. mathematics ﬁw\o\w

Article
Ground State Solutions for Fractional Choquard
Equations with Potential Vanishing at Infinity

Huxiao Luo !, Shengjun Li >* and Chunji Li 3

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China; luohuxiao@zjnu.edu.cn
College of Information Sciences and Technology, Hainan University, Haikou 570228, China

Department of Mathematics, Northeastern University, Shenyang 110004, China; lichunji@mail.neu.edu.cn
*  Correspondence: shjli626@126.com

W N -

check for
Received: 8 December 2018; Accepted: 1 February 2019; Published: 5 February 2019 updates

Abstract: In this paper, we study a class of nonlinear Choquard equation driven by the fractional
Laplacian. When the potential function vanishes at infinity, we obtain the existence of a ground state
solution for the fractional Choquard equation by using a non-Nehari manifold method. Moreover, in the
zero mass case, we obtain a nontrivial solution by using a perturbation method. The results improve
upon those in Alves, Figueiredo, and Yang (2015) and Shen, Gao, and Yang (2016).
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1. Introduction

In this paper, we deal with the following nonlocal equation:

{( Ayut V(= (fay CREdy) QU)f (), inRY, "

u € D¥2(RN),

where N > 3,0 <s < 1,0 < u < N,V € CRN,[0,0),Q € CRN,(0,00)), f € C(R,R) and
= fot f(s)ds. The fractional Laplacian (—A)® is defined as

(=A)’u(x) = CnsP.V. /RN wdy, u € SRN),

where P.V. denotes the principal value of the singular integral, S(RN) is the Schwartz space of rapidly
decaying C* functions in RN, and

22T (N + )

aN/2T (1 —s)’

(—A)* is a pseudo-differential operator, and can be equivalently defined via Fourier transform as

CN,s =

FU=APu)(§) = [E*Z[u)(§), ue SRY),
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where % is the Fourier transform, that is,

T _ 1 —ig-x
Fu](¢) = (27{)% /RNe SYu(x)dx, ue S(RN).

The fractional Laplace operator (—A)? is the infinitesimal generator of Lévy stable diffusion processes,
and appears in several areas such as the thin obstacle problem, anomalous diffusion, optimization,
finance, phase transitions, crystal dislocation, multiple scattering, and materials science, see [1-5] and
their references.

Recently, a great deal of work has been devoted to the study of the Choquard equations, see [6-14]
and their references. For instance, Alves, Cassani, Tarsi, and Yang [7] studied the following singularly
perturbed nonlocal Schrodinger equation:

—E2Au+ V(x)u =2 [|xl’” * F(u)] f(u), inR?

where 0 < u < 2 and ¢ is a positive parameter, the nonlinearity f has critical exponential growth in
the sense of Trudinger-Moser. By using variational methods, the authors established the existence and
concentration of solutions for the above equation.
In [6], Alves, Figueiredo and Yang studied the following Choquard equation:
—Au+V(x)u= (ﬁ*l—"(u))f(u), in RN, )
u € HY(RN).

Under the assumption V(x) — 0 as |x| — oo, the authors obtained a nontrivial solution for (2) by
using a penalization method.

In the physical case N =3,y =1, V(x) = 1and F(t) = %, (2) is also known as the stationary Hartree
equation [15]. It dates back to the description of the quantum mechanics of a polaron at rest by Pekar
in 1954 [16]. In 1976, Choquard used (2) to describe an electron trapped in its own hole, in a certain
approximation to the Hartree-Fock theory of one-component plasma [11]. In 1996, Penrose proposed (2)
as a model of self-gravitating matter, in a programme in which quantum state reduction is understood as a
gravitational phenomenon [15].

In addition, there is little literature on the fractional Choquard equations. Frank and Lenzmann [17]

established the uniqueness and radial symmetry of ground state solutions for the following equation:
(=A)2u+u= (x|~ % [u)u, inRV.

D’Avenia, Siciliano, and Squassina [18] obtained the existence, regularity, symmetry, and asymptotic
of the solutions for the nonlocal problem

(=A)u+ wu = (|x| 7 |ulP)|ulP~2u, inRN.
In [19], Shen, Gao, and Yang studied the following fractional Choquard equation:

(=8)'u+u= (x| #*F(u))f(u), nRY, ®)
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where N > 3,5 € (0,1), and ¢ € (0,N). Under the general Berestycki-Lions-type conditions [20],
the authors obtained the existence and regularity of ground states for (3). The authors also established the
Pohozaev identity for (3):

N —2s s 0 N 2, 2N-—upu _u
_ /RN|(—A)2u|dx+5/RNudx— , /RN(|x| « F(u))F(u)dx.

Motivated by the above works, in the first part of this article, we study the ground state solution for
(1). We assume

) V(x),Q(x) >0forallx € RN,V € C(RN,R) and Q € C(RN,R) N L*(RN,R);
() if {A,} C RV is a sequence of Borel sets such that meas{A,} < ¢ for all # and some ¢ > 0, then

2N
li N-idy = 0 uniformly inn € N;
lim B 0) [Q(x)] x uniformly in n

(II)  one of the below conditions occurs:

S e rom), @
or there exists p € (2,2%) such that
2N
IN—u
QO o, 15 = o, ©)
[V(x)]=2

where 2% = 2N g the fractional critical exponent;
s — N-2s p

(F1) F(t) = o(|t| ¥ ) as t — 0if (4) holds; or F(t) = o(¢|
(F2) E(t) = o[t N2 ) as t — oo;
(F3) f(t)is nondecreasing on R;

(F4) lim 9 = 1o
|t =40 [

pP@2N—p)

N—
2N

) as t — 0if (5) holds;

It is necessary for us to point out that the original of assumptions (I)—(III) come from [21-23].
The assumptions can be used to prove that the work space E is compactly embedded into the weighted
Lebesgue space L} (RN), see Section 2 and Lemma 1.

Now, we can state the first result of this article.

Theorem 1. Suppose that (I), (II),(I11I) and (F1)~(F4) hold. Then (1) has a ground state solution.

Remark 1. Since the Nehari-type monotonicity condition for f is not satisfied, the Nehari manifold method used
in [24] no longer works in our setting. To prove Theorem 2, we use the non-Nehari manifold method developed by
Tang [25], which relies on finding a minimizing sequence outside the Nehari manifold by using the diagonal method
(see Lemma 8).

In the second part of this article, we consider the following fractional Choquard equation with zero
mass case:

{ (—8)u = ([ +F@)) f(u), Y,

6
u € D¥2(RN), ©
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where N > 3,0 < s < 1,0 < u < min{N, 4s}. The homogeneous fractional Sobolev space D*?(RN), also
denoted by H*(RN), can be characterized as the space

2N 2 (RN) u(y)l?
D52 (RN) = {uEL (R /RN/RN y|N+ZS dxdy<+oo}.

f € C(R, R) satisfy the following Berestycki-Lions-type condition [19,20]:

(F5)  Fisnot trivial, thatis, F #Z 0;
(F6)  there exists C > 0 such that for every t € R,

2N—pu
tf(B)] < Clt| =5

(F7)
F(t) .. F()

The second result of this paper is as follows.
Theorem 2. Suppose that f satisfies (F5)—(F7). Then (6) has a nontrivial solution.

Remark 2. Notice that the method used in [13] is no longer applicable for (6), because it relies heavily on the
constant potentials. In the zero mass case, we use the perturbation method and the PohoZaev identity established

in [19] to overcome this difficulty.

In this article, we make use of the following notation:

| - I, denotes the usual norm of L? (R3);
C,C;,i=1,2,- -, denote various positive constants whose exact values are irrelevant;

0(1) denotes the infinitesimal as n — +o0.

2. Ground State Solutions for (1)

Set u() 2
2 (N 2 (RN)
D3 (RY) := {uEL (R /]RN/IRN |x |N+25 dxdy<+oo},

endowed with the Gagliardo (semi)norm

)‘2 1/2
= (oo e ns)

From [5], we have the following identity:
2 _ AV 2y — 2s 2
= [ N8 5uPdr = [ Je*|F ) (e) Pae.

From [26], D2 (RN) is continuously embedded into L% (RN). Then, we can define the best constant
S>0as

2

(fRN \u|23dx> =
S:= sup 5 .
ueDs2(RN) fRN )iu\zdx
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Let
E.= {u e D*2(RN) : /N V(x)uldx < —I—oo}.
R

Under the assumptions (I)—(III), following the idea of ([21], Proposition 2.1) or ([22], Proposition 2.2),
we can prove that the Hilbert space E endowed with scalar product and norm

Niw

(1,0) = [ L8 (=)0 -+ Viopuolas, ull = ( [ (-0 +vixpiax)

RN

is compactly embedded into the weighted space L7 (RN) for ever € (2,2F), where K(x) :=
pactly g p K y q s
[Q(x)]ZN/(Zny) and

LT (RN) := {u :meas{u} < oo and /NK(x)|u|‘7dx < oo} , Vg > 2.
R

Lemma 1. Assume that (D~(III) hold. If (K1) holds, E is compactly embedded in LY (RN) for all g € (2,2%). If
(K2) holds, E is compactly embedded in Lk (RN).

Proof. If (K1) holds, then

K _ Q) 4 € 12w,
Given ¢ > 0 and fixed g € (2,2}), there exist 0 < ty < t; and C > 0 such that
K(x)[#T < eC(V () [t + [t]%) + CK(x)x 1, (1) 1> Vi€ R.
Hence,

K Idx < eCW CK K(x)dx V E
/BHO) (x) |u|9dx < eCW (1) + (x)/mi(o) (x)dx Vu € E, @)

where

W(n) = /RN V(x)|u\2dx—|—/RN % dx

and
A={xeRN:sp < |u(x)| <s1}.

Let {vn} be a sequence such that v, — v in E, then there exists a constant M; > 0 such that
/RN[|(—A)%U,1\2 + V(x)[onPdx < My and /RN oa[%dx < My Vn €N,
which implies that {W(v,)} is bounded. On the other hand, setting
Ap={x e RN : 55 < |v,(x)| < 51},

we have
s% | Ay| < /A loa|2%dx < My ¥n € N
n

and so sup |A;,| < +oo. Therefore, from (II), there is r > 0 such that
neN

€
K(x)dx < — Vn e N. 8
/AmBﬁ(O) (x)dx s> " )
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Combining (7) and (8), we have

/ K(x)|v,|Tdx < eCM; + s%g / K(x)dx < (CMj+1)e ¥n e N. 9)
B(0) JE.NBE(0)

By q € (2,2%), we have from Sobolev embeddings that

1i K aq :/ K(x)|o|7dx. 10
nﬁlrjpm.Br(O) (x)[vn|Tdx 5,0) (x)[o|7dx (10)

- r

Combining (9) and (10), we have

lim Kwﬂwﬂm:iéNKQNMML

n—-+oo JRN

which yields
oy — vin LL(RN) Vg € (2,27).

Next, we suppose that (K2) holds. For each x € R fixed, we observe that the function
g(t) = V()PP 4157P ¥t >0

2-p
has C,V(x) %2 as its minimum value, where

2-p

2-p
B p—2>2§2 (p—z)zjz
Cy, = + .
g (2§“—P 2 —p

2% —

2%-p .
CpV(x)x2 < V()2 P +t%P YxecRNandt > 0.

Hence

Combining this inequality with (K2), given ¢ € (0,Cp), there exists r > 0 large enough such that
K(x)[t|P < e(V(x)|t]?+ |t|*) Vt € Rand |x| > 7,

leading to
K(x)|ulPdx < / V 2+u2§d Yu € E.
./BE(O) () || € Bﬁ(o)( () [ + [u|* )dx

Let {v, } be a sequence such that v, — v in E, then there exists a constant M, > 0 such that
/ V(x)|vn|*dx < M, and / lon|*dx < My ¥n €N,
RN RN

and so,
/ o Kloa]Pdx < 2eMy Vi € N, (11)
BS(0

Since p € (2,2¥) and K is a continuous function, we have

1i K(x)|0,|Pd :/ K(x)|o|Pdx. 12
Jdim [ K@= [ K@ )

r
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From (11) and (12), we have

lim [ K()[oaldx = /R K(@)[olPda.

n—+oo JRN

Therefore
vy — vin L (RM).

O

Lemma 2. (Hardy-Littlewood—Sobolev inequality, see [26]). Let 1 < r,t < oo, and p € (0,N) with 1 + 1 =
— L. Ifp € L"(RN) and p € L'(RN), then there exists a constant C(N, u,r,t) > 0, such that

W
foo fo T asay < vl o1

Lemma 3. Assume that (I)-(III) and (F1)—(F3) hold. Then for u € E

Q(x)Q(y) F(u(x))F(u(y))
/RN RN Ix—yT” ’ dxdy’ =T 4

and there exists a constant C1 > 0 such that

/RN R Q(x)Q(y) |(x(_;){(u(y>)v(y>dxdy‘ ~Cylloll, Vo ek ”

Furthermore, let {u,} C E be a sequence such that u, — u in E, then

fim Q(x)Q(y) [F (un(x))F(un(y)) — F(u(x))F(u(y))] dxdy = 0 (15)
n—oo JRN JRN |X - y|]l
and
o Q) Q) F () F (1)) atn () )]y~ 6
n—oo JRN JRN |x —y|#
Proof. Set

B — 2, if (K1) holds,
| p, if (K2) holds.

By (F1), (F2), Lemma 2, Holder inequality and Sobolev inequality, we have

K(x)[F(u)| ™ 7dx < ¢ [ K(x) ||u 7
—i 725
./]RN x)|F(u x < 1/11@ [ ] X
<G /RN K(x)|ulPdx + Cy /RN % dx
< Ca(||u||P + [W]%), YuecE

17)
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and
2N
#)—2N pt2s

_2N B(2N— 2N—u 2N
[ Kol < ¢x [ Ko |1l 5 a5 | T

B@N—p)—2N  B(2N—p)-2N 2N 2N
< Cy [ KGO PR ful K (0] PN fo] 2w
R
2N(N+2s— pt)
+C5/ |1/l| (N—=2s)(2N—p) |'U|2N Hdx
RN
B(2N—p)—2N N(N+2s—

714) 2N(N+2s—p)
<c6[||u|| Wl zw]wnw , Vv € E.

Applying Lemma 2 and (17), we have

[, [, QIUFC R

lx —yl#
2N—p
_2N
<cr | [ KeIFG) dx}
< Cg {||u|| ], Yu € E,

which yields (13) holds. Similarly, we have

/ Q(x)Q(y)F(u(x)) f (u(y))o(y) dxdy’
RN JRN Ix _y|“l/l

N—pu 2N—pu

< Co [/RN K(x)|F(u)|zz5Nudxrm URN K(x)f(u)v|21%Nde} N Vuvek,

which, together with (17) and (18), implies that (14) holds.
Similar to ([21], Lemma 2), by (F,), (F3), and Lemma 2, we have

lim [ K(@)|F(n) ~ F(u)| R rdx =0, Tim [ Ko)\f(un)| 7 |ty — | F 7 ebx = 0.

n—oo JRN RN
Combining (18), (20), and (21), we deduce that (15) and (16) hold. [
The energy functional ® : E > R given by

1

(D(u) = E o |( )2u|2dx+2/ |u|2dx Q )Q( ) (“(x))F(”(y))dxdy

2 RN JRN [x =yl
By Lemmas 2 and 3, ® is well-defined and belongs to C!-class. Moreover, we have

(@ (1), 0) :/RN( A)u 20dx+/ x)uvdx

_/ Q( )Q( )F (u(X))f(u(y))v(y)dxdy Vi v E
RN JRN lx —y|* o '

Lemma 4. Assume that (F1)—(F3) hold. Then, forallt > 0and 1, 7» € R,

2

I(t, 1, 12) := F(tn)F(t12) — F(11)F(72) +

[F(r)f(n)n+ F(r)f(ti)T] > 0.

8of 17

(18)

(19)

(20)

21

(22)

(23)

(24)
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Proof. Firstly, it follows from (F1) that f(0) = 0. By (F3), we have
f(t)>0,VT>0; f(r)<0,Vr<0; F(r)>0, VreR

and

T>/f , VT ER (25)

It is easy to verify that (24) holds for t = 0. For T # 0, we have from (25) that

[F(T)}/ _fOr—F@) _ (26)

T | T2
For every 71, 7» € R, we deduce from (F3) and (26) that

d
El(tl T, )

= Tt {F(tzl)f(m) +

20, t=>1,
<0, 0<t<l,

which implies that [(t, 7y, 72) > (1,79, 2) =0forallt >0and 7y, , € R. O

A f(rry) - FL0 () - EL2

f(m)

Lemma 5. Assume that (I)—(111) and (F1)—(F4) hold. Then

1-t
D(u) > d(tu) (®'(u),u), Vu e E, t > 0. (27)
Proof. By (22), (23), and (24), we have
@)~ () ~ 5 0/ ) )

z/Rw /RN |x_y|y F(tu(x))F(tu(y)) — F(u(x))F(u(y))

Zt (F(u(x)) f (u(y))uy) + F(u(y)) f (u(x))u(x)) | dxdy

2/RN/RN ‘y 1t u(x),uW)) 44,

>0, VueE,tzo.

+

O
Corollary 1. Assume that (I)—(11I) and (F1)—(F4) hold. Let

N :={u € E\{0}: (®(u),u) =0}.

Then

Dd(u) = r?zagﬂb(tu), VueN.
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Lemma 6. Assume that (I)—(I11) and (F1)—(F4) hold. Then, for any u € E \ {0}, there exists t, > 0 such that
tyu € N.

Proof. Letu € E\ {0} be fixed. Define a function {(t) := ®(tu) on (0,0). By (22) and (23), we have

) =0t - [, |, LUQWFEFy)) sy

dxdy =0

— tu e N.

By (19), we have for u € E

— 4N -2
Uul — G | el ™5™ + ||u|mf} | if (K1) holds,

e Bl = Cs |l ™% + ||u|4fv“i”] ,if (K2) holds, =
which implies that there exists pg > 0 such that
o= inf () > 0. (29)
Therefore, 11_1}13 ¢(t) =0and ¢(t) > 0 for small t > 0. By (F4), for t large, we have
T SR

Therefore rr[lax) {(t) is achieved at some t,, > 0 so that {'(t,) = 0and t,u € N. O
te|0,00

Lemma 7. Assume that (I)—(111) and (F1)—(F4) hold. Then

inf ®(u) :=c= inf max®(tu) > 0.
ueN ueE\{0} £20

Proof. Corollary 1 and Lemma 6 imply that

c= inf max®(tu).
ucE\{0} t>0

By (22) and (29),
c> inf & (pou) = inf ®(u) >0.
uee\{0}  \ [lu]l llull=po
O

Next, we will seek a Cerami sequence for ® outside N by using the diagonal method, which is used
in [25,27,28].

Lemma 8. Assume that (I)—(111) and (F1)—(F4) hold. Then there exist {u,} C E and c* € (0, c] such that

®(un) =", (L4 [Jun )@ (un) | = 0, (a1)

asmn — o0,
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Proof. For c = i/r\}f ®, we can choose a sequence {v;} C N such that
1
CS@(Uk)<C+P ke N. (32)

By (29) and (30), it is easy to verify that ®(0) = 0, ®(Tv;) < 0 when T is large enough, and ®(u) >
do > 0 when ||u|| = pg. Therefore, from Mountain Pass Lemma ([29]), there is a sequence {u,,  } such that

D(uy ) — ¢k € [0o, sup P(tvr)], (1+ |lugnl)||P (urn)l =0, keN. (33)
te[0,1]
By Corollary 1 and {v;} C N, we have
Cb(tl)k) S q)(l)k), YVt 2 0. (34)

It follows from (34) that ®(vy) = sup P(tvg). Hence, by (32)-(34), we have
te[0,1]

1
Oan) > € fduct ), (1 g DI ) +0, ke

Then, we can choose {n;} C N such that

1 1
D) € [d,ct 1), (14 i DI ) < €N

Let uy = uy,,, k € N. Therefore, up to a subsequence, we have
(un) = c* € [So,¢], (1+ [Junl)|®'(un)]| — 0.
O

Lemma 9. Assume that (I)—(I111) and (F1)—(F4) hold. Then, the sequence {u,} satisfying (31) is bounded in E.

Proof. Arguing by contradiction, suppose that ||u,| — oo. Let v, = HZ—”H, then ||v,|| = 1. Passing to a
subsequence, we have v, — v in E. There are two possible cases: (i). v = 0; (ii) v # 0.
Case (i) v = 0. In this case

(x)Q(y)F(2v/c* 4+ 1v,(x))F(2v/c* + 1v4(y))

RN x =yl dxdy
2N ZNI\;}l (35)
<G [/NK(x)|F(2\/mvn(x))|de}
R

=o0(1).
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Combining (27), (31), and (35), we have
c+o(1) = P(uy)
2
1 (/e
2+/c* + "
> @ iy | + (“‘)<<p/(un),un>
HunH
= ®(2V/c* + 1v,) +0(1)
=2(c"+1)+0(1),
which is a contradiction.
Case (ii) v # 0. In this case, since |uy| = |vy|||un|| and u,/||uy|| — v ae. in RN, we have

nlgr;o |un(x)| = oo for x € {y € RN : v(x) # 0}. Hence, it follows from (22), (31), (F4), and Fatou'’s
lemma that

e © 00 )

0= 0 TlE ~ 0% Tua 2

11y Q) F(a(x)) QW) E(un(v)) [00(x)0n(v)]

Rt v e e o R el
1 O + k) F(us(3) QU+ k) (s (1)) [ou (1)20(v)
<3 z/RN/Rwlnwf it () n(y)] ey

This contradiction shows that {u, } is bounded in E. [J

Proof of Theorem 1. In view of Lemmas 8 and 9, there exists a bounded sequence {u,} C E such that
(31) holds. Passing to a subsequence, we have u,, — u in E. Thus, it follows from (22), (23), (31), and
Lemma 3 that

e Q) Qy) F(1tn () (4 ()[4 () — ()
ot =l = (@ ) =)+ [ [

|x —y|#

=o0(1),
which implies that ®' (1) = 0 and ®(u) = c¢* € (0, c]. Moreover, since u € N, we have ®(u) > c. Hence,

u € E is a ground state solution for (1) with ®(u) =¢ > 0. O

3. Zero Mass Case

In this section, we consider the zero mass case, and glve the proof of Theorem 2. In the following,

we suppose that (F5)—(F7) and p < 4s hold. Fix g € (2, N 25) by (F7), for every € > 0 there is Cc > 0
such that

2N— 2N—
F(OH < (It + [HN2) + Celt]?, |F(8)] < ([t + £ ) + Celt], VEE R, (36)

To find nontrivial solutions for (6), we study the approximating problem

{ (=A)Yu—+eu= (l G * F(u )) f(u), inRN, (37)

u € H*(RN),
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where ¢ > 0 is a small parameter. The energy functional associated to (37) is

@S(u):% [ =8)5u 4 e x“/RN/RN |x_ y))dxdy (38)

By using (F5)-(F7) and Lemma 2, it is easy to check that ®; € C!(D%?(RN),R) and ®, €
C1(H*(RN),R) for every e > 0. Moreover, for every & > 0,

(®L(u),v) = /RN[(—A)%u(—A)%U—O—suv x—f/RN /]RN u(y))o (y)dxdy. (39)

Ix—yIP‘

In view of ([19], Proposition 2), for every ¢ > 0, any critical point u of ® in H*(RYN) satisfies the
following PohoZzaev identity

Ps(u)::Ngzs/RNK A)iuPdr+ e e [ uldx - 2N - ”/RN/RN—))F(Z(y))dxdy

|x — vl

(40)
=0.

For every ¢ > 0, let
Me: = {u € H*(RN)\ {0} : ®[(u) = 0},

Te: = {7 € C([0,1], H*(RY)) : 4(0) = 0, ®¢(7(1)) < 0},

ce : = inf max ® t)).
¢ “ylefgtE[O,l] e(r(1))

Lemma 10. For every e > 0, (37) has a ground state solution u, € H¥(RN) such that 0 < ®(ue) = i/\r/llf P, =c..

€

Moreover, there exists a constant Ky > 0 independent of € such that c. < K forall ¢ € (0,1].

Proof. In view of ([19], Theorem 1.3), under the assumption (F5)—(F7), for every € > 0, (37) has a ground
state solution u, € H*(RN) such that 0 < ®(u,) = iﬂf‘bs = ¢;. Lety € Ty, since @, (u) < P1(u) for

u € H*(RN) and e € (0,1], we have y € T; for ¢ € (0,1], and so

ce < max @e(y(t)) = Pe(y(te)) < Pr(7(fe)) < max dy(y(t)) := Ko, Ve € (0,1],

te[0,1] t€[0,1]
where t, € (0,1). O
Lemma 11. There exists a constant Ky > 0 independent of € such that

[ug] > Ky, Ve € M,. (A1)
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Proof. Since (®/(u;),us) = 0 for u, € M, from (F6), (39), and Sobolev inequality, we have
e’ = [ 1= )zueﬁdx < /RNn(fA)%usFHufwx

(tte (%)) f (e (y) e (y)
/RN/RN \x—ylf‘ dxdy

2N—pu

2N—p
<G (/ ug|NZNZde>
RN
2(
< CoS N [u] 2, Ve € M,
which, together with (2N — p1) /(N — 2s) > 1, implies that (41) holds. O

The following lemma is a version of Lions’ concentration-compactness Lemma for
fractional Laplacian.

Lemma 12. ([18]) Assume {uy} is a bounded sequence in H*(RN), which satisfies

lim su lun (x)|?dx = 0.
Tl%+00yERpN Bl(y) "

Then u, — 0in L1(RN) for g € (2,2}).

Proof of Theorem 2. We choose a sequence {¢,} C (0,1] such that e, ~\, 0. In view of Lemma 10, there
exists a sequence {u,} C M,, such that 0 < P, (ue,) = }}’llf ®,, = c¢, < Ky. For simplicity, we use i,

instead of u,,. Now, we prove that {u,} is bounded in D¥?(RN). Since P, (u,) = 0 for u, € M,,, it
follows from (38) and (40) that

1
2N —u

- [~z W+ [ =g e

Thus, {u,} is bounded in D%*(RN) and L2(RN). If

KO Z an = q>5;z(u”) - Pgn(un)

(42)

0:= 11m sup |un|?dx = 0.

Then, by Lemma 12, for g € (2, %V%Z’:), we have

_AN _2Ng_
/N|un|2N*udx—>0, /N|un|2N*#dx—>O.
R R
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Therefore, by (36) and Sobolev embedding for D*?(RN), for every e > 0 there exists C > 0 such that

N - 2Ng
<e / [ty | 2NF + |uy|™ ) dx +C€/ [ty | 2N=F dx
RN RN
<eC+o(1).

2N
‘/N |F ()| 77 dx
R

By the arbitrariness of €, we get
2N
/RN |F (1) |0 dx — 0. 43)

Combining (36), (43), and Lemma 2, we have

/ / F(un(x))f(”n(y))”"(y)dxdy’
RN JRN

|x —yl[¥

2N—pu 2N—pu
2N 2N 2N 2N
<G (/RN | F () [N dx> (/RN | f (n) 1t |27 dx)
=o(1).

(44)

Notice that {u,} is bounded in L?>(RN), we have from (44) and u, € M., that [u,]?> = o(1).
This contradicts (41). Thus, we get § > 0. Passing to a subsequence, there exists a sequence {y,} C RN
such that

1)
|up|?dx > =.

/Bl+\/ﬁ(y") 2

Let il (x) = ty(x + yn). Then
q’én(ﬁn) =0, @, (iln) = ce,

and 5
/ i, [2dx > =. (45)
B vw (0 2

Passing to a subsequence, we have i, — ug in D¥?*(RN). Clearly, (45) implies that ug # 0. By the
standard argument, 1y € D%?(RY) is a nontrivial solution for (6). [

4. Conclusions

In this work, we study a class of nonlinear Choquard equation driven by the fractional Laplacian.
When potential function vanishes at infinity and the Nehari-type monotonicity condition for the
nonlinearity is not satisfied, we prove that the fractional Choquard equation has a ground state solution
by using the non-Nehari manifold method. Unlike the Nehari manifold method, the main idea of our
approach lies in finding a minimizing sequence for the energy functional outside the Nehari manifold by
using the diagonal method. Moreover, by using a perturbation method, we obtain a nontrivial solution in
the zero mass case.
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