An Iterative Approach to the Solutions of Proximal Split Feasibility Problems
Abstract
:1. Introduction
- Fixed an initialization .
- Assume that has been obtained. Calculate where and
- If then the iterative procedure stops, otherwise continue to compute the next iterate
- Fixed and .
- Set and calculate
- If and , then the iterative process stops, otherwise continue to the next step.
- Set and repeat steps 2-3.
2. Preliminaries
- denotes the weak convergence of to u;
- denotes the strong convergence of to u;
- means the set of fixed points of S.
- (i)
- for all ;
- (ii)
- there exists a constant M such that for all ;
- (iii)
- and ;
- (iv)
- for all .
- (i)
- for all ;
- (ii)
- and
- (iii)
- ;
- (iv)
- for all .
3. Main Results
- (i)
- and are two real Hilbert spaces and and are two closed convex sets;
- (ii)
- is a bounded linear operator, and are two proper, convex and lower semi-continuous functions.
- Given fixed point . Set .
- Calculate and via the iterative procedures
- If , then the iterative process stops (in this case, is a solution of (2) by Lemma 5), otherwise continuous to the next step.
- Compute
- Set and repeat steps 2–4.
- (C1):
- and ;
- (C2):
- ;
- (C3):
- .
- Given fixed point . Set .
- Calculate and via the iterative procedures
- If , then the iterative process stops (in this case, by Lemma 5), otherwise continuous to the next step.
- Compute
- Set and repeat steps 2–4.
Author Contributions
Funding
Conflicts of Interest
References
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Qin, X.; Yao, J.-C.; Yao, Y.-H. Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces. J. Nonlinear Convex Anal. 2018, 19, 251–264. [Google Scholar]
- Byrne, C. Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 2002, 18, 441–453. [Google Scholar] [CrossRef]
- Xu, J.; Chi, E.-C.; Yang, M.; Lange, K. A majorization-minimization algorithm for split feasibility problems. Comput. Optim. Appl. 2018, 71, 795–828. [Google Scholar] [CrossRef]
- Wang, F.; Xu, H.-K. Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem. J. Inequal. Appl. 2010, 2010, 102085. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Yao, J.-C. An iterative algorithm for solving the generalized variational inequalities and fixed points problems. Mathematics 2019, 7, 61. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Liou, Y.-C. Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013, 2013, 201. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Liou, Y.-C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 2018, 67, 1309–1319. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, J.-C.; Liou, Y.-C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpathian J. Math. 2018, 34, 459–466. [Google Scholar]
- Hieu, D.-V. Parallel extragradient-proximal methods for split equilibrium problems. Math. Model. Anal. 2016, 21, 478–501. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, J.; Liou, Y.-C. Regularized methods for the split feasibility problem. Abstr. Appl. Anal. 2012, 2012, 140679. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Liou, Y.-C.; Yao, J.-C. Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction. Fixed Point Theory Appl. 2015, 2015, 127. [Google Scholar] [CrossRef]
- Petrot, N.; Suwannaprapa, M.; Dadashi, V. Convergence theorems for split feasibility problems on a finite sum of monotone operators and a family of nonexpansive mappings. J. Inequal. Appl. 2018, 2018, 205. [Google Scholar] [CrossRef]
- Moudafi, A.; Gibali, A. l1-l2 regularization of split feasibility problems. Numer. Algorithms 2018, 78, 739–757. [Google Scholar] [CrossRef]
- Gibali, A.; Liu, L.W.; Tang, Y.-C. Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim. Lett. 2018, 12, 817–830. [Google Scholar] [CrossRef]
- Wang, F. Polyak’s gradient method for split feasibility problem constrained by level sets. Numer. Algorithms 2018, 77, 925–938. [Google Scholar] [CrossRef]
- He, S.; Tian, H.; Xu, H.-K. The selective projection method for convex feasibility and split feasibility problems. J. Nonlinear Convex Anal. 2018, 19, 1199–1215. [Google Scholar]
- Yao, Y.; Liou, Y.-C.; Yao, J.-C. Iterative algorithms for the split variational inequality and fixed point problems under nonlinear transformations. J. Nonlinear Sci. Appl. 2017, 10, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Duong, V.-T.; Dang, V.-H. An inertial method for solving split common fixed point problems. J. Fixed Point Theory Appl. 2017, 19, 3029–3051. [Google Scholar]
- Buong, N. Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces. Numer. Algorithms 2017, 76, 783–798. [Google Scholar] [CrossRef]
- Dadashi, V. Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 2017, 96, 299–306. [Google Scholar] [CrossRef]
- Takahashi, W. The split common null point problem for generalized resolvents in two banach spaces. Numer. Algorithms 2017, 75, 1065–1078. [Google Scholar] [CrossRef]
- Yao, Y.; Agarwal, R.-P.; Postolache, M.; Liou, Y.-C. Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem. Fixed Point Theory Appl. 2014, 2014, 183. [Google Scholar] [CrossRef] [Green Version]
- Qu, B.; Wang, C.; Xiu, N. Analysis on Newton projection method for the split feasibility problem. Computat. Optim. Appl. 2017, 67, 175–199. [Google Scholar] [CrossRef]
- Dong, Q.-L.; Tang, Y.-C.; Cho, Y.-J.; Rassias, T.-M. Optimal choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Glob. Optim. 2018, 71, 341–360. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Zhu, Z. Gradient methods with selection technique for the multiple-sets split feasibility problem. Optimization 2019, in press. [Google Scholar]
- Dadashi, V.; Postolache, M. Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators. Arab. J. Math. 2019. [Google Scholar] [CrossRef]
- Yao, Y.; Leng, L.; Postolache, M.; Zheng, X. Mann-type iteration method for solving the split common fixed point problem. J. Nonlinear Convex Anal. 2017, 18, 875–882. [Google Scholar]
- Moreau, J.-J. Proximite et dualite dans un espace hilbertien. Bull. Soc. Math. 1965, 93, 273–299. [Google Scholar] [CrossRef]
- Yosida, K. Functional Analysis; Springer: Berlin, Germany, 1964. [Google Scholar]
- Shehu, Y.; Cai, G.; Iyiola, O.-S. Iterative approximation of solutions for proximal split feasibility problems. Fixed Point Theory Appl. 2015, 2015, 123. [Google Scholar] [CrossRef]
- Abbas, M.; AlShahrani, M.; Ansari, Q.-H.; Iyiola, O.-S.; Shehu, Y. Iterative methods for solving proximal split minimization problems. Numer. Algorithms 2018, 78, 193–215. [Google Scholar] [CrossRef]
- Witthayarat, U.; Cho, Y.-J.; Cholamjiak, P. On solving proximal split feasibility problems and applications. Ann. Funct. Anal. 2018, 9, 111–122. [Google Scholar] [CrossRef]
- Yao, Y.; Qin, X.; Yao, J.-C. Constructive approximation of solutions to proximal split feasibility problems. J. Nonlinear Convex Anal. 2019, in press. [Google Scholar]
- Yao, Y.; Postolache, M.; Qin, X.; Yao, J.-C. Iterative algorithms for the proximal split feasibility problem. UPB Sci. Ser. A Appl. Math. Phys. 2018, 80, 37–44. [Google Scholar]
- Moudafi, A.; Thakur, B.-S. Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 2014, 8, 2099–2110. [Google Scholar] [CrossRef]
- Shehu, Y.; Iyiola, O.-S. Strong convergence result for proximal split feasibility problem in Hilbert spaces. Optimization 2017, 66, 2275–2290. [Google Scholar] [CrossRef]
- Yao, Y.-H.; Qin, X.; Yao, J.-C. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
- Yao, Y.; Chen, R.; Xu, H.-K. Schemes for finding minimum-norm solutions of variational inequalities. Nonlinear Anal. 2010, 72, 3447–3456. [Google Scholar] [CrossRef]
- Yao, Y.; Shahzad, N. Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012, 6, 621–628. [Google Scholar] [CrossRef]
- Mainge, P.-E.; Maruster, S. Convergence in norm of modified Krasnoselki-Mann iterations for fixed points of demicontractive mappings. Set-Valued Anal. 2007, 15, 67–79. [Google Scholar]
- Goebel, K.; Kirk, W.-A. Topics in Metric Fixed Point Theory; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Xu, H.-K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.-J.; Yao, Y. An Iterative Approach to the Solutions of Proximal Split Feasibility Problems. Mathematics 2019, 7, 145. https://doi.org/10.3390/math7020145
Zhu L-J, Yao Y. An Iterative Approach to the Solutions of Proximal Split Feasibility Problems. Mathematics. 2019; 7(2):145. https://doi.org/10.3390/math7020145
Chicago/Turabian StyleZhu, Li-Jun, and Yonghong Yao. 2019. "An Iterative Approach to the Solutions of Proximal Split Feasibility Problems" Mathematics 7, no. 2: 145. https://doi.org/10.3390/math7020145
APA StyleZhu, L. -J., & Yao, Y. (2019). An Iterative Approach to the Solutions of Proximal Split Feasibility Problems. Mathematics, 7(2), 145. https://doi.org/10.3390/math7020145