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Abstract

:

In this paper, we study a class of nonlinear Choquard equation driven by the fractional Laplacian. When the potential function vanishes at infinity, we obtain the existence of a ground state solution for the fractional Choquard equation by using a non-Nehari manifold method. Moreover, in the zero mass case, we obtain a nontrivial solution by using a perturbation method. The results improve upon those in Alves, Figueiredo, and Yang (2015) and Shen, Gao, and Yang (2016).
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1. Introduction


In this paper, we deal with the following nonlocal equation:


(−Δ)su+V(x)u=∫RNQ(y)F(u(y))|x−y|μdyQ(x)f(u),inRN,u∈Ds,2(RN),



(1)




where N≥3, 0<s<1, 0<μ<N, V∈C(RN,[0,∞)),Q∈C(RN,(0,∞)), f∈C(R,R) and F(t)=∫0tf(s)ds. The fractional Laplacian (−Δ)s is defined as


(−Δ)su(x)=CN,sP.V.∫RNu(x)−u(y)|x−y|N+2sdy,u∈S(RN),








where P.V. denotes the principalvalue of the singular integral, S(RN) is the Schwartz space of rapidly decaying C∞ functions in RN, and


CN,s=22ssΓ(N+s)πN/2Γ(1−s).








(−Δ)s is a pseudo-differential operator, and can be equivalently defined via Fourier transform as


F[(−Δ)su](ξ)=|ξ|2sF[u](ξ),u∈S(RN),








where F is the Fourier transform, that is,


F[u](ξ)=1(2π)N2∫RNe−iξ·xu(x)dx,u∈S(RN).











The fractional Laplace operator (−Δ)s is the infinitesimal generator of Lévy stable diffusion processes, and appears in several areas such as the thin obstacle problem, anomalous diffusion, optimization, finance, phase transitions, crystal dislocation, multiple scattering, and materials science, see [1,2,3,4,5] and their references.



Recently, a great deal of work has been devoted to the study of the Choquard equations, see [6,7,8,9,10,11,12,13,14] and their references. For instance, Alves, Cassani, Tarsi, and Yang [7] studied the following singularly perturbed nonlocal Schrödinger equation:


−ε2Δu+V(x)u=εμ−21|x|μ∗F(u)f(u),inR2,








where 0<μ<2 and ε is a positive parameter, the nonlinearity f has critical exponential growth in the sense of Trudinger–Moser. By using variational methods, the authors established the existence and concentration of solutions for the above equation.



In [6], Alves, Figueiredo and Yang studied the following Choquard equation:


−Δu+V(x)u=(1|x|μ∗F(u))f(u),inRN.u∈H1(RN).



(2)







Under the assumption V(x)→0 as |x|→∞, the authors obtained a nontrivial solution for (2) by using a penalization method.



In the physical case N=3,μ=1, V(x)=1 and F(t)=t22, (2) is also known as the stationary Hartree equation [15]. It dates back to the description of the quantum mechanics of a polaron at rest by Pekar in 1954 [16]. In 1976, Choquard used (2) to describe an electron trapped in its own hole, in a certain approximation to the Hartree–Fock theory of one-component plasma [11]. In 1996, Penrose proposed (2) as a model of self-gravitating matter, in a programme in which quantum state reduction is understood as a gravitational phenomenon [15].



In addition, there is little literature on the fractional Choquard equations. Frank and Lenzmann [17] established the uniqueness and radial symmetry of ground state solutions for the following equation:


(−Δ)12u+u=(|x|−1∗|u|2)u,inRN.











D’Avenia, Siciliano, and Squassina [18] obtained the existence, regularity, symmetry, and asymptotic of the solutions for the nonlocal problem


(−Δ)su+ωu=(|x|−μ∗|u|p)|u|p−2u,inRN.











In [19], Shen, Gao, and Yang studied the following fractional Choquard equation:


(−Δ)su+u=(|x|−μ∗F(u))f(u),inRN,



(3)




where N≥3,s∈(0,1), and μ∈(0,N). Under the general Berestycki–Lions-type conditions [20], the authors obtained the existence and regularity of ground states for (3). The authors also established the Pohožaev identity for (3):


N−2s2∫RN|(−Δ)s2u|2dx+N2∫RNu2dx=2N−μ2∫RN(|x|−μ∗F(u))F(u)dx.











Motivated by the above works, in the first part of this article, we study the ground state solution for (1). We assume

	(I)

	
V(x),Q(x)>0 for all x∈RN,V∈C(RN,R) and Q∈C(RN,R)∩L∞(RN,R);




	(II)

	
if {An}⊂RN is a sequence of Borel sets such that meas{An}≤δ for all n and some δ>0, then


limr→∞∫An∩Brc(0)[Q(x)]2N2N−μdx=0uniformlyinn∈N;












	(III)

	
one of the below conditions occurs:


QV∈L∞(RN),



(4)




or there exists p∈(2,2s∗) such that


[Q(x)]2N2N−μ[V(x)]2s∗−p2s∗−2→0,|x|→∞,



(5)




where 2s∗=2NN−2s is the fractional critical exponent;







	(F1)

	
F(t)=o(|t|2N−μN) as t→0 if (4) holds; or F(t)=o(|t|p(2N−μ)2N) as t→0 if (5) holds;




	(F2)

	
F(t)=o(|t|2N−μN−2s) as t→∞;




	(F3)

	
f(t) is nondecreasing on R;




	(F4)

	
lim|t|→+∞F(t)|t|=+∞.









It is necessary for us to point out that the original of assumptions (I)–(III) come from [21,22,23]. The assumptions can be used to prove that the work space E is compactly embedded into the weighted Lebesgue space LKq(RN), see Section 2 and Lemma 1.



Now, we can state the first result of this article.



Theorem 1.

Suppose that (I),(II),(III) and (F1)–(F4) hold. Then (1) has a ground state solution.





Remark 1.

Since the Nehari-type monotonicity condition for f is not satisfied, the Nehari manifold method used in [24] no longer works in our setting. To prove Theorem 2, we use the non-Nehari manifold method developed by Tang [25], which relies on finding a minimizing sequence outside the Nehari manifold by using the diagonal method (see Lemma 8).





In the second part of this article, we consider the following fractional Choquard equation with zero mass case:


(−Δ)su=1|x|μ∗F(u)f(u),inRN,u∈Ds,2(RN),



(6)




where N≥3, 0<s<1, 0<μ<min{N,4s}. The homogeneous fractional Sobolev space Ds,2(RN), also denoted by H˙s(RN), can be characterized as the space


Ds,2(RN)=u∈L2s∗(RN):∫RN∫RN|u(x)−u(y)|2|x−y|N+2sdxdy<+∞.








f∈C(R,R) satisfy the following Berestycki–Lions-type condition [19,20]:

	(F5)

	
F is not trivial, that is, F≡0;




	(F6)

	
there exists C>0 such that for every t∈R,


|tf(t)|≤C|t|2N−μN−2s;












	(F7)

	


limt→0F(t)|t|2=limt→∞F(t)|t|2N−μN−2s=0.

















The second result of this paper is as follows.



Theorem 2.

Suppose that f satisfies (F5)–(F7). Then (6) has a nontrivial solution.





Remark 2.

Notice that the method used in [13] is no longer applicable for (6), because it relies heavily on the constant potentials. In the zero mass case, we use the perturbation method and the Pohožaev identity established in [19] to overcome this difficulty.





In this article, we make use of the following notation:

	
∥·∥p denotes the usual norm of Lp(R3);



	
C,Ci,i=1,2,…, denote various positive constants whose exact values are irrelevant;



	
o(1) denotes the infinitesimal as n→+∞.









2. Ground State Solutions for (1)


Set


Ds,2(RN):=u∈L2s∗(RN):∫RN∫RN|u(x)−u(y)|2|x−y|N+2sdxdy<+∞,








endowed with the Gagliardo (semi)norm


[u]:=∫RN∫RN|u(x)−u(y)|2|x−y|N+2sdxdy1/2.











From [5], we have the following identity:


[u]2=∫RN|(−Δ)s2u|2dx=∫RN|ξ|2s|F[u](ξ)|2dξ.











From [26], Ds,2(RN) is continuously embedded into L2s∗(RN). Then, we can define the best constant S>0 as


S:=supu∈Ds,2(RN)∫RN|u|2s∗dx22s∗∫RN|(−Δ)s2u|2dx.











Let


E:=u∈Ds,2(RN):∫RNV(x)u2dx<+∞.











Under the assumptions (I)–(III), following the idea of ([21], Proposition 2.1) or ([22], Proposition 2.2), we can prove that the Hilbert space E endowed with scalar product and norm


(u,v)=∫RN[(−Δ)s2u(−Δ)s2v+V(x)uv]dx,∥u∥=∫RN[|(−Δ)s2u|2+V(x)u2]dx12








is compactly embedded into the weighted space LKq(RN) for every q∈(2,2s∗), where K(x):=[Q(x)]2N/(2N−μ) and


LKq(RN):=u:meas{u}<∞and∫RNK(x)|u|qdx<∞,∀q≥2.











Lemma 1.

Assume that (I)–(III) hold. If (K1) holds, E is compactly embedded in LKq(RN) for all q∈(2,2s∗). If (K2) holds, E is compactly embedded in LKp(RN).





Proof. 

If (K1) holds, then


K(x)V(x)=Q(x)V(x)[Q(x)]μ2N−μ∈L∞(RN).











Given ε>0 and fixed q∈(2,2s∗), there exist 0<t0<t1 and C>0 such that


K(x)|t|q≤εC(V(x)|t|2+|t|2s∗)+CK(x)χ[t0,t1](|t|)|t|2s∗∀t∈R.











Hence,


∫Brc(0)K(x)|u|qdx≤εCW(u)+CK(x)∫A∩Brc(0)K(x)dx∀u∈E,



(7)




where


W(u)=∫RNV(x)|u|2dx+∫RN|u|2s∗dx








and


A={x∈RN:s0≤|u(x)|≤s1}.











Let {vn} be a sequence such that vn⇀v in E, then there exists a constant M1>0 such that


∫RN[|(−Δ)s2vn|2+V(x)|vn|2]dx≤M1and∫RN|vn|2s∗dx≤M1∀n∈N,








which implies that {W(vn)} is bounded. On the other hand, setting


An={x∈RN:s0≤|vn(x)|≤s1},








we have


s02s∗|An|≤∫An|vn|2s∗dx≤M1∀n∈N








and so supn∈N|An|<+∞. Therefore, from (II), there is r>0 such that


∫An∩Brc(0)K(x)dx<εs12s∗∀n∈N.



(8)







Combining (7) and (8), we have


∫Brc(0)K(x)|vn|qdx<εCM1+s12s∗∫Fn∩Brc(0)K(x)dx<(CM1+1)ε∀n∈N.



(9)







By q∈(2,2s∗), we have from Sobolev embeddings that


limn→+∞∫Br(0)K(x)|vn|qdx=∫Br(0)K(x)|v|qdx.



(10)







Combining (9) and (10), we have


limn→+∞∫RNK(x)|vn|qdx=∫RNK(x)|v|qdx,








which yields


vn→vinLKq(RN)∀q∈(2,2s∗).











Next, we suppose that (K2) holds. For each x∈RN fixed, we observe that the function


g(t)=V(x)t2−p+t2s∗−p∀t>0








has CpV(x)2s∗−p2s∗−2 as its minimum value, where


Cp=p−22s∗−p2−p2s∗−2+p−22s∗−p2s∗−p2s∗−2.











Hence


CpV(x)2s∗−p2s∗−2≤V(x)t2−p+t2s∗−p∀x∈RNandt>0.











Combining this inequality with (K2), given ε∈(0,Cp), there exists r>0 large enough such that


K(x)|t|p≤ε(V(x)|t|2+|t|2s∗)∀t∈Rand|x|≥r,








leading to


∫Brc(0)K(x)|u|pdx≤ε∫Brc(0)(V(x)|u|2+|u|2s∗)dx∀u∈E.











Let {vn} be a sequence such that vn⇀v in E, then there exists a constant M2>0 such that


∫RNV(x)|vn|2dx≤M2and∫RN|vn|2s∗dx≤M2∀n∈N,








and so,


∫Brc(0)K(x)|vn|pdx≤2εM2∀n∈N.



(11)







Since p∈(2,2s∗) and K is a continuous function, we have


limn→+∞∫Brc(0)K(x)|vn|pdx=∫Brc(0)K(x)|v|pdx.



(12)







From (11) and (12), we have


limn→+∞∫RNK(x)|vn|pdx=∫RNK(x)|v|pdx.











Therefore


vn→vinLKp(RN).








 □





Lemma 2.

(Hardy–Littlewood–Sobolev inequality, see [26]). Let 1<r,t<∞, and μ∈(0,N) with 1r+1t=2−μN. If ϕ∈Lr(RN) and ψ∈Lt(RN), then there exists a constant C(N,μ,r,t)>0, such that


∫RN∫RNϕ(x)ψ(y)|x−y|μdxdy≤C(N,μ,r,t)∥ϕ∥r∥ψ∥t.













Lemma 3.

Assume that (I)–(III) and (F1)–(F3) hold. Then for u∈E


∫RN∫RNQ(x)Q(y)F(u(x))F(u(y))|x−y|μdxdy<+∞,



(13)




and there exists a constant C1>0 such that


∫RN∫RNQ(x)Q(y)F(u(x))f(u(y))v(y)|x−y|μdxdy<C1∥v∥,∀v∈E.



(14)







Furthermore, let {un}⊂E be a sequence such that un⇀u in E, then


limn→∞∫RN∫RNQ(x)Q(y)[F(un(x))F(un(y))−F(u(x))F(u(y))]|x−y|μdxdy=0



(15)




and


limn→∞∫RN∫RNQ(x)Q(y)F(un(x))f(un(y))[un(y)−u(y)]|x−y|μdxdy=0.



(16)









Proof. 

Set


β=2,if(K1)holds,p,if(K2)holds.











By (F1),(F2), Lemma 2, Hölder inequality and Sobolev inequality, we have


∫RNK(x)|F(u)|2N2N−μdx≤C1∫RNK(x)|u|β(2N−μ)2N+|u|2N−μN−2s2N2N−μdx≤C2∫RNK(x)|u|βdx+C2∫RN|u|2s∗dx≤C3(∥u∥β+[u]2s∗),∀u∈E



(17)




and


∫RNK(x)|f(u)v|2N2N−μdx≤C1∫RNK(x)|u|β(2N−μ)−2N2N+|u|N−μ+2sN−2s2N2N−μ|v|2N2N−μdx≤C4∫RN[K(x)]β(2N−μ)−2Nβ(2N−μ)|u|β(2N−μ)−2N2N−μ[K(x)]2Nβ(2N−μ)|v|2N2N−μdx+C5∫RN|u|2N(N+2s−μ)(N−2s)(2N−μ)|v|2N2N−μdx≤C6∥u∥β(2N−μ)−2N2N−μ+∥u∥2N(N+2s−μ)(N−2s)(2N−μ)∥v∥2N2N−μ,∀u,v∈E.



(18)







Applying Lemma 2 and (17), we have


∫RN∫RNQ(x)Q(y)F(u(x))F(u(y))|x−y|μdxdy≤C7∫RNK(x)|F(u)|2N2N−μdx2N−μN≤C8∥u∥β(2N−μ)N+∥u∥2(2N−μ)N−2s,∀u∈E,



(19)




which yields (13) holds. Similarly, we have


∫RN∫RNQ(x)Q(y)F(u(x))f(u(y))v(y)|x−y|μdxdy≤C9∫RNK(x)|F(u)|2N2N−μdx2N−μ2N∫RNK(x)|f(u)v|2N2N−μdx2N−μ2N,∀u,v∈E,



(20)




which, together with (17) and (18), implies that (14) holds.



Similar to ([21], Lemma 2), by (F2),(F3), and Lemma 2, we have


limn→∞∫RNK(x)|F(un)−F(u)|2N2N−μdx=0,limn→∞∫RNK(x)|f(un)|2N2N−μ|un−u|2N2N−μdx=0.



(21)







Combining (18), (20), and (21), we deduce that (15) and (16) hold. □





The energy functional Φ:E↦R given by


Φ(u):=12∫RN|(−Δ)s2u|2dx+12∫RNV(x)|u|2dx−12∫RN∫RNQ(x)Q(y)F(u(x))F(u(y))|x−y|μdxdy.



(22)







By Lemmas 2 and 3, Φ is well-defined and belongs to C1-class. Moreover, we have


⟨Φ′(u),v⟩=∫RN(−Δ)s2u(−Δ)s2vdx+∫RNV(x)uvdx−∫RN∫RNQ(x)Q(y)F(u(x))f(u(y))v(y)|x−y|μdxdy,∀u,v∈E.



(23)







Lemma 4.

Assume that (F1)–(F3) hold. Then, for all t≥0 and τ1,τ2∈R,


l(t,τ1,τ2):=F(tτ1)F(tτ2)−F(τ1)F(τ2)+1−t22[F(τ1)f(τ2)τ2+F(τ2)f(τ1)τ1]≥0.



(24)









Proof. 

Firstly, it follows from (F1) that f(0)=0. By (F3), we have


f(τ)≥0,∀τ≥0;f(τ)≤0,∀τ≤0;F(τ)≥0,∀τ∈R








and


f(τ)τ≥∫0τf(t)dt=F(τ),∀τ∈R.



(25)







It is easy to verify that (24) holds for t=0. For τ≠0, we have from (25) that


F(τ)τ′=f(τ)τ−F(τ)τ2≥0.



(26)







For every τ1,τ2∈R, we deduce from (F3) and (26) that


ddtl(t,τ1,τ2)=τ1τ2tF(tτ1)tτ1f(tτ2)+F(tτ2)tτ2f(tτ1)−F(τ1)τ1f(τ2)−F(τ2)τ2f(τ1)≥0,t≥1,≤0,0<t<1,








which implies that l(t,τ1,τ2)≥l(1,τ1,τ2)=0 for all t>0 and τ1,τ2∈R. □





Lemma 5.

Assume that (I)–(III) and (F1)–(F4) hold. Then


Φ(u)≥Φ(tu)+1−t22⟨Φ′(u),u⟩,∀u∈E,t≥0.



(27)









Proof. 

By (22), (23), and (24), we have


Φ(u)−Φ(tu)−1−t22⟨Φ′(u),u⟩=12∫RN∫RN1|x−y|μF(tu(x))F(tu(y))−F(u(x))F(u(y)) +1−t22F(u(x))f(u(y))u(y)+F(u(y))f(u(x))u(x)dxdy=12∫RN∫RNl(t,u(x),u(y))|x−y|μdxdy≥0,∀u∈E,t≥0.








 □





Corollary 1.

Assume that (I)–(III) and (F1)–(F4) hold. Let


N:={u∈E∖{0}:⟨Φ′(u),u⟩=0}.











Then


Φ(u)=maxt≥0Φ(tu),∀u∈N.













Lemma 6.

Assume that (I)–(III) and (F1)–(F4) hold. Then, for any u∈E∖{0}, there exists tu>0 such that tuu∈N.





Proof. 

Let u∈E∖{0} be fixed. Define a function ζ(t):=Φ(tu) on (0,∞). By (22) and (23), we have


ζ′(t)=0⟺t∥u∥2−∫RN∫RNQ(x)Q(y)F(tu(x))F(tu(y)))f(tu(y))u(y)|x−y|μdxdy=0⟺tu∈N.











By (19), we have for u∈E


Φ(u)≥12∥u∥−C8∥u∥4N−2μN+∥u∥4N−2μN−2s,if(K1)holds,12∥u∥−C8∥u∥2pN−pμN+∥u∥4N−2μN−2s,if(K2)holds,



(28)




which implies that there exists ρ0>0 such that


δ0:=inf∥u∥=ρ0Φ(u)>0.



(29)







Therefore, limt→0ζ(t)=0 and ζ(t)>0 for small t>0. By (F4), for t large, we have


ζ(t)=t22∥u∥2−12∫RN∫RNQ(x)F(tu(x))|tu(x)|Q(y)F(tu(y))|tu(y)||u(x)u(y)||x−y|μdxdy<0.



(30)







Therefore maxt∈[0,∞)ζ(t) is achieved at some tu>0 so that ζ′(tu)=0 and tuu∈N. □





Lemma 7.

Assume that (I)–(III) and (F1)–(F4) hold. Then


infu∈NΦ(u):=c=infu∈E∖{0}maxt≥0Φ(tu)>0.













Proof. 

Corollary 1 and Lemma 6 imply that


c=infu∈E∖{0}maxt≥0Φ(tu).











By (22) and (29),


c≥infu∈E∖{0}Φρ0∥u∥u=inf∥u∥=ρ0Φ(u)>0.








 □





Next, we will seek a Cerami sequence for Φ outside N by using the diagonal method, which is used in [25,27,28].



Lemma 8.

Assume that (I)–(III) and (F1)–(F4) hold. Then there exist {un}⊂E and c∗∈(0,c] such that


Φ(un)→c∗,(1+∥un∥)∥Φ′(un)∥→0,



(31)




as n→∞.





Proof. 

For c=infNΦ, we can choose a sequence {vk}⊂N such that


c≤Φ(vk)<c+1k,k∈N.



(32)







By (29) and (30), it is easy to verify that Φ(0)=0, Φ(Tvk)<0 when T is large enough, and Φ(u)≥δ0>0 when ∥u∥=ρ0. Therefore, from Mountain Pass Lemma ([29]), there is a sequence {un,k} such that


Φ(uk,n)→ck∈[δ0,supt∈[0,1]Φ(tvk)],(1+∥uk,n∥)∥Φ′(uk,n)∥→0,k∈N.



(33)







By Corollary 1 and {vk}⊂N, we have


Φ(tvk)≤Φ(vk),∀t≥0.



(34)







It follows from (34) that Φ(vk)=supt∈[0,1]Φ(tvk). Hence, by (32)–(34), we have


Φ(wk,n)→ck∈δ0,c+1k,(1+∥uk,n∥)∥Φ′(uk,n)∥→0,k∈N.











Then, we can choose {nk}⊂N such that


Φ(uk,nk)∈δ0,c+1k,(1+∥uk,nk∥)∥Φ′(uk,nk)∥<1k,k∈N.











Let uk=uk,nk, k∈N. Therefore, up to a subsequence, we have


Φ(un)→c∗∈[δ0,c],(1+∥un∥)∥Φ′(un)∥→0.








 □





Lemma 9.

Assume that (I)–(III) and (F1)–(F4) hold. Then, the sequence {un} satisfying (31) is bounded in E.





Proof. 

Arguing by contradiction, suppose that ∥un∥→∞. Let vn=un∥un∥, then ∥vn∥=1. Passing to a subsequence, we have vn⇀v in E. There are two possible cases: (i). v=0; (ii) v≠0.



Case (i) v=0. In this case


∫RNQ(x)Q(y)F(2c∗+1vn(x))F(2c∗+1vn(y))|x−y|μdxdy≤C1∫RNK(x)|F(2c∗+1vn(x))|2N2N−μdx2N−μN=o(1).



(35)







Combining (27), (31), and (35), we have


c∗+o(1)=Φ(un)≥Φ2c∗+1∥un∥un+1−2c∗+1∥un∥22⟨Φ′(un),un⟩=Φ(2c∗+1vn)+o(1)=2(c∗+1)+o(1),








which is a contradiction.



Case (ii) v≠0. In this case, since |un|=|vn|∥un∥ and un/∥un∥→v a.e. in RN, we have limn→∞|un(x)|=∞ for x∈{y∈RN:v(x)≠0}. Hence, it follows from (22), (31), (F4), and Fatou’s lemma that


0=limn→∞c∗+o(1)∥un∥2=limn→∞Φ(un)∥un∥2=12−12limn→∞∫RN∫RNQ(x)F(un(x))|un(x)|Q(y)F(un(y))|un(y)||vn(x)vn(y)||x−y|μdxdy≤12−12∫RN∫RNlim infn→∞Q(x+kn)F(un(x))|un(x)|Q(y+kn)F(un(y))|un(y)||vn(x)vn(y)||x−y|μdxdy=−∞.











This contradiction shows that {un} is bounded in E. □





Proof of Theorem 1.

In view of Lemmas 8 and 9, there exists a bounded sequence {un}⊂E such that (31) holds. Passing to a subsequence, we have un⇀u in E. Thus, it follows from (22), (23), (31), and Lemma 3 that


∥un−u∥2=⟨Φ′(un),un−u⟩+∫RN∫RNQ(x)Q(y)F(un(x))f(un(y))[un(y)−u(y)]|x−y|μ=o(1),








which implies that Φ′(u)=0 and Φ(u)=c∗∈(0,c]. Moreover, since u∈N, we have Φ(u)≥c. Hence, u∈E is a ground state solution for (1) with Φ(u)=c>0. □






3. Zero Mass Case


In this section, we consider the zero mass case, and give the proof of Theorem 2. In the following, we suppose that (F5)–(F7) and μ<4s hold. Fix q∈(2,2N−μN−2s), by (F7), for every ϵ>0 there is Cϵ>0 such that


|f(t)t|≤ϵ(|t|2+|t|2N−μN−2s)+Cϵ|t|q,|F(t)|≤ϵ(|t|2+|t|2N−μN−2s)+Cϵ|t|q,∀t∈R.



(36)







To find nontrivial solutions for (6), we study the approximating problem


(−Δ)su+εu=1|x|μ∗F(u)f(u),inRN,u∈Hs(RN),



(37)




where ε≥0 is a small parameter. The energy functional associated to (37) is


Φε(u)=12∫RN[|(−Δ)s2u|2+εu2]dx−12∫RN∫RNF(u(x))F(u(y))|x−y|μdxdy.



(38)







By using (F5)–(F7) and Lemma 2, it is easy to check that Φ0∈C1(Ds,2(RN),R) and Φε∈C1(Hs(RN),R) for every ε>0. Moreover, for every ε≥0,


⟨Φε′(u),v⟩=∫RN[(−Δ)s2u(−Δ)s2v+εuv]dx−12∫RN∫RNF(u(x))f(u(y))v(y)|x−y|μdxdy.



(39)







In view of ([19], Proposition 2), for every ε>0, any critical point u of Φε in Hs(RN) satisfies the following Pohožaev identity


Pε(u):=N−2s2∫RN|(−Δ)s2u|2dx+N2ε∫RN|u|2dx−2N−μ2∫RN∫RNF(u(x))F(u(y))|x−y|μdxdy=0.



(40)







For every ε>0, let


Mε:={u∈Hs(RN)∖{0}:Φε′(u)=0},Γε:={γ∈C([0,1],Hs(RN)):γ(0)=0,Φε(γ(1))<0},cε:=infγ∈Γεmaxt∈[0,1]Φε(γ(t)).











Lemma 10.

For every ε>0, (37) has a ground state solution uε∈Hs(RN) such that 0<Φε(uε)=infMεΦε=cε. Moreover, there exists a constant K0>0 independent of ε such that cε≤K0 for all ε∈(0,1].





Proof. 

In view of ([19], Theorem 1.3), under the assumption (F5)–(F7), for every ε>0, (37) has a ground state solution uε∈Hs(RN) such that 0<Φε(uε)=infMεΦε=cε. Let γ∈Γ1, since Φε(u)≤Φ1(u) for u∈Hs(RN) and ε∈(0,1], we have γ∈Γε for ε∈(0,1], and so


cε≤maxt∈[0,1]Φε(γ(t))=Φε(γ(tε))≤Φ1(γ(tε))≤maxt∈[0,1]Φ1(γ(t)):=K0,∀ε∈(0,1],








where tε∈(0,1). □





Lemma 11.

There exists a constant K1>0 independent of ε such that


[uε]≥K1,∀uε∈Mε.



(41)









Proof. 

Since ⟨Φε′(uε),uε⟩=0 for uε∈Mε, from (F6), (39), and Sobolev inequality, we have


[uε]2=∫RN|(−Δ)s2uε|2dx≤∫RN[|(−Δ)s2uε|2+εuε2]dx=∫RN∫RNF(uε(x))f(uε(y))uε(y)|x−y|μdxdy≤C1∫RN|F(uε)|2N2N−μdx2N−μ2N∫RN|f(uε)uε|2N2N−μdx2N−μ2N≤C2∫RN|uε|2NN−2sdx2N−μN≤C2S2N−μN−2s[uε]2(2N−μ)N−2s,∀uε∈Mε,








which, together with (2N−μ)/(N−2s)>1, implies that (41) holds. □





The following lemma is a version of Lions’ concentration-compactness Lemma for fractional Laplacian.



Lemma 12.

([18]) Assume {un} is a bounded sequence in Hs(RN), which satisfies


limn→+∞supy∈RN∫B1(y)|un(x)|2dx=0.











Then un→0 in Lq(RN) for q∈(2,2s∗).





Proof of Theorem 2.

We choose a sequence {εn}⊂(0,1] such that εn↘0. In view of Lemma 10, there exists a sequence {uεn}⊂Mεn such that 0<Φεn(uεn)=infMεnΦεn=cεn≤K0. For simplicity, we use un instead of uεn. Now, we prove that {un} is bounded in Ds,2(RN). Since Pεn(un)=0 for un∈Mεn, it follows from (38) and (40) that


K0≥cεn=Φεn(un)−12N−μPεn(un)=12−N−2s2(2N−μ)[un]2+12−N2(2N−μ)εn∥un∥22.



(42)







Thus, {un} is bounded in Ds,2(RN) and L2(RN). If


δ:=limn→∞supy∈RN∫B1(y)|un|2dx=0.











Then, by Lemma 12, for q∈(2,2N−μN−2s), we have


∫RN|un|4N2N−μdx→0,∫RN|un|2Nq2N−μdx→0.











Therefore, by (36) and Sobolev embedding for Ds,2(RN), for every ϵ>0 there exists Cϵ>0 such that


∫RN|F(un)|2N2N−μdx≤ϵ∫RN|un|4N2N−μ+|un|2s∗dx+Cϵ∫RN|un|2Nq2N−μdx≤ϵC+o(1).











By the arbitrariness of ϵ, we get


∫RN|F(un)|2N2N−μdx→0.



(43)







Combining (36), (43), and Lemma 2, we have


∫RN∫RNF(un(x))f(un(y))un(y)|x−y|μdxdy≤C1∫RN|F(un)|2N2N−μdx2N−μ2N∫RN|f(un)un|2N2N−μdx2N−μ2N=o(1).



(44)







Notice that {un} is bounded in L2(RN), we have from (44) and un∈Mεn that [un]2=o(1). This contradicts (41). Thus, we get δ>0. Passing to a subsequence, there exists a sequence {yn}⊂RN such that


∫B1+N(yn)|un|2dx>δ2.











Let u˜n(x)=un(x+yn). Then


Φεn′(u˜n)=0,Φεn(u˜n)=cεn








and


∫B1+N(0)|u˜n|2dx>δ2.



(45)







Passing to a subsequence, we have u˜n⇀u0 in Ds,2(RN). Clearly, (45) implies that u0≠0. By the standard argument, u0∈Ds,2(RN) is a nontrivial solution for (6). □






4. Conclusions


In this work, we study a class of nonlinear Choquard equation driven by the fractional Laplacian. When potential function vanishes at infinity and the Nehari-type monotonicity condition for the nonlinearity is not satisfied, we prove that the fractional Choquard equation has a ground state solution by using the non-Nehari manifold method. Unlike the Nehari manifold method, the main idea of our approach lies in finding a minimizing sequence for the energy functional outside the Nehari manifold by using the diagonal method. Moreover, by using a perturbation method, we obtain a nontrivial solution in the zero mass case.
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