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Abstract: In this paper, we study a class of nonlinear Choquard equation driven by the fractional
Laplacian. When the potential function vanishes at infinity, we obtain the existence of a ground state
solution for the fractional Choquard equation by using a non-Nehari manifold method. Moreover, in the
zero mass case, we obtain a nontrivial solution by using a perturbation method. The results improve
upon those in Alves, Figueiredo, and Yang (2015) and Shen, Gao, and Yang (2016).
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1. Introduction

In this paper, we deal with the following nonlocal equation:{
(−∆)su + V(x)u =

(∫
RN

Q(y)F(u(y))
|x−y|µ dy

)
Q(x) f (u), in RN ,

u ∈ Ds,2(RN),
(1)

where N ≥ 3, 0 < s < 1, 0 < µ < N, V ∈ C(RN , [0, ∞)), Q ∈ C(RN , (0, ∞)), f ∈ C(R,R) and
F(t) =

∫ t
0 f (s)ds. The fractional Laplacian (−∆)s is defined as

(−∆)su(x) = CN,sP.V.
∫
RN

u(x)− u(y)
|x− y|N+2s dy, u ∈ S(RN),

where P.V. denotes the principal value of the singular integral, S(RN) is the Schwartz space of rapidly
decaying C∞ functions in RN , and

CN,s =
22ssΓ(N + s)
πN/2Γ(1− s)

.

(−∆)s is a pseudo-differential operator, and can be equivalently defined via Fourier transform as

F [(−∆)su](ξ) = |ξ|2sF [u](ξ), u ∈ S(RN),
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where F is the Fourier transform, that is,

F [u](ξ) =
1

(2π)
N
2

∫
RN

e−iξ·xu(x)dx, u ∈ S(RN).

The fractional Laplace operator (−∆)s is the infinitesimal generator of Lévy stable diffusion processes,
and appears in several areas such as the thin obstacle problem, anomalous diffusion, optimization,
finance, phase transitions, crystal dislocation, multiple scattering, and materials science, see [1–5] and
their references.

Recently, a great deal of work has been devoted to the study of the Choquard equations, see [6–14]
and their references. For instance, Alves, Cassani, Tarsi, and Yang [7] studied the following singularly
perturbed nonlocal Schrödinger equation:

− ε2∆u + V(x)u = εµ−2
[

1
|x|µ ∗ F(u)

]
f (u), in R2,

where 0 < µ < 2 and ε is a positive parameter, the nonlinearity f has critical exponential growth in
the sense of Trudinger–Moser. By using variational methods, the authors established the existence and
concentration of solutions for the above equation.

In [6], Alves, Figueiredo and Yang studied the following Choquard equation:{
−∆u + V(x)u = ( 1

|x|µ ∗ F(u)) f (u), in RN .

u ∈ H1(RN).
(2)

Under the assumption V(x) → 0 as |x| → ∞, the authors obtained a nontrivial solution for (2) by
using a penalization method.

In the physical case N = 3, µ = 1, V(x) = 1 and F(t) = t2

2 , (2) is also known as the stationary Hartree
equation [15]. It dates back to the description of the quantum mechanics of a polaron at rest by Pekar
in 1954 [16]. In 1976, Choquard used (2) to describe an electron trapped in its own hole, in a certain
approximation to the Hartree–Fock theory of one-component plasma [11]. In 1996, Penrose proposed (2)
as a model of self-gravitating matter, in a programme in which quantum state reduction is understood as a
gravitational phenomenon [15].

In addition, there is little literature on the fractional Choquard equations. Frank and Lenzmann [17]
established the uniqueness and radial symmetry of ground state solutions for the following equation:

(−∆)
1
2 u + u = (|x|−1 ∗ |u|2)u, in RN .

D’Avenia, Siciliano, and Squassina [18] obtained the existence, regularity, symmetry, and asymptotic
of the solutions for the nonlocal problem

(−∆)su + ωu = (|x|−µ ∗ |u|p)|u|p−2u, in RN .

In [19], Shen, Gao, and Yang studied the following fractional Choquard equation:

(−∆)su + u = (|x|−µ ∗ F(u)) f (u), in RN , (3)



Mathematics 2019, 7, 151 3 of 17

where N ≥ 3, s ∈ (0, 1), and µ ∈ (0, N). Under the general Berestycki–Lions-type conditions [20],
the authors obtained the existence and regularity of ground states for (3). The authors also established the
Pohoz̆aev identity for (3):

N − 2s
2

∫
RN
|(−∆)

s
2 u|2dx +

N
2

∫
RN

u2dx =
2N − µ

2

∫
RN

(|x|−µ ∗ F(u))F(u)dx.

Motivated by the above works, in the first part of this article, we study the ground state solution for
(1). We assume

(I) V(x), Q(x) > 0 for all x ∈ RN , V ∈ C(RN ,R) and Q ∈ C(RN ,R) ∩ L∞(RN ,R);
(II) if {An} ⊂ RN is a sequence of Borel sets such that meas{An} ≤ δ for all n and some δ > 0, then

lim
r→∞

∫
An∩Bc

r (0)
[Q(x)]

2N
2N−µ dx = 0 uniformly in n ∈ N;

(III) one of the below conditions occurs:
Q
V
∈ L∞(RN), (4)

or there exists p ∈ (2, 2∗s ) such that

[Q(x)]
2N

2N−µ

[V(x)]
2∗s−p
2∗s−2

→ 0, |x| → ∞, (5)

where 2∗s = 2N
N−2s is the fractional critical exponent;

(F1) F(t) = o(|t|
2N−µ

N ) as t→ 0 if (4) holds; or F(t) = o(|t|
p(2N−µ)

2N ) as t→ 0 if (5) holds;

(F2) F(t) = o(|t|
2N−µ
N−2s ) as t→ ∞;

(F3) f (t) is nondecreasing on R;

(F4) lim
|t|→+∞

F(t)
|t| = +∞.

It is necessary for us to point out that the original of assumptions (I)–(III) come from [21–23].
The assumptions can be used to prove that the work space E is compactly embedded into the weighted
Lebesgue space Lq

K(R
N), see Section 2 and Lemma 1.

Now, we can state the first result of this article.

Theorem 1. Suppose that (I), (I I), (I I I) and (F1)–(F4) hold. Then (1) has a ground state solution.

Remark 1. Since the Nehari-type monotonicity condition for f is not satisfied, the Nehari manifold method used
in [24] no longer works in our setting. To prove Theorem 2, we use the non-Nehari manifold method developed by
Tang [25], which relies on finding a minimizing sequence outside the Nehari manifold by using the diagonal method
(see Lemma 8).

In the second part of this article, we consider the following fractional Choquard equation with zero
mass case: {

(−∆)su =
(

1
|x|µ ∗ F(u)

)
f (u), in RN ,

u ∈ Ds,2(RN),
(6)
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where N ≥ 3, 0 < s < 1, 0 < µ < min{N, 4s}. The homogeneous fractional Sobolev space Ds,2(RN), also
denoted by Ḣs(RN), can be characterized as the space

Ds,2(RN) =

{
u ∈ L2∗s (RN) :

∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy < +∞

}
.

f ∈ C(R,R) satisfy the following Berestycki–Lions-type condition [19,20]:

(F5) F is not trivial, that is, F 6≡ 0;
(F6) there exists C > 0 such that for every t ∈ R,

|t f (t)| ≤ C|t|
2N−µ
N−2s ;

(F7)

lim
t→0

F(t)
|t|2 = lim

t→∞

F(t)

|t|
2N−µ
N−2s

= 0.

The second result of this paper is as follows.

Theorem 2. Suppose that f satisfies (F5)–(F7). Then (6) has a nontrivial solution.

Remark 2. Notice that the method used in [13] is no longer applicable for (6), because it relies heavily on the
constant potentials. In the zero mass case, we use the perturbation method and the Pohoz̆aev identity established
in [19] to overcome this difficulty.

In this article, we make use of the following notation:

• ‖ · ‖p denotes the usual norm of Lp(R3);
• C, Ci, i = 1, 2, · · ·, denote various positive constants whose exact values are irrelevant;
• o(1) denotes the infinitesimal as n→ +∞.

2. Ground State Solutions for (1)

Set

Ds,2(RN) :=
{

u ∈ L2∗s (RN) :
∫
RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy < +∞

}
,

endowed with the Gagliardo (semi)norm

[u] :=
(∫

RN

∫
RN

|u(x)− u(y)|2
|x− y|N+2s dxdy

)1/2

.

From [5], we have the following identity:

[u]2 =
∫
RN
|(−∆)

s
2 u|2dx =

∫
RN
|ξ|2s|F [u](ξ)|2dξ.

From [26], Ds,2(RN) is continuously embedded into L2∗s (RN). Then, we can define the best constant
S > 0 as

S := sup
u∈Ds,2(RN)

(∫
RN |u|2

∗
s dx
) 2

2∗s∫
RN |(−∆)

s
2 u|2dx

.
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Let

E :=
{

u ∈ Ds,2(RN) :
∫
RN

V(x)u2dx < +∞
}

.

Under the assumptions (I)–(III), following the idea of ([21], Proposition 2.1) or ([22], Proposition 2.2),
we can prove that the Hilbert space E endowed with scalar product and norm

(u, v) =
∫
RN

[(−∆)
s
2 u(−∆)

s
2 v + V(x)uv]dx, ‖u‖ =

(∫
RN

[|(−∆)
s
2 u|2 + V(x)u2]dx

) 1
2

is compactly embedded into the weighted space Lq
K(R

N) for every q ∈ (2, 2∗s ), where K(x) :=
[Q(x)]2N/(2N−µ) and

Lq
K(R

N) :=
{

u : meas{u} < ∞ and
∫
RN

K(x)|u|qdx < ∞
}

, ∀q ≥ 2.

Lemma 1. Assume that (I)–(III) hold. If (K1) holds, E is compactly embedded in Lq
K(R

N) for all q ∈ (2, 2∗s ). If
(K2) holds, E is compactly embedded in Lp

K(R
N).

Proof. If (K1) holds, then
K(x)
V(x)

=
Q(x)
V(x)

[Q(x)]
µ

2N−µ ∈ L∞(RN).

Given ε > 0 and fixed q ∈ (2, 2∗s ), there exist 0 < t0 < t1 and C > 0 such that

K(x)|t|q ≤ εC(V(x)|t|2 + |t|2∗s ) + CK(x)χ[t0,t1]
(|t|)|t|2∗s ∀t ∈ R.

Hence, ∫
Bc

r (0)
K(x)|u|qdx ≤ εCW(u) + CK(x)

∫
A∩Bc

r (0)
K(x)dx ∀u ∈ E, (7)

where
W(u) =

∫
RN

V(x)|u|2dx +
∫
RN
|u|2∗s dx

and
A = {x ∈ RN : s0 ≤ |u(x)| ≤ s1}.

Let {vn} be a sequence such that vn ⇀ v in E, then there exists a constant M1 > 0 such that∫
RN

[|(−∆)
s
2 vn|2 + V(x)|vn|2]dx ≤ M1 and

∫
RN
|vn|2

∗
s dx ≤ M1 ∀n ∈ N,

which implies that {W(vn)} is bounded. On the other hand, setting

An = {x ∈ RN : s0 ≤ |vn(x)| ≤ s1},

we have
s2∗s

0 |An| ≤
∫

An
|vn|2

∗
s dx ≤ M1 ∀n ∈ N

and so sup
n∈N
|An| < +∞. Therefore, from (I I), there is r > 0 such that

∫
An∩Bc

r (0)
K(x)dx <

ε

s2∗s
1

∀n ∈ N. (8)
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Combining (7) and (8), we have∫
Bc

r (0)
K(x)|vn|qdx < εCM1 + s2∗s

1

∫
Fn∩Bc

r (0)
K(x)dx < (CM1 + 1)ε ∀n ∈ N. (9)

By q ∈ (2, 2∗s ), we have from Sobolev embeddings that

lim
n→+∞

∫
Br(0)

K(x)|vn|qdx =
∫

Br(0)
K(x)|v|qdx. (10)

Combining (9) and (10), we have

lim
n→+∞

∫
RN

K(x)|vn|qdx =
∫
RN

K(x)|v|qdx,

which yields
vn → v in Lq

K(R
N) ∀q ∈ (2, 2∗s ).

Next, we suppose that (K2) holds. For each x ∈ RN fixed, we observe that the function

g(t) = V(x)t2−p + t2∗s−p ∀t > 0

has CpV(x)
2∗s−p
2∗s−2 as its minimum value, where

Cp =

(
p− 2

2∗s − p

) 2−p
2∗s−2

+

(
p− 2

2∗s − p

) 2∗s−p
2∗s−2

.

Hence

CpV(x)
2∗s−p
2∗s−2 ≤ V(x)t2−p + t2∗s−p ∀x ∈ RN and t > 0.

Combining this inequality with (K2), given ε ∈ (0, Cp), there exists r > 0 large enough such that

K(x)|t|p ≤ ε(V(x)|t|2 + |t|2∗s ) ∀t ∈ R and |x| ≥ r,

leading to ∫
Bc

r (0)
K(x)|u|pdx ≤ ε

∫
Bc

r (0)
(V(x)|u|2 + |u|2∗s )dx ∀u ∈ E.

Let {vn} be a sequence such that vn ⇀ v in E, then there exists a constant M2 > 0 such that∫
RN

V(x)|vn|2dx ≤ M2 and
∫
RN
|vn|2

∗
s dx ≤ M2 ∀n ∈ N,

and so, ∫
Bc

r (0)
K(x)|vn|pdx ≤ 2εM2 ∀n ∈ N. (11)

Since p ∈ (2, 2∗s ) and K is a continuous function, we have

lim
n→+∞

∫
Bc

r (0)
K(x)|vn|pdx =

∫
Bc

r (0)
K(x)|v|pdx. (12)
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From (11) and (12), we have

lim
n→+∞

∫
RN

K(x)|vn|pdx =
∫
RN

K(x)|v|pdx.

Therefore
vn → v in Lp

K(R
N).

Lemma 2. (Hardy–Littlewood–Sobolev inequality, see [26]). Let 1 < r, t < ∞, and µ ∈ (0, N) with 1
r +

1
t =

2− µ
N . If φ ∈ Lr(RN) and ψ ∈ Lt(RN), then there exists a constant C(N, µ, r, t) > 0, such that

∫
RN

∫
RN

φ(x)ψ(y)
|x− y|µ dxdy ≤ C(N, µ, r, t)‖φ‖r‖ψ‖t.

Lemma 3. Assume that (I)–(III) and (F1)–(F3) hold. Then for u ∈ E∣∣∣∣∫RN

∫
RN

Q(x)Q(y)F(u(x))F(u(y))
|x− y|µ dxdy

∣∣∣∣ < +∞, (13)

and there exists a constant C1 > 0 such that∣∣∣∣∫RN

∫
RN

Q(x)Q(y)F(u(x)) f (u(y))v(y)
|x− y|µ dxdy

∣∣∣∣ < C1‖v‖, ∀v ∈ E. (14)

Furthermore, let {un} ⊂ E be a sequence such that un ⇀ u in E, then

lim
n→∞

∫
RN

∫
RN

Q(x)Q(y)[F(un(x))F(un(y))− F(u(x))F(u(y))]
|x− y|µ dxdy = 0 (15)

and

lim
n→∞

∫
RN

∫
RN

Q(x)Q(y)F(un(x)) f (un(y))[un(y)− u(y)]
|x− y|µ dxdy = 0. (16)

Proof. Set

β =

{
2, if (K1) holds,
p, if (K2) holds.

By (F1), (F2), Lemma 2, Hölder inequality and Sobolev inequality, we have

∫
RN

K(x)|F(u)|
2N

2N−µ dx ≤ C1

∫
RN

K(x)
[
|u|

β(2N−µ)
2N + |u|

2N−µ
N−2s

] 2N
2N−µ

dx

≤ C2

∫
RN

K(x)|u|βdx + C2

∫
RN
|u|2∗s dx

≤ C3(‖u‖β + [u]2
∗
s ), ∀u ∈ E

(17)
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and ∫
RN

K(x)| f (u)v|
2N

2N−µ dx ≤ C1

∫
RN

K(x)
[
|u|

β(2N−µ)−2N
2N + |u|

N−µ+2s
N−2s

] 2N
2N−µ

|v|
2N

2N−µ dx

≤ C4

∫
RN

[K(x)]
β(2N−µ)−2N

β(2N−µ) |u|
β(2N−µ)−2N

2N−µ [K(x)]
2N

β(2N−µ) |v|
2N

2N−µ dx

+ C5

∫
RN
|u|

2N(N+2s−µ)
(N−2s)(2N−µ) |v|

2N
2N−µ dx

≤ C6

[
‖u‖

β(2N−µ)−2N
2N−µ + ‖u‖

2N(N+2s−µ)
(N−2s)(2N−µ)

]
‖v‖

2N
2N−µ , ∀u, v ∈ E.

(18)

Applying Lemma 2 and (17), we have∣∣∣∣∫RN

∫
RN

Q(x)Q(y)F(u(x))F(u(y))
|x− y|µ dxdy

∣∣∣∣
≤ C7

[∫
RN

K(x)|F(u)|
2N

2N−µ dx
] 2N−µ

N

≤ C8

[
‖u‖

β(2N−µ)
N + ‖u‖

2(2N−µ)
N−2s

]
, ∀u ∈ E,

(19)

which yields (13) holds. Similarly, we have∣∣∣∣∫RN

∫
RN

Q(x)Q(y)F(u(x)) f (u(y))v(y)
|x− y|µ dxdy

∣∣∣∣
≤ C9

[∫
RN

K(x)|F(u)|
2N

2N−µ dx
] 2N−µ

2N
[∫

RN
K(x)| f (u)v|

2N
2N−µ dx

] 2N−µ
2N

, ∀u, v ∈ E,

(20)

which, together with (17) and (18), implies that (14) holds.
Similar to ([21], Lemma 2), by (F2), (F3), and Lemma 2, we have

lim
n→∞

∫
RN

K(x)|F(un)− F(u)|
2N

2N−µ dx = 0, lim
n→∞

∫
RN

K(x)| f (un)|
2N

2N−µ |un − u|
2N

2N−µ dx = 0. (21)

Combining (18), (20), and (21), we deduce that (15) and (16) hold.

The energy functional Φ : E 7→ R given by

Φ(u) :=
1
2

∫
RN
|(−∆)

s
2 u|2dx +

1
2

∫
RN

V(x)|u|2dx− 1
2

∫
RN

∫
RN

Q(x)Q(y)F(u(x))F(u(y))
|x− y|µ dxdy. (22)

By Lemmas 2 and 3, Φ is well-defined and belongs to C1-class. Moreover, we have

〈Φ′(u), v〉 =
∫
RN

(−∆)
s
2 u(−∆)

s
2 vdx +

∫
RN

V(x)uvdx

−
∫
RN

∫
RN

Q(x)Q(y)F(u(x)) f (u(y))v(y)
|x− y|µ dxdy, ∀u, v ∈ E.

(23)

Lemma 4. Assume that (F1)–(F3) hold. Then, for all t ≥ 0 and τ1, τ2 ∈ R,

l(t, τ1, τ2) := F(tτ1)F(tτ2)− F(τ1)F(τ2) +
1− t2

2
[F(τ1) f (τ2)τ2 + F(τ2) f (τ1)τ1] ≥ 0. (24)
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Proof. Firstly, it follows from (F1) that f (0) = 0. By (F3), we have

f (τ) ≥ 0, ∀τ ≥ 0; f (τ) ≤ 0, ∀τ ≤ 0; F(τ) ≥ 0, ∀τ ∈ R

and
f (τ)τ ≥

∫ τ

0
f (t)dt = F(τ), ∀τ ∈ R. (25)

It is easy to verify that (24) holds for t = 0. For τ 6= 0, we have from (25) that[
F(τ)

τ

]′
=

f (τ)τ − F(τ)
τ2 ≥ 0. (26)

For every τ1, τ2 ∈ R, we deduce from (F3) and (26) that

d
dt

l(t, τ1, τ2)

= τ1τ2t
[

F(tτ1)

tτ1
f (tτ2) +

F(tτ2)

tτ2
f (tτ1)−

F(τ1)

τ1
f (τ2)−

F(τ2)

τ2
f (τ1)

]
{
≥ 0, t ≥ 1,
≤ 0, 0 < t < 1,

which implies that l(t, τ1, τ2) ≥ l(1, τ1, τ2) = 0 for all t > 0 and τ1, τ2 ∈ R.

Lemma 5. Assume that (I)–(I I I) and (F1)–(F4) hold. Then

Φ(u) ≥ Φ(tu) +
1− t2

2
〈Φ′(u), u〉, ∀u ∈ E, t ≥ 0. (27)

Proof. By (22), (23), and (24), we have

Φ(u)−Φ(tu)− 1− t2

2
〈Φ′(u), u〉

=
1
2

∫
RN

∫
RN

1
|x− y|µ [F(tu(x))F(tu(y))− F(u(x))F(u(y))

+
1− t2

2
(F(u(x)) f (u(y))u(y) + F(u(y)) f (u(x))u(x))

]
dxdy

=
1
2

∫
RN

∫
RN

l(t, u(x), u(y))
|x− y|µ dxdy

≥ 0, ∀u ∈ E, t ≥ 0.

Corollary 1. Assume that (I)–(I I I) and (F1)–(F4) hold. Let

N := {u ∈ E \ {0} : 〈Φ′(u), u〉 = 0}.

Then
Φ(u) = max

t≥0
Φ(tu), ∀u ∈ N .
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Lemma 6. Assume that (I)–(I I I) and (F1)–(F4) hold. Then, for any u ∈ E \ {0}, there exists tu > 0 such that
tuu ∈ N .

Proof. Let u ∈ E \ {0} be fixed. Define a function ζ(t) := Φ(tu) on (0, ∞). By (22) and (23), we have

ζ ′(t) = 0⇐⇒ t‖u‖2 −
∫
RN

∫
RN

Q(x)Q(y)F(tu(x))F(tu(y))) f (tu(y))u(y)
|x− y|µ dxdy = 0

⇐⇒ tu ∈ N .

By (19), we have for u ∈ E

Φ(u) ≥


1
2‖u‖ − C8

[
‖u‖

4N−2µ
N + ‖u‖

4N−2µ
N−2s

]
, if (K1) holds,

1
2‖u‖ − C8

[
‖u‖

2pN−pµ
N + ‖u‖

4N−2µ
N−2s

]
, if (K2) holds,

(28)

which implies that there exists ρ0 > 0 such that

δ0 := inf
‖u‖=ρ0

Φ(u) > 0. (29)

Therefore, lim
t→0

ζ(t) = 0 and ζ(t) > 0 for small t > 0. By (F4), for t large, we have

ζ(t) =
t2

2

[
‖u‖2 − 1

2

∫
RN

∫
RN

Q(x)F(tu(x))
|tu(x)|

Q(y)F(tu(y))
|tu(y)|

|u(x)u(y)|
|x− y|µ dxdy

]
< 0. (30)

Therefore max
t∈[0,∞)

ζ(t) is achieved at some tu > 0 so that ζ ′(tu) = 0 and tuu ∈ N .

Lemma 7. Assume that (I)–(I I I) and (F1)–(F4) hold. Then

inf
u∈N

Φ(u) := c = inf
u∈E\{0}

max
t≥0

Φ(tu) > 0.

Proof. Corollary 1 and Lemma 6 imply that

c = inf
u∈E\{0}

max
t≥0

Φ(tu).

By (22) and (29),

c ≥ inf
u∈E\{0}

Φ
(

ρ0

‖u‖u
)
= inf
‖u‖=ρ0

Φ(u) > 0.

Next, we will seek a Cerami sequence for Φ outside N by using the diagonal method, which is used
in [25,27,28].

Lemma 8. Assume that (I)–(I I I) and (F1)–(F4) hold. Then there exist {un} ⊂ E and c∗ ∈ (0, c] such that

Φ(un)→ c∗, (1 + ‖un‖)‖Φ′(un)‖ → 0, (31)

as n→ ∞.
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Proof. For c = inf
N

Φ, we can choose a sequence {vk} ⊂ N such that

c ≤ Φ(vk) < c +
1
k

, k ∈ N. (32)

By (29) and (30), it is easy to verify that Φ(0) = 0, Φ(Tvk) < 0 when T is large enough, and Φ(u) ≥
δ0 > 0 when ‖u‖ = ρ0. Therefore, from Mountain Pass Lemma ([29]), there is a sequence {un,k} such that

Φ(uk,n)→ ck ∈ [δ0, sup
t∈[0,1]

Φ(tvk)], (1 + ‖uk,n‖)‖Φ′(uk,n)‖ → 0, k ∈ N. (33)

By Corollary 1 and {vk} ⊂ N , we have

Φ(tvk) ≤ Φ(vk), ∀ t ≥ 0. (34)

It follows from (34) that Φ(vk) = sup
t∈[0,1]

Φ(tvk). Hence, by (32)–(34), we have

Φ(wk,n)→ ck ∈
[

δ0, c +
1
k

)
, (1 + ‖uk,n‖)‖Φ′(uk,n)‖ → 0, k ∈ N.

Then, we can choose {nk} ⊂ N such that

Φ(uk,nk
) ∈

[
δ0, c +

1
k

)
, (1 + ‖uk,nk

‖)‖Φ′(uk,nk
)‖ < 1

k
, k ∈ N.

Let uk = uk,nk
, k ∈ N. Therefore, up to a subsequence, we have

Φ(un)→ c∗ ∈ [δ0, c], (1 + ‖un‖)‖Φ′(un)‖ → 0.

Lemma 9. Assume that (I)–(I I I) and (F1)–(F4) hold. Then, the sequence {un} satisfying (31) is bounded in E.

Proof. Arguing by contradiction, suppose that ‖un‖ → ∞. Let vn = un
‖un‖ , then ‖vn‖ = 1. Passing to a

subsequence, we have vn ⇀ v in E. There are two possible cases: (i). v = 0; (ii) v 6= 0.
Case (i) v = 0. In this case∣∣∣∣∣

∫
RN

Q(x)Q(y)F(2
√

c∗ + 1vn(x))F(2
√

c∗ + 1vn(y))
|x− y|µ dxdy

∣∣∣∣∣
≤ C1

[∫
RN

K(x)|F(2
√

c∗ + 1vn(x))|
2N

2N−µ dx
] 2N−µ

N

= o(1).

(35)
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Combining (27), (31), and (35), we have

c∗ + o(1) = Φ(un)

≥ Φ

(
2
√

c∗ + 1
‖un‖

un

)
+

1−
(

2
√

c∗+1
‖un‖

)2

2
〈Φ′(un), un〉

= Φ(2
√

c∗ + 1vn) + o(1)

= 2(c∗ + 1) + o(1),

which is a contradiction.
Case (ii) v 6= 0. In this case, since |un| = |vn|‖un‖ and un/‖un‖ → v a.e. in RN , we have

lim
n→∞

|un(x)| = ∞ for x ∈ {y ∈ RN : v(x) 6= 0}. Hence, it follows from (22), (31), (F4), and Fatou’s

lemma that

0 = lim
n→∞

c∗ + o(1)
‖un‖2 = lim

n→∞

Φ(un)

‖un‖2

=
1
2
− 1

2
lim

n→∞

∫
RN

∫
RN

Q(x)F(un(x))
|un(x)|

Q(y)F(un(y))
|un(y)|

|vn(x)vn(y)|
|x− y|µ dxdy

≤ 1
2
− 1

2

∫
RN

∫
RN

lim inf
n→∞

Q(x + kn)F(un(x))
|un(x)|

Q(y + kn)F(un(y))
|un(y)|

|vn(x)vn(y)|
|x− y|µ dxdy

= −∞.

This contradiction shows that {un} is bounded in E.

Proof of Theorem 1. In view of Lemmas 8 and 9, there exists a bounded sequence {un} ⊂ E such that
(31) holds. Passing to a subsequence, we have un ⇀ u in E. Thus, it follows from (22), (23), (31), and
Lemma 3 that

‖un − u‖2 = 〈Φ′(un), un − u〉+
∫
RN

∫
RN

Q(x)Q(y)F(un(x)) f (un(y))[un(y)− u(y)]
|x− y|µ = o(1),

which implies that Φ′(u) = 0 and Φ(u) = c∗ ∈ (0, c]. Moreover, since u ∈ N , we have Φ(u) ≥ c. Hence,
u ∈ E is a ground state solution for (1) with Φ(u) = c > 0.

3. Zero Mass Case

In this section, we consider the zero mass case, and give the proof of Theorem 2. In the following,
we suppose that (F5)–(F7) and µ < 4s hold. Fix q ∈ (2, 2N−µ

N−2s ), by (F7), for every ε > 0 there is Cε > 0
such that

| f (t)t| ≤ ε(|t|2 + |t|
2N−µ
N−2s ) + Cε|t|q, |F(t)| ≤ ε(|t|2 + |t|

2N−µ
N−2s ) + Cε|t|q, ∀t ∈ R. (36)

To find nontrivial solutions for (6), we study the approximating problem{
(−∆)su + εu =

(
1
|x|µ ∗ F(u)

)
f (u), in RN ,

u ∈ Hs(RN),
(37)
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where ε ≥ 0 is a small parameter. The energy functional associated to (37) is

Φε(u) =
1
2

∫
RN

[|(−∆)
s
2 u|2 + εu2]dx− 1

2

∫
RN

∫
RN

F(u(x))F(u(y))
|x− y|µ dxdy. (38)

By using (F5)–(F7) and Lemma 2, it is easy to check that Φ0 ∈ C1(Ds,2(RN),R) and Φε ∈
C1(Hs(RN),R) for every ε > 0. Moreover, for every ε ≥ 0,

〈Φ′ε(u), v〉 =
∫
RN

[(−∆)
s
2 u(−∆)

s
2 v + εuv]dx− 1

2

∫
RN

∫
RN

F(u(x)) f (u(y))v(y)
|x− y|µ dxdy. (39)

In view of ([19], Proposition 2), for every ε > 0, any critical point u of Φε in Hs(RN) satisfies the
following Pohoz̆aev identity

Pε(u) : =
N − 2s

2

∫
RN
|(−∆)

s
2 u|2dx +

N
2

ε
∫
RN
|u|2dx− 2N − µ

2

∫
RN

∫
RN

F(u(x))F(u(y))
|x− y|µ dxdy

= 0.
(40)

For every ε > 0, let

Mε : = {u ∈ Hs(RN) \ {0} : Φ′ε(u) = 0},
Γε : = {γ ∈ C([0, 1], Hs(RN)) : γ(0) = 0, Φε(γ(1)) < 0},
cε : = inf

γ∈Γε

max
t∈[0,1]

Φε(γ(t)).

Lemma 10. For every ε > 0, (37) has a ground state solution uε ∈ Hs(RN) such that 0 < Φε(uε) = inf
Mε

Φε = cε.

Moreover, there exists a constant K0 > 0 independent of ε such that cε ≤ K0 for all ε ∈ (0, 1].

Proof. In view of ([19], Theorem 1.3), under the assumption (F5)–(F7), for every ε > 0, (37) has a ground
state solution uε ∈ Hs(RN) such that 0 < Φε(uε) = inf

Mε

Φε = cε. Let γ ∈ Γ1, since Φε(u) ≤ Φ1(u) for

u ∈ Hs(RN) and ε ∈ (0, 1], we have γ ∈ Γε for ε ∈ (0, 1], and so

cε ≤ max
t∈[0,1]

Φε(γ(t)) = Φε(γ(tε)) ≤ Φ1(γ(tε)) ≤ max
t∈[0,1]

Φ1(γ(t)) := K0, ∀ε ∈ (0, 1],

where tε ∈ (0, 1).

Lemma 11. There exists a constant K1 > 0 independent of ε such that

[uε] ≥ K1, ∀uε ∈ Mε. (41)
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Proof. Since 〈Φ′ε(uε), uε〉 = 0 for uε ∈ Mε, from (F6), (39), and Sobolev inequality, we have

[uε]
2 =

∫
RN
|(−∆)

s
2 uε|2dx ≤

∫
RN

[|(−∆)
s
2 uε|2 + εu2

ε ]dx

=
∫
RN

∫
RN

F(uε(x)) f (uε(y))uε(y)
|x− y|µ dxdy

≤ C1

(∫
RN
|F(uε)|

2N
2N−µ dx

) 2N−µ
2N

(∫
RN
| f (uε)uε|

2N
2N−µ dx

) 2N−µ
2N

≤ C2

(∫
RN
|uε|

2N
N−2s dx

) 2N−µ
N

≤ C2S
2N−µ
N−2s [uε]

2(2N−µ)
N−2s , ∀uε ∈ Mε,

which, together with (2N − µ)/(N − 2s) > 1, implies that (41) holds.

The following lemma is a version of Lions’ concentration-compactness Lemma for
fractional Laplacian.

Lemma 12. ([18]) Assume {un} is a bounded sequence in Hs(RN), which satisfies

lim
n→+∞

sup
y∈RN

∫
B1(y)

|un(x)|2dx = 0.

Then un → 0 in Lq(RN) for q ∈ (2, 2∗s ).

Proof of Theorem 2. We choose a sequence {εn} ⊂ (0, 1] such that εn ↘ 0. In view of Lemma 10, there
exists a sequence {uεn} ⊂ Mεn such that 0 < Φεn(uεn) = inf

Mεn
Φεn = cεn ≤ K0. For simplicity, we use un

instead of uεn . Now, we prove that {un} is bounded in Ds,2(RN). Since Pεn(un) = 0 for un ∈ Mεn , it
follows from (38) and (40) that

K0 ≥ cεn = Φεn(un)−
1

2N − µ
Pεn(un)

=

[
1
2
− N − 2s

2(2N − µ)

]
[un]

2 +

[
1
2
− N

2(2N − µ)

]
εn‖un‖2

2.
(42)

Thus, {un} is bounded in Ds,2(RN) and L2(RN). If

δ := lim
n→∞

sup
y∈RN

∫
B1(y)

|un|2dx = 0.

Then, by Lemma 12, for q ∈ (2, 2N−µ
N−2s ), we have

∫
RN
|un|

4N
2N−µ dx → 0,

∫
RN
|un|

2Nq
2N−µ dx → 0.
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Therefore, by (36) and Sobolev embedding for Ds,2(RN), for every ε > 0 there exists Cε > 0 such that∣∣∣∣∫RN
|F(un)|

2N
2N−µ dx

∣∣∣∣ ≤ ε

[∫
RN

(
|un|

4N
2N−µ + |un|2

∗
s

)
dx
]
+ Cε

∫
RN
|un|

2Nq
2N−µ dx

≤ εC + o(1).

By the arbitrariness of ε, we get ∫
RN
|F(un)|

2N
2N−µ dx → 0. (43)

Combining (36), (43), and Lemma 2, we have∣∣∣∣∫RN

∫
RN

F(un(x)) f (un(y))un(y)
|x− y|µ dxdy

∣∣∣∣
≤ C1

(∫
RN
|F(un)|

2N
2N−µ dx

) 2N−µ
2N

(∫
RN
| f (un)un|

2N
2N−µ dx

) 2N−µ
2N

= o(1).

(44)

Notice that {un} is bounded in L2(RN), we have from (44) and un ∈ Mεn that [un]2 = o(1).
This contradicts (41). Thus, we get δ > 0. Passing to a subsequence, there exists a sequence {yn} ⊂ RN

such that ∫
B1+

√
N(yn)

|un|2dx >
δ

2
.

Let ũn(x) = un(x + yn). Then

Φ′εn(ũn) = 0, Φεn(ũn) = cεn

and ∫
B1+

√
N(0)
|ũn|2dx >

δ

2
. (45)

Passing to a subsequence, we have ũn ⇀ u0 in Ds,2(RN). Clearly, (45) implies that u0 6= 0. By the
standard argument, u0 ∈ Ds,2(RN) is a nontrivial solution for (6).

4. Conclusions

In this work, we study a class of nonlinear Choquard equation driven by the fractional Laplacian.
When potential function vanishes at infinity and the Nehari-type monotonicity condition for the
nonlinearity is not satisfied, we prove that the fractional Choquard equation has a ground state solution
by using the non-Nehari manifold method. Unlike the Nehari manifold method, the main idea of our
approach lies in finding a minimizing sequence for the energy functional outside the Nehari manifold by
using the diagonal method. Moreover, by using a perturbation method, we obtain a nontrivial solution in
the zero mass case.
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