVI(C,B1,B2)∩Fix(T) arbitrarily. Then, we have Snp=p, Gp=p and Tp=p. Since each Sn:C→C is a pseudocontraction mapping, it follows that


∥un−p∥2=γn⟨xn−p,un−p⟩+(1−γn)⟨Snun−p,un−p⟩≤γn∥xn−p∥∥un−p∥+(1−γn)∥un−p∥2,








which hence yields


∥un−p∥≤∥xn−p∥,∀n≥0.



(13)







Then, we get


∥zn−p∥=∥Gun−p∥≤∥un−p∥≤∥xn−p∥.



(14)




Since 1>lim supn→∞σn≥lim infn→∞σn>0, we reach {σn}⊂[c,d] for some c,d∈(0,1). In addition, since limn→∞θnαn=0 and limn→∞βnαn=0, we may assume, without loss of generality, that


θn≤αn(τ−δ)2(≤αn(τ−δ))








and βn≤αn for all n≥0. Taking into account the ζ-inverse-strong monotonicity of A1 with {δn}⊂(0,2ζ], we deduce from Lemma 5 and (14) that


∥yn−p∥≤(1−σn)∥PC(I−δnA1)zn−p∥+σn∥p−xn∥≤(1−σn)∥(I−δnA1)zn−(I−δnA1)p−δnA1p∥+σn∥p−xn∥≤(1−σn)(∥zn−p∥+δn∥A1p∥)+σn∥p−xn∥≤(1−σn)∥xn−p∥+δn∥A1p∥+σn∥p−xn∥=∥xn−p∥+δn∥A1p∥.



(15)







Utilizing Lemma 4 and (15), we obtain from (12) that


∥xn+1−p∥≤βn∥f(yn)−p∥+(1−βn)∥PC(I−αnμA2)Tnyn−p∥≤αn(∥f(yn)−f(p)∥+∥p−f(p)∥)+∥(I−αnμA2)Tnyn−(I−αnμA2)p−αnμA2p∥≤αn(δ∥p−yn∥+∥p−f(p)∥)+(1−αnτ)∥Tnyn−p∥+αn∥μA2p∥≤αn(δ∥p−yn∥+∥p−f(p)∥)+(1−αnτ)(1+θn)∥yn−p∥+αn∥μA2p∥≤αn(δ∥p−yn∥+∥p−f(p)∥)+(1−αnτ+θn)∥yn−p∥+αn∥μA2p∥=[1−αn(τ−δ)+θn]∥yn−p∥+αn(∥f(p)−p∥+∥μA2p∥)≤[1−αn(τ−δ)+αn(τ−δ)2](∥xn−p∥+δn∥A1p∥)+αn(∥f(p)−p∥+∥μA2p∥)≤[1−αn(τ−δ)2]∥xn−p∥+δn∥A1p∥+αn(∥f(p)−p∥+∥μA2p∥)≤[1−αn(τ−δ)2]∥xn−p∥+αn(∥A1p∥+∥μA2p∥+∥f(p)−p∥)=[1−αn(τ−δ)2]∥xn−p∥+αn(τ−δ)2·2(∥A1p∥+∥μA2p∥+∥f(p)−p∥)τ−δ≤max{∥xn−p∥,2(∥A1p∥+∥μA2p∥+∥f(p)−p∥)τ−δ}.











By induction, we have


∥xn+1−p∥≤max{∥p−x0∥,2(∥A1p∥+∥p−f(p)+∥μA2p∥∥)τ−δ},∀n≥0.











It immediately follows that {xn} is bounded, and so are the sequences {yn},{zn},{un},{Tnyn} and {A2(Tnyn)} (due to (13)–(15) and the Lipschitz continuity of T and A2). Taking into account that {Sn} is ℓ-uniformly Lipschitzian on C, we know that


∥Snun∥≤∥Snun−p∥+∥p∥≤ℓ∥un−p∥+∥p∥,








which implies that {Snun} is bounded. In addition, from Lemma 1 and p∈Ω⊂GSVI(C,B1,B2), it also follows that (p,q) is a solution of GSVI (4) where q=PC(I−μ2B2)p. Note that vn=PC(I−μ2B2)un for all n≥0. Then, by Lemma 5, we obtain


∥vn∥≤∥vn−q∥+∥q∥=∥PC(I−μ2B2)un−PC(I−μ2B2)p∥+∥q∥≤∥(I−μ2B2)un−(I−μ2B2)p∥+∥q∥≤∥q∥+∥p−un∥.











This shows that {vn} is bounded.



Step 2. We claim that ∥xn+1−xn∥→0 and ∥yn+1−yn∥→0 as n→∞. Indeed, we set pn=PC(I−δnA1)zn and qn=PC(I−αnμA2)Tnyn. Then, from (12), we have


 un=γnxn+(1−γn)Snun, yn=σnxn+(1−σn)pn, xn+1=βnf(yn)+(1−βn)qn.











Simple calculations show that


 un−un−1=γn(xn−xn−1)+(γn−γn−1)(xn−1−Sn−1un−1)+(1−γn)(Snun−Sn−1un−1), yn−yn−1=σn(xn−xn−1)+(σn−σn−1)(xn−1−pn−1)+(1−σn)(pn−pn−1), xn+1−xn=βn(f(yn)−f(yn−1))+(βn−βn−1)(f(yn−1)−qn−1)+(1−βn)(qn−qn−1).



(16)







It follows that


∥un−un−1∥2=γn⟨xn−xn−1,un−un−1⟩+(1−γn)⟨Snun−Sn−1un−1,un−un−1⟩+(γn−γn−1)⟨xn−1−Sn−1un−1,un−un−1⟩=γn⟨xn−xn−1,un−un−1⟩+(1−γn)[⟨Snun−Sn−1un,un−un−1⟩+⟨Sn−1un−Sn−1un−1,un−un−1⟩]+(γn−γn−1)⟨xn−1−Sn−1un−1,un−un−1⟩≤γn∥xn−1−xn∥∥un−un−1∥+(1−γn)[∥Snun−Sn−1un∥∥un−un−1∥+∥un−1−un∥2]+|γn−γn−1|∥xn−1−Sn−1un−1∥∥un−un−1∥,








which hence yields


∥un−un−1∥≤γn∥xn−1−xn∥+(1−γn)[∥Snun−Sn−1un∥+∥un−1−un∥]+|γn−γn−1|∥xn−1−Sn−1un−1∥.











This immediately leads to


∥un−un−1∥≤∥xn−1−xn∥+1−γnγn∥Snun−Sn−1un∥+|γn−γn−1|∥xn−1−Sn−1un−1∥γn≤∥xn−xn−1∥+1a∥Snun−Sn−1un∥+|γn−γn−1|∥xn−1−Sn−1un−1∥a.



(17)







Putting D={un:n≥0}, we know that D is a bounded subset of C. Then, by the assumption, we get ∑n=1∞supx∈D∥Snx−Sn−1x∥<∞. Noticing ∥Snun−Sn−1un∥≤supx∈D∥Snx−Sn−1x∥∀n≥1, we have


∑n=1∞∥Snun−Sn−1un∥<∞.



(18)







In addition, from pn=PC(I−δnA1)zn and {δn}⊂(0,2ζ], we observe that


∥pn−pn−1∥≤∥(I−δnA1)zn−(I−δn−1A1)zn−1∥=∥(I−δnA1)zn−(I−δnA1)zn−1−(δn−δn−1)A1zn−1∥≤∥(I−δnA1)zn−(I−δnA1)zn−1∥+|δn−δn−1|∥A1zn−1∥≤∥zn−zn−1∥+|δn−δn−1|∥A1zn−1∥≤∥un−un−1∥+M0|δn−δn−1|,



(19)




where supn≥0∥A1zn∥≤M0 for some M0>0. Thus, from (16), (17) and (19), we get


∥yn−yn−1∥≤σn∥xn−xn−1∥+|σn−σn−1|∥xn−1−pn−1∥+(1−σn)∥pn−pn−1∥≤σn∥xn−xn−1∥+|σn−σn−1|∥xn−1−pn−1∥+(1−σn)(∥un−un−1∥+M0|δn−δn−1|)≤σn∥xn−xn−1∥+|σn−σn−1|∥xn−1−pn−1∥+(1−σn)(∥xn−xn−1∥+1a∥Snun−Sn−1un∥+|γn−γn−1|∥xn−1−Sn−1un−1∥a+M0|δn−δn−1|)≤∥xn−xn−1∥+|σn−σn−1|∥xn−1−pn−1∥+1a∥Snun−Sn−1un∥+|γn−γn−1|∥xn−1−Sn−1un−1∥a+M0|δn−δn−1|≤∥xn−xn−1∥+M(|σn−σn−1|+∥Snun−Sn−1un∥+|γn−γn−1|+|δn−δn−1|),



(20)




where supn≥0{∥xn−pn∥+1a+∥xn−Snun∥a+M0}≤M for some M>0.



Furthermore, from qn=PC(I−αnμA2)Tnyn and Lemma 4, we note that


∥qn−qn−1∥≤∥(I−αnμA2)Tnyn−(I−αn−1μA2)Tn−1yn−1∥=∥(I−αnμA2)Tnyn−(I−αnμA2)Tn−1yn−1−(αn−αn−1)μA2Tn−1yn−1∥≤(1−αnτ)∥Tnyn−Tnyn−1+Tnyn−1−Tn−1yn−1∥+|αn−αn−1|∥μA2Tn−1yn−1∥≤(1−αnτ)[(1+θn)∥yn−yn−1∥+∥Tnyn−1−Tn−1yn−1∥]+|αn−αn−1|∥μA2Tn−1yn−1∥≤(1−αnτ+θn)∥yn−yn−1∥+∥Tnyn−1−Tn−1yn−1∥+|αn−αn−1|∥μA2Tn−1yn−1∥.



(21)







Hence, from (16), (20) and (21), we get


∥xn+1−xn∥≤βn∥f(yn)−f(yn−1)∥+|βn−βn−1|∥f(yn−1)−qn−1∥+(1−βn)∥qn−qn−1∥≤αnδ∥yn−yn−1∥+|βn−βn−1|∥f(yn−1)−qn−1∥+(1−αnτ+θn)∥yn−yn−1∥+∥Tnyn−1−Tn−1yn−1∥+|αn−αn−1|∥μA2Tn−1yn−1∥≤[1−αn(τ−δ)+αn(τ−δ)2]∥yn−yn−1∥+|βn−βn−1|∥f(yn−1)−qn−1∥+∥Tnyn−1−Tn−1yn−1∥+|αn−αn−1|∥μA2Tn−1yn−1∥≤(1−αn(τ−δ)2)[∥xn−xn−1∥+M(|σn−σn−1|+∥Snun−Sn−1un∥+|γn−γn−1|+|δn−δn−1|)]+|βn−βn−1|∥f(yn−1)−qn−1∥+∥Tnyn−1−Tn−1yn−1∥+|αn−αn−1|∥μA2Tn−1yn−1∥≤(1−αn(τ−δ)2)∥xn−xn−1∥+M1(|αn−αn−1|+|βn−βn−1|+|γn−γn−1|+|δn−δn−1|+|σn−σn−1|+∥Snun−Sn−1un∥)+∥Tnyn−1−Tn−1yn−1∥,



(22)




where supn≥1{M+∥f(yn−1)−qn−1∥+∥μA2Tn−1yn−1∥}≤M1 for some M1>0. From (18) and Conditions (i)–(v), we know that ∑n=0∞αn(τ−δ)2=∞ and


∑n=1∞{M1(|αn−αn−1|+|βn−βn−1|+|γn−γn−1|+|δn−δn−1|+|σn−σn−1|+∥Snun−Sn−1un∥)+∥Tnyn−1−Tn−1yn−1∥}<∞.











Consequently, applying Lemma 3 to (22), we obtain that


limn→∞∥xn+1−xn∥=0.



(23)







In terms of (18), (23) and Conditions (ii)–(iv), we deduce from (20) that


limn→∞∥yn+1−yn∥=0.











Step 3. We claim that ∥xn−Gxn∥→0 as n→∞. Indeed, noticing qn=PC(I−αnμA2)Tnyn for all n≥0, we obtain from (7) that for each p∈Ω,


⟨(I−αnμA2)Tnyn−PC(I−αnμA2)Tnyn,p−qn⟩≤0,








which hence leads to


∥qn−p∥2=⟨PC(I−αnμA2)Tnyn−(I−αnμA2)Tnyn,qn−p⟩+⟨(I−αnμA2)Tnyn−p,qn−p⟩≤⟨(I−αnμA2)Tnyn−p,qn−p⟩=⟨(I−αnμA2)Tnyn−(I−αnμA2)p,qn−p⟩−αn⟨μA2p,qn−p⟩≤12(1−αnτ)2∥Tnyn−p∥2+12∥qn−p∥2−αn⟨μA2p,qn−p⟩.











It follows from (1) that


∥qn−p∥2≤(1−αnτ)(1+θn)2∥yn−p∥2−2αn⟨μA2p,qn−p⟩≤(1−αnτ)∥yn−p∥2+θn(2+θn)∥yn−p∥2−2αn⟨μA2p,qn−p⟩.



(24)







From (15) and (24), we get


∥xn+1−p∥2≤βn∥f(yn)−f(p)∥2+(1−βn)∥qn−p∥2+2βn⟨f(p)−p,xn+1−p⟩≤αnδ∥yn−p∥2+(1−αnτ)∥yn−p∥2+θn(2+θn)∥yn−p∥2−2αn⟨μA2p,qn−p⟩+2βn⟨f(p)−p,xn+1−p⟩=[1−αn(τ−δ)]∥yn−p∥2+θn(2+θn)∥yn−p∥2−2αn⟨μA2p,qn−p⟩+2βn⟨f(p)−p,xn+1−p⟩≤[1−αn(τ−δ)][σn∥xn−p∥+(1−σn)(∥zn−p∥+δn∥A1p∥)]2+θn(2+θn)∥yn−p∥2−2αn⟨μA2p,qn−p⟩+2βn⟨f(p)−p,xn+1−p⟩≤[1−αn(τ−δ)][σn∥xn−p∥2+(1−σn)(∥zn−p∥+δn∥A1p∥)2]+θn(2+θn)∥yn−p∥2−2αn⟨μA2p,qn−p⟩+2βn⟨f(p)−p,xn+1−p⟩≤[1−αn(τ−δ)][σn∥xn−p∥2+(1−σn)∥zn−p∥2+δn∥A1p∥(2∥zn−p∥+δn∥A1p∥)]+θn(2+θn)∥yn−p∥2−2αn⟨μA2p,qn−p⟩+2βn⟨f(p)−p,xn+1−p⟩≤[1−αn(τ−δ)][σn∥xn−p∥2+(1−σn)∥zn−p∥2]+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥).



(25)







We now note that q=PC(p−μ2B2p),vn=PC(un−μ2B2un) and zn=PC(vn−μ1B1vn). Then zn=Gun. By Lemma 5, we have


∥vn−q∥2=∥PC(un−μ2B2un)−PC(p−μ2B2p)∥2≤∥un−p−μ2(B2un−B2p)∥2≤∥un−p∥2−μ2(2β−μ2)∥B2un−B2p∥2



(26)




and


∥zn−p∥2=∥PC(vn−μ1B1vn)−PC(q−μ1B1q)∥2≤∥vn−q−μ1(B1vn−B1q)∥2≤∥vn−q∥2−μ1(2α−μ1)∥B1vn−B1q∥2.



(27)







Substituting (26) for (27), we obtain from (13) that


∥zn−p∥2≤∥un−p∥2−μ2(2β−μ2)∥B2un−B2p∥2−μ1(2α−μ1)∥B1vn−B1q∥2≤∥p−xn∥2−μ2(2β−μ2)∥B2un−B2p∥2−μ1(2α−μ1)∥B1vn−B1q∥2.



(28)







Combining (25) and (28), we get


∥xn+1−p∥2≤[1−αn(τ−δ)][σn∥p−xn∥2+(1−σn)∥p−zn∥2]+αn∥A1p∥(2∥p−zn∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤[1−αn(τ−δ)]{σn∥p−xn∥2+(1−σn)[∥p−xn∥2−μ2(2β−μ2)∥B2un−B2p∥2−μ1(2α−μ1)∥B1vn−B1q∥2]}+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥p−qn∥+∥p−f(p)∥∥xn+1−p∥)≤[1−αn(τ−δ)]∥xn−p∥2−[1−αn(τ−δ)](1−σn)[μ2(2β−μ2)∥B2un−B2p∥2+μ1(2α−μ1)∥B1vn−B1q∥2]+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤∥xn−p∥2−[1−αn(τ−δ)](1−σn)[μ2(2β−μ2)∥B2un−B2p∥2+μ1(2α−μ1)∥B1vn−B1q∥2]+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥),








which immediately yields


[1−αn(τ−δ)](1−σn)[μ2(2β−μ2)∥B2un−B2p∥2+μ1(2α−μ1)∥B1vn−B1q∥2]≤∥xn−p∥2−∥xn+1−p∥2+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤(∥p−xn∥+∥p−xn+1∥)∥xn−xn+1∥+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥).








Since lim infn→∞(1−σn)>0 (due to Condition (iii)), μ1∈(0,2α),μ2∈(0,2β),limn→∞θn=0 and limn→∞αn=0, we obtain from (23) that


limn→∞∥B2un−B2p∥=0andlimn→∞∥B1vn−B1q∥=0.



(29)







Additionally, from (6) and (9), we have


∥vn−q∥2=∥PC(un−μ2B2un)−PC(p−μ2B2p)∥2≤⟨un−μ2B2un−(p−μ2B2p),vn−q⟩=⟨un−p,vn−q⟩+μ2⟨B2p−B2un,vn−q⟩≤12[∥un−p∥2+∥vn−q∥2−∥un−vn−(p−q)∥2]+μ2∥B2p−B2un∥∥vn−q∥,








which implies that


∥p−vn∥2≤∥p−un∥2−∥un−vn−(p−q)∥2+2μ2∥B2p−B2un∥∥vn−q∥.



(30)







In the same way, we derive


∥p−zn∥2=∥PC(vn−μ1B1vn)−PC(q−μ1B1q)∥2≤⟨vn−μ1B1vn−(q−μ1B1q),zn−p⟩=⟨vn−q,zn−p⟩+μ1⟨B1q−B1vn,zn−p⟩≤12[∥vn−q∥2+∥zn−p∥2−∥vn−zn+(p−q)∥2]+μ1∥B1q−B1vn∥∥zn−p∥,








which implies that


∥zn−p∥2≤∥vn−q∥2−∥vn−zn+(p−q)∥2+2μ1∥B1q−B1vn∥∥zn−p∥.



(31)







Substituting (3) for (31), we deduce from (13) that


∥p−zn∥2≤∥p−un∥2−∥un−vn−(p−q)∥2−∥vn−zn+(p−q)∥2+2μ2∥B2p−B2un∥∥vn−q∥+2μ1∥B1q−B1vn∥∥zn−p∥≤∥p−xn∥2−∥un−vn−(p−q)∥2−∥vn−zn+(p−q)∥2+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥.



(32)







Combining (25) and (32), we have


∥xn+1−p∥2≤[1−αn(τ−δ)][σn∥xn−p∥2+(1−σn)∥zn−p∥2]+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤[1−αn(τ−δ)]{σn∥xn−p∥2+(1−σn)[∥xn−p∥2−∥un−vn−(p−q)∥2−∥vn−zn+(p−q)∥2+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥]}+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤[1−αn(τ−δ)]∥xn−p∥2−[1−αn(τ−δ)](1−σn)[∥un−vn−(p−q)∥2+∥vn−zn+(p−q)∥2]+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤∥xn−p∥2−[1−αn(τ−δ)](1−σn)[∥un−vn−(p−q)∥2+∥vn−zn+(p−q)∥2]+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥),








which hence yields


[1−αn(τ−δ)](1−σn)[∥un−vn−(p−q)∥2+∥vn−zn+(p−q)∥2]≤∥xn−p∥2−∥xn+1−p∥2+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤(∥xn−p∥+∥xn+1−p∥)∥xn−xn+1∥+2μ1∥B1q−B1vn∥∥zn−p∥+2μ2∥B2p−B2un∥∥vn−q∥+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥).











Since lim infn→∞(1−σn)>0 (due to Condition (iii)), limn→∞θn=0 and limn→∞αn=0, we conclude from (23) and (29) that


limn→∞∥un−vn−(p−q)∥=0andlimn→∞∥vn−zn+(p−q)∥=0.



(33)







It follows that


∥un−zn∥≤∥un−vn−(p−q)∥+∥vn−zn+(p−q)∥→0(n→∞).











That is,


limn→∞∥un−Gun∥=limn→∞∥un−zn∥=0.



(34)







In addition, according to (12), we have


∥p−un∥2=γn⟨p−xn,p−un⟩+(1−γn)⟨Snun−p,un−p⟩≤γn⟨xn−p,un−p⟩+(1−γn)∥un−p∥2,








which, together with (9), yields


∥p−un∥2≤⟨xn−p,un−p⟩=12[∥xn−p∥2+∥un−p∥2−∥xn−un∥2].











This immediately implies that


∥p−un∥2≤∥p−xn∥2−∥un−xn∥2,








which together with (14) and (26), yields


∥p−xn+1∥2≤[1−αn(τ−δ)][σn∥p−xn∥2+(1−σn)∥p−un∥2]+αn∥A1p∥(2∥p−zn∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤[1−αn(τ−δ)]{σn∥xn−p∥2+(1−σn)[∥xn−p∥2−∥xn−un∥2]}+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤[1−αn(τ−δ)]∥xn−p∥2−[1−αn(τ−δ)](1−σn)∥xn−un∥2+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤∥xn−p∥2−[1−αn(τ−δ)](1−σn)∥xn−un∥2+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥).











Hence, we have


[1−αn(τ−δ)](1−σn)∥xn−un∥2≤∥xn−p∥2−∥xn+1−p∥2+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥)≤(∥xn−p∥+∥xn+1−p∥)∥xn−xn+1∥+αn∥A1p∥(2∥zn−p∥+αn∥A1p∥)+θn(2+θn)∥yn−p∥2+2αn(∥μA2p∥∥qn−p∥+∥f(p)−p∥∥xn+1−p∥).











Since lim infn→∞(1−σn)>0 (due to Condition (iii)), limn→∞θn=0 and limn→∞αn=0, we obtain from (23) that


limn→∞∥xn−un∥=0.



(35)







In addition, observe that


∥xn−zn∥≤∥xn−un∥+∥un−Gun∥,










∥xn−Gxn∥≤∥xn−zn∥+∥Gun−Gxn∥≤∥xn−zn∥+∥un−xn∥,








and


∥xn−yn∥≤(1−σn)∥xn−(I−δnA1)zn∥≤∥xn−zn∥+αn∥A1zn∥.











Then, from (34) and (35), it follows that


limn→∞∥xn−zn∥=0,limn→∞∥xn−Gxn∥=0andlimn→∞∥xn−yn∥=0.



(36)







Step 4. We claim that ∥xn−Snxn∥→0,∥xn−qn∥→0 and ∥xn−Txn∥→0 as n→∞. Indeed, combining (11) and (25), we obtain that


∥Snun−un∥=γn1−γn∥xn−un∥≤b1−b∥xn−un∥→0(n→∞).











That is,


limn→∞∥Snun−un∥=0.



(37)







Since {Sn}n=0∞ is ℓ-uniformly Lipschitzian on C, we deduce from (35) and (37) that


∥Snxn−xn∥≤∥Snxn−Snun∥+∥Snun−un∥+∥un−xn∥≤ℓ∥xn−un∥+∥Snun−un∥+∥un−xn∥=(ℓ+1)∥xn−un∥+∥Snun−un∥→0(n→∞).











That is,


limn→∞∥xn−Snxn∥=0.



(38)







In addition, we observe that


∥xn−Tnyn∥≤∥xn+1−xn∥+∥xn+1−Tnyn∥≤∥xn−xn+1∥+βn∥f(yn)−Tnyn∥+(1−βn)∥(I−αnμA2)Tnyn−Tnyn∥≤∥xn−xn+1∥+αn(∥f(yn)−Tnyn∥+∥μA2(Tnyn)∥).











Hence, we get


∥yn−Tnyn∥≤∥yn−xn∥+∥xn−Tnyn∥≤∥yn−xn∥+∥xn−xn+1∥+αn(∥f(yn)−Tnyn∥+∥μA2(Tnyn)∥).











Consequently, from (23), (36) and limn→∞αn=0, we obtain that


limn→∞∥xn−Tnyn∥=0andlimn→∞∥yn−Tnyn∥=0.



(39)







Thus, it follows that


∥xn−qn∥≤∥xn−(I−αnμA2)Tnyn∥≤∥xn−Tnyn∥+αn∥μA2(Tnyn)∥→0(n→∞).











That is,


limn→∞∥xn−qn∥=0.



(40)







We also note that


∥yn−Tyn∥≤∥yn−Tnyn∥+∥Tnyn−Tn+1yn∥+∥Tn+1yn−Tyn∥≤∥yn−Tnyn∥+∥Tnyn−Tn+1yn∥+(1+θ1)∥Tnyn−yn∥=∥Tnyn−Tn+1yn∥+(2+θ1)∥Tnyn−yn∥.











By Condition (v) and (39), we get


limn→∞∥yn−Tyn∥=0.











In addition, noticing that


∥xn−Txn∥≤∥xn−yn∥+∥yn−Tyn∥+∥Tyn−Txn∥≤∥yn−Tyn∥+(2+θ1)∥xn−yn∥,








we deduce from (36) that


limn→∞∥xn−Txn∥=0.



(41)







Step 5. We claim that ∥xn−S¯xn∥→0 as n→∞ where S¯:=(2I−S)−1. Indeed, first, let us show that S:C→C is pseudocontractive and ℓ-Lipschitzian such that limn→∞∥Sxn−xn∥=0 where Sx=limn→∞Snx∀x∈C. Observe that for all x,y∈C, limn→∞∥Snx−Sx∥=0 and limn→∞∥Sny−Sy∥=0. Since each Sn is pseudocontractive, we get


⟨Sx−Sy,x−y⟩=limn→∞⟨Snx−Sny,x−y⟩≤∥x−y∥2.











This means that S is pseudocontractive. Noting that {Sn}n=0∞ is ℓ-uniformly Lipschitzian on C, we have


∥Sx−Sy∥=limn→∞∥Snx−Sny∥≤ℓ∥x−y∥,∀x,y∈C.











This means that S is ℓ-Lipschitzian. Taking into account the boundedness of {xn} and putting D=conv¯{xn:n≥0} (the closure of convex hull of the set {xn:n≥0}), by Assumption (C6) we have ∑n=1∞supx∈D∥Snx−Sn−1x∥<∞. Hence, by Proposition 1, we get


limn→∞supx∈D∥Snx−Sx∥=0,








which immediately yields


limn→∞∥Snxn−Sxn∥=0.



(42)







Thus, combining (38) with (42), we have


∥xn−Sxn∥≤∥xn−Snxn∥+∥Snxn−Sxn∥→0(n→∞).











That is,


limn→∞∥xn−Sxn∥=0.



(43)







Now, let us show that. if we define S¯:=(2I−S)−1, then S¯:C→C is nonexpansive, Fix(S¯)=Fix(S)=⋂n=0∞Fix(Sn) and limn→∞∥xn−S¯xn∥=0. Indeed, put S¯:=(2I−S)−1, where I is the identity mapping of H. Then, it is known that S¯ is nonexpansive and the fixed point set Fix(S¯)=Fix(S)=⋂n=0∞Fix(Sn). From (43), it follows that


∥xn−S¯xn∥=∥S¯S¯−1xn−S¯xn∥≤∥S¯−1xn−xn∥=∥(2I−S)xn−xn∥=∥xn−Sxn∥→0(n→∞).











That is,


limn→∞∥xn−S¯xn∥=0.



(44)







Step 6. We claim that


lim supn→∞⟨A2x*,x*−qn⟩≤0andlim supn→∞⟨A1x*,x*−zn⟩≤0,



(45)




where {x*}=VI(VI(Ω,A1),A2). Indeed, we fix sequence {qni} of {qn} such that


lim supn→∞⟨A2x*,x*−qn⟩=limi→∞⟨A2x*,x*−qni⟩.











Since {qn} is a bounded sequence in C, we may assume, without loss of generality, that qni⇀x¯∈C. Since limn→∞∥xn−qn∥=0 (due to (40)), it follows from qni⇀x¯ that xni⇀x¯.



Note that G and S¯ are nonexpansive and that T is asymptotically nonexpansive. Since (I−G)xn→0,(I−T)xn→0 and (I−S¯)xn→0 (due to (36), (41) and (44)), by Lemma 7 we have that x¯∈Fix(G)=GSVI(C,B1,B2),x¯∈Fix(T) and x¯∈Fix(S¯)=⋂n=0∞Fix(Sn). Then, x¯∈Ω=⋂n=0∞Fix(Sn)∩GSVI(C,B1,B2)∩Fix(T). We claim that x¯∈VI(Ω,A1). In fact, let y∈Ω be fixed arbitrarily. Then, it follows from (12), (14) and the ζ-inverse-strong monotonicity of A1 that


∥yn−y∥2≤σn∥xn−y∥2+(1−σn)∥PC(zn−δnA1zn)−PCy∥2≤σn∥xn−y∥2+(1−σn)∥(zn−y)−δnA1zn∥2=σn∥xn−y∥2+(1−σn)[∥zn−y∥2+2δn⟨A1zn,y−zn⟩+δn2∥A1zn∥2]≤∥xn−y∥2+(1−σn)[2δn⟨A1y,y−zn⟩+δn2∥A1zn∥2],








which together with {σn}⊂[c,d], implies that for all n≥0,


0≤1δn(1−σn)(∥xn−y∥2−∥yn−y∥2)+2⟨A1y,y−zn⟩+δn1−σn∥A1zn∥2≤(∥xn−y∥+∥yn−y∥)∥xn−yn∥δn(1−d)+2⟨A1y,y−zn⟩+δn1−d∥A1zn∥2.











From (36) it is easy to see that xni⇀x¯ leads to zni⇀x¯. Since limn→∞δn=0 and ∥xn−yn∥=o(δn) (due to the assumption), we have


0≤lim infn→∞{(∥xn−y∥+∥yn−y∥)∥xn−yn∥δn(1−d)+2⟨A1y,y−zn⟩+δn1−d∥A1zn∥2}=lim infn→∞2⟨A1y,y−zn⟩≤limi→∞2⟨A1y,y−zni⟩=2⟨A1y,y−x¯⟩.











It follows that


⟨A1y,y−x¯⟩≥0,∀y∈Ω.








Accordingly, Lemma 8 and the ζ-inverse-strong monotonicity of A1 ensure that


⟨A1x¯,y−x¯⟩≥0,∀y∈Ω;








that is, x¯∈VI(Ω,A1). Consequently, from {x*}=VI(VI(Ω,A1),A2), we have


lim supn→∞⟨A2x*,x*−qn⟩=limi→∞⟨A2x*,x*−qni⟩=⟨A2x*,x*−x¯⟩≤0.











On the other hand, we choose a subsequence {znk} of {zn} such that


lim supn→∞⟨A1x*,x*−zn⟩=limk→∞⟨A1x*,x*−znk⟩.











Since {zn} is a bounded sequence in C, we may assume, without loss of generality, that znk⇀x^∈C. From (36), it is easy to see that znk⇀x^ yields xnk⇀x^. By the same arguments as in the proof of x¯∈Ω, we have x^∈Ω. From x*∈VI(Ω,A1), we get


lim supn→∞⟨A1x*,x*−zn⟩=limk→∞⟨A1x*,x*−znk⟩=⟨A1x*,x*−x^⟩≤0.



(46)







Therefore, the inequalities in (45) hold.



Step 7. We claim that xn→x* as n→∞. Indeed, putting p=x* in (14) and at Lines 5–6 in (25), we obtain that ∥zn−x*∥≤∥xn−x*∥ and


∥xn+1−x*∥2≤[1−αn(τ−δ)]∥yn−x*∥2+θn(2+θn)∥yn−x*∥2−2αn⟨μA2x*,qn−x*⟩+2βn⟨f(x*)−x*,xn+1−x*⟩.



(47)







From (12) and the ζ-inverse-strong monotonicity of A1, it follows that


∥yn−x*∥2≤σn∥xn−x*∥2+(1−σn)∥PC(zn−δnA1zn)−x*∥2≤σn∥xn−x*∥2+(1−σn)∥(zn−x*)−δnA1zn∥2=σn∥xn−x*∥2+(1−σn)[∥zn−x*∥2+2δn⟨A1zn,x*−zn⟩+δn2∥A1zn∥2]≤σn∥xn−x*∥2+(1−σn)[∥xn−x*∥2+2δn⟨A1x*,x*−zn⟩+δn2∥A1zn∥2]=∥xn−x*∥2+(1−σn)[2δn⟨A1x*,x*−zn⟩+δn2∥A1zn∥2].



(48)







Thus, in terms of (47) and (48), we get


∥xn+1−x*∥2≤[1−αn(τ−δ)]∥yn−x*∥2+θn(2+θn)∥yn−x*∥2+2αn⟨μA2x*,x*−qn⟩+2βn⟨f(x*)−x*,xn+1−x*⟩≤[1−αn(τ−δ)]{∥xn−x*∥2+(1−σn)[2δn⟨A1x*,x*−zn⟩+δn2∥A1zn∥2]}+θn(2+θn)∥yn−x*∥2+2αn⟨μA2x*,x*−qn⟩+2βn∥f(x*)−x*∥∥xn+1−x*∥≤[1−αn(τ−δ)]∥xn−x*∥2+(1−αn(τ−δ))(1−σn)2δn⟨A1x*,x*−zn⟩+αn2∥A1zn∥2+θn(2+θn)∥yn−x*∥2+2αn⟨μA2x*,x*−qn⟩+2βn∥f(x*)−x*∥∥xn+1−x*∥=[1−αn(τ−δ)]∥xn−x*∥2+αn(τ−δ){(1−αn(τ−δ))(1−σn)2δnαn(τ−δ)⟨A1x*,x*−zn⟩+αn∥A1zn∥2τ−δ+θn(2+θn)∥yn−x*∥2αn(τ−δ)+2τ−δ⟨μA2x*,x*−qn⟩+2βn∥f(x*)−x*∥∥xn+1−x*∥αn(τ−δ)}.



(49)







It can be readily seen that (45) guarantees that


lim supn→∞(1−αn(τ−δ))(1−σn)2δnαn(τ−δ)⟨A1x*,x*−zn⟩≤0








and


lim supn→∞2τ−δ⟨μA2x*,x*−qn⟩≤0.











In fact, from lim supn→∞⟨A1x*,x*−zn⟩≤0, it follows that for any given ε>0 there exists an integer n0≥1 such that ⟨A1x*,x*−zn⟩≤ε,∀n≥n0. Then, from δn≤αn, we get


(1−αn(τ−δ))(1−σn)2δnαn(τ−δ)⟨A1x*,x*−zn⟩≤(1−αn(τ−δ))(1−σn)2δnαn(τ−δ)ε≤2τ−δε,∀n≥n0,








which hence yields


lim supn→∞(1−αn(τ−δ))(1−σn)2δnαn(τ−δ)⟨A1x*,x*−zn⟩≤2τ−δε.











Letting ε→0, we get lim supn→∞(1−αn(τ−δ))(1−σn)2δnαn(τ−δ)⟨A1x*,x*−zn⟩≤0.



Since ∑n=0∞αn=∞,limn→∞θnαn=0 and limn→∞βnαn=0 (due to Conditions (i) and (ii)), we deduce that ∑n=0∞αn(τ−δ)=∞ and


lim supn→∞{(1−αn(τ−δ))(1−σn)2δnαn(τ−δ)⟨A1x*,x*−zn⟩+αn∥A1zn∥2τ−δ+θn(2+θn)∥yn−x*∥2αn(τ−δ)+2τ−δ⟨μA2x*,x*−qn⟩+2βn∥f(x*)−x*∥∥xn+1−x*∥αn(τ−δ)}≤0.











We can apply Lemma 3 to the relation (49) and conclude that xn→x* as n→∞. This completes the proof. □





The following results can be obtained by Theorem 1 easily, and hence we omit the details.



Corollary 1.

We suppose C is a convex nonempty closed set of a real Hilbert space H and f:C→C is a contraction with the parameter δ∈[0,1). Let A1 be a ζ-inverse-strongly monotone nonself mapping on C and A2 be a strongly positive bounded linear self operator one H with the parameter γ>0, where δ<τ:=1−1−μ(2γ−μ∥A2∥2)∈(0,1], 0<μ<2γ∥A2∥2. Let the mappings B1,B2:C→H be α-inverse-strongly monotone and β-inverse-strongly monotone, respectively. Let T be an asymptotically nonexpansive self mapping on set C with a sequence {θn}. Let {Sn}n=0∞ be a countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings on C satisfying the assumptions in Problem 1. For any given x0∈C, we suppose {xn} is a vector sequence through


 un=xn+Snun2, vn=PC(un−μ2B2un), zn=PC(vn−μ1B1vn), yn=σnxn+(1−σn)PC(I−δnA1)zn, xn+1=βnf(yn)+(1−βn)PC(I−αnμA2)Tnyn,∀n≥0,



(50)




where μ1∈(0,2α) and μ2∈(0,2β). Suppose that {αn},{βn},{σn}⊂(0,1] and {δn}⊂(0,2ζ] are the sequences as in Theorem 1. Then, the sequence {xn}n=0∞ generated by (50) satisfies the following properties:

	(a) 

	
{xn}n=0∞ is bounded.




	(b) 

	
limn→∞∥xn−yn∥=0,limn→∞∥xn−Gxn∥=0,limn→∞∥xn−Txn∥=0 and



limn→∞∥xn−Sxn∥=0.




	(c) 

	
{xn}n=0∞ reaches to the unique solution of Problem 1 if ∥xn−yn∥δn→0 as n→∞.











Proof. 

Since the linear bounded operator A2:H→H is positive and strong with the parameter γ>0, we know that A2 is κ-Lipschitzian and η-strongly monotone where κ=∥A2∥ and η=γ. In this case, we obtain that 0<μ<2ηκ2=2γ∥A2∥2, and


δ<τ:=1−1−μ(2η−μκ2)=1−1−μ(2γ−μ∥A2∥2)∈(0,1].











Therefore, utilizing Theorem 1, we derive the desired result. □





Corollary 2.

We suppose C is a convex nonempty closed set of a real Hilbert space H. Let f:C→C be a contraction with the parameter δ∈[0,1). Let A1:C→H be a ζ-inverse-strongly monotone mapping and A2:C→H be κ-Lipschitzian and η-strongly monotone with the parameters κ,η>0, where δ<τ:=1−1−μ(2η−μκ2)∈(0,1], 0<μ<2ηκ2. We suppose the nonself mappings B1,B2:C→H are α-inverse-strongly monotone and β-inverse-strongly monotone, respectively. Let T:C→C be a nonexpansive mapping and {Sn}n=0∞ be a countable family of ℓ-uniformly Lipschitzian pseudocontractive self-mappings on C satisfying the assumptions in Problem 1. For any given x0∈C, let {xn} be the sequence generated by


 un=γnxn+(1−γn)Snun, vn=PC(un−μ2B2un), zn=PC(vn−μ1B1vn), yn=σnxn+(1−σn)PC(I−δnA1)zn, xn+1=βnf(yn)+(1−βn)PC(I−αnμA2)Tyn,∀n≥0,



(51)




where μ1∈(0,2α) and μ2∈(0,2β). Suppose that {αn},{βn},{γn},{σn}⊂(0,1] and {δn}⊂(0,2ζ] are the sequences as in Theorem 1. Then, the sequence {xn}n=0∞ generated by (51) satisfies the following properties:

	(a) 

	
{xn}n=0∞ is bounded.




	(b) 

	
limn→∞∥xn−yn∥=0,limn→∞∥xn−Gxn∥=0,limn→∞∥xn−Txn∥=0 and limn→∞∥xn−Sxn∥=0.




	(c) 

	
{xn}n=0∞ reaches to the unique solution of Problem 1 if ∥xn−yn∥δn→0 as n→∞.











Proof. 

Since T is a nonexpansive self mapping defined on set C, T is, of course, an asymptotically nonexpansive mapping with the parameter sequence {θn}, where θn=0∀n≥0. Therefore, utilizing the similar argument process to that of Theorem 1, we obtain the desired result. □






4. Applications to Finite Generalized Mixed Equilibria


We suppose set C is convex nonempty closed and a mapping T with fixed points is named as a attracting nonexpansive mapping if it is nonexpansive and satisfies:


∥Tx−p∥<∥x−p∥forallx∉Fix(T)andp∈Fix(T).











Lemma 9 

([27]). Let X be a strictly convex space, T1 be an attracting nonexpansive mapping and T2 be a nonexpansive mapping. We suppose they have common fixed points. Then, Fix(T1T2)=Fix(T2T1)=Fix(T1)∩Fix(T2).



Let A:C→H be nonself mapping, φ:C→R be a single-valued real function, and Θ:C×C→R be a bifunction to R. The mixed generalized equilibrium problem (MGEP) is to find x∈C such that


Θ(x,y)+⟨Ax,y−x⟩≥0+φ(y)−φ(x),∀y∈C.



(52)







We borrow the collection of solutions of MGEP (52) by MGEP(Θ,φ,A). The GMEP (52) is quite useful in the sense that it includes many problems, namely, vector optimization problems, minimax problems, classical variational inequalities, Nash equilibrium problems in noncooperative games and others. For different aspects and solution methods, we refer to [28,29,30,31,32,33,34,35,36,37,38] and the references therein.



In particular, if φ=0, then MGEP (52) become the generalized equilibrium problem (GEP) of finding x∈C such that


Θ(x,y)+⟨Ax,y−x⟩≥0,∀y∈C.



(53)







The collection of solutions of GEP is used by GEP(Θ,A).



If A=0, then MGEP (52) become the mixed equilibrium problem (MEP). which is to find x∈C such that


Θ(x,y)+φ(y)−φ(x)≥0,∀y∈C.











The collection of solutions of MEP is used by MEP(Θ,φ).



If φ=0 and A=0, then MGEP (52) become to the equilibrium problem (EP) (see Blum and Oettli [30]), which will approximate x∈C with


Θ(x,y)≥0,∀y∈C.











The collection of solutions of EP is used by EP(Θ).



Here, we list some elementary conclusions for the MEP.



It is first used in [38] that Θ:C×C→R is a bifunction and φ:C→R is a convex lower semicontinuous function restricted to the following items

	(A1) 

	
∀x∈C, Θ(x,x)≡0.




	(A2) 

	
Θ has the monotonicity, i.e., ∀x,y∈C, Θ(x,y)+Θ(y,x)≤0.




	(A3) 

	


lim supt→0+Θ(tz+(1−t)x,y)≤Θ(x,y).












	(A4) 

	
∀x∈C, Θ(x,·) is lower semicontinuous convex.




	(B1) 

	
∀x∈H and ∀r>0, we fix a set Dx⊂C and yx∈C with


Θ(z,yx)+φ(yx)−φ(z)+1r⟨yx−z,z−x⟩<0











∀z∈C\Dx.




	(B2) 

	
C acts as a bounded set.











Lemma 10 

([38]). We suppose that Θ:C×C→R has conditions (A1)–(A4) and φ:C→R has the properties proper lower semicontinuous and convex, if either condition (B1) or condition (B2) is true. For r>0 and x∈H, generate an operator Tr(Θ,φ):H→C through


Tr(Θ,φ)(x):={z∈C:φ(y)+Θ(z,y)−φ(z)+1r⟨y−z,z−x⟩≥0,∀y∈C}








for all x∈H. Then,

	(i) 

	
Set Tr(Θ,φ)(x) is a singleton set.




	(ii) 

	
∀x,y∈H,


∥Tr(Θ,φ)x−Tr(Θ,φ)y∥2≤⟨Tr(Θ,φ)x−Tr(Θ,φ)y,x−y⟩.












	(iii) 

	
MEP(Θ,φ)=Fix(Tr(Θ,φ)).




	(iv) 

	
MEP(Θ,φ) is convex closed.




	(v) 

	
∥Ts(Θ,φ)x−Tt(Θ,φ)x∥2≤s−ts⟨Ts(Θ,φ)x−Tt(Θ,φ)x,Ts(Θ,φ)x−x⟩, ∀s,t>0 and ∀x∈H.











Next, under some mild control conditions, we establish the strong convergence of the proposed algorithm to the unique element {x*}=VI(VI(Ω,A1),A2) (i.e., the unique solution of a THCVI), where Ω:=⋂i=1NGMEP(Θi,φi,Ai)∩GSVI(C,B1,B2)∩Fix(S)∩Fix(T).



Theorem 2.

We suppose C is a convex nonempty closed set. Assume that, ∀i=1,2,…,N, Θi:C×C→R a bifunction has Conditions (A1)–(A4), φi:C→R∪{+∞} is a lower semicontinuous, convex proper function with Condition (B1) or Condition (B2), and Ai:C→H is an ηi-inverse-strongly monotone nonself mapping. Let f:C→C be a contraction with the parameter δ∈[0,1), A1:C→H be a ζ-inverse-strongly monotone nonself mapping and A2:C→H be κ-Lipschitzian and η-strongly monotone with parameters κ,η>0, where δ<τ:=1−1−μ(2η−μκ2)∈(0,1], 0<μ<2ηκ2. Let the nonself mappings B1,B2:C→H be α-inverse-strongly monotone and β-inverse-strongly monotone, respectively. Let self mapping T, defined on C, be a nonexpansive mapping and self mapping S, also defined on C, be an ℓ-Lipschitzian pseudocontractive mapping such that Ω:=⋂i=1NGMEP(Θi,φi,Ai)∩GSVI(C,B1,B2)∩Fix(S)∩Fix(T)≠∅ and VI(Ω,A1)≠∅, where GSVI(C,B1,B2) is the fixed point set of the mapping G:=PC(I−μ1B1)PC(I−μ2B2) with μ1∈(0,2α) and μ2∈(0,2β). For any given x0∈C, let {xn} be the sequence generated by


 un=γnxn+(1−γn)Sun, vn=PC(un−μ2B2un), zn=PC(vn−μ1B1vn), yn=σnxn+(1−σn)PC(I−δnA1)zn, xn+1=βnf(yn)+(1−βn)PC(I−αnμA2)TΛNyn,∀n≥0,



(54)




where ΔN=Tr1(Θ1,φ1)(I−r1A1)⋯TrN(ΘN,φN)(I−rNAN) with ri∈(0,2ηi) for each i=1,2,…,N. Suppose that {αn},{βn},{γn},{σn}⊂(0,1] and {δn}⊂(0,2ζ] are the sequences such that

	(i) 

	
αn→0 as n→∞, ∑n=0∞αn=∞ and ∑n=0∞|αn+1−αn|<∞.




	(ii) 

	
βnαn→0 as n→∞ and ∑n=0∞|βn+1−βn|<∞.




	(iii) 

	
0<lim infn→∞σn≤lim supn→∞σn<1 and ∑n=0∞|σn+1−σn|<∞.




	(iv) 

	
0<lim infn→∞γn≤lim supn→∞γn<1 and ∑n=0∞|γn+1−γn|<∞.




	(v) 

	
δn≤αn∀n≥0 and ∑n=0∞|δn+1−δn|<∞.






Then, the sequence {xn}n=0∞ generated by (54) satisfies the following properties:

	(a) 

	
{xn}n=0∞ is bounded.




	(b) 

	
limn→∞∥xn−yn∥=0,limn→∞∥xn−Gxn∥=0,limn→∞∥xn−TΔNxn∥=0 and limn→∞∥xn−Sxn∥=0.




	(c) 

	
{xn}n=0∞ converges strongly to the unique element {x*}=VI(VI(Ω,A1),A2) (i.e., the unique solution of a THCVI), provided ∥xn−yn∥=o(δn).











Proof. 

First, let us show that for each i=1,2,…,N, the composite mapping Tri(Θi,φi)(I−riAi) with ri∈(0,2ηi) is nonexpansive. Indeed, from Lemma 10 (iii), it is not difficult to obtain


GMEP(Θi,φi,Ai)=Fix(Tri(Θi,φi)(I−riAi)).











Utilizing Lemma 5 and Lemma 10 (ii), we have


∥Tri(Θi,φi)(I−riAi)x−Tri(Θi,φi)(I−riAi)y∥2≤∥(I−riAi)x−(I−riAi)y∥2≤∥x−y∥2+ri(ri−2ηi)∥Ai−Aiy∥2≤∥x−y∥2.











Thus, each composite mapping Tri(Θi,φi)(I−riAi) is nonexpansive. Moreover, we claim that Tri(Θi,φi)(I−riAi) is also attracting nonexpansive for each i=1,2,…,N. In fact, for all x∉GMEP(Θi,φi,Ai) and p∈GMEP(Θi,φi,Ai), by the firm nonexpansivity of Tri(Θi,φi) (due to Lemma 10 (ii)), we obtain


∥Tri(Θi,φi)(I−riAi)x−p∥2=∥Tri(Θi,φi)(I−riAi)x−Tri(Θi,φi)(I−riAi)p∥2≤⟨Tri(Θi,φi)(I−riAi)x−Tri(Θi,φi)(I−riAi)p,(I−riAi)x−(I−riAi)p⟩=12{∥Tri(Θi,φi)(I−riAi)x−Tri(Θi,φi)(I−riAi)p∥2+∥(I−riAi)x−(I−riAi)p∥2−∥Tri(Θi,φi)(I−riAi)x−Tri(Θi,φi)(I−riAi)p−(I−riAi)x+(I−riAi)p∥2}=12{∥Tri(Θi,φi)(I−riAi)x−p∥2+∥(I−riAi)x−(I−riAi)p∥2−∥Tri(Θi,φi)(I−riAi)x−p−(I−riAi)x+(I−riAi)p∥2},








which immediately implies that


∥Tri(Θi,φi)(I−riAi)x−p∥2≤∥(I−riAi)x−(I−riAi)p∥2−∥Tri(Θi,φi)(I−riAi)x−p−(I−riAi)x+(I−riAi)p∥2.



(55)







Next, we discuss two cases.



Case 1. If Aix=Aip, then from (55) we have


∥Tri(Θi,φi)(I−riAi)x−p∥2≤∥(I−riAi)x−(I−riAi)p∥2−∥Tri(Θi,φi)(I−riAi)x−p−(I−riAi)x+(I−riAi)p∥2=∥x−p∥2−∥Tri(Θi,φi)(I−riAi)x−x∥2<∥x−p∥2.











Case 2. If Aix≠Aip, then from (55) we get


∥Tri(Θi,φi)(I−riAi)x−p∥2≤∥(x−riAix)−(p−riAip)∥2−∥Tri(Θi,φi)(I−riAi)x−p−(I−riAi)x+(I−riAi)p∥2≤∥(x−riAix)−(p−riAip)∥2≤∥x−p∥2+ri(ri−2ηi)∥Aix−Aip∥2<∥x−p∥2








(due to ri∈(0,2ηi)). Summing up the above two cases, we know that each composite mapping Tri(Θi,φi)(I−riAi) is also attracting nonexpansive. Therefore, by Lemma 9, we conclude that Fix(TΔN)=⋂i=1NGMEP(Θi,φi,Ai)∩Fix(T). Then, we get the desired result by Theorem 1 easily. □
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