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Abstract

:

In this paper, we investigate the contractive type inequalities for the iteration of the mapping at a given point in the setting of dislocated metric space. We consider an example to illustrate the validity of the given result. Further, as an application, we propose a solution for a boundary value problem of the second order differential equation.
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1. Introduction and Preliminaries


In 1968, Bryant relaxed the assumption of Banach contraction mapping principle by using an iteration of the mapping.



Theorem 1

([1]). Let T be a self mapping on the complete metric space (M,d), and m a positive integer. Suppose that there exists q∈[0,1) such that T satisfies the inequality


d(Tmv,Tmw)≤qd(v,w),



(1)




for all v,w∈M, where Tm denotes the mth iterate of T. Then, there exists exactly one fixed point of T.





After then a number of authors deepen the research by considering an iteration of the mapping, see e.g., [2,3,4,5,6,7]. We recollect some significant results in this direction. One of the pioneer report in this way was given Seghal [4].



Theorem 2

([4]). Let (M,d) be a complete metric space, T a continuous self-mapping of M which satisfies the condition that there exists a real number q, 0<q<1 such that, for each v∈M there exists a positive integer m(v) such that, for each w∈M,


d(Tm(v)v,Tm(v)w)≤qd(v,w).



(2)







Then T has a unique fixed point in M.





Guseman [2] extended this result by removing the condition of continuity of T and later, other extensions for a single mapping were discussed in several papers, see e.g., Iseki [8], Matkowski [3], Singh [5] and the reference therein. One of the most interesting results for mappings which satisfy a general contractive conditions were announced by Singh.



Theorem 3

([5]). Let (M,d) be a complete metric space and T:M→M be a mapping such that for all v,w∈M we can find a positive integer m(v) such that


d(Tm(v)v,Tm(v)w)≤q(v,w)d(v,w)+r(v,w)d(v,Tm(v)v)+s(v,w)(w,Tm(v)w)+t(v,w)d(w,Tm(v)v)+p(v,w)d(v,Tm(v)w),



(3)




where q(v,w),r(v,w),s(v,w),t(v,w),p(v,w) are nonnegative functions such that


sup2t(v,w)+q(v,w)+r(v,w)+s(v,w)+p(v,w)=λ<1.











Then T has a unique fixed point v*.





In this paper, we consider more general contractive condition in the setting of dislocated metric space. For sake of completeness, we shall recollect some basic notions and fundamental results.



Definition 1.

For a nonempty set M a dislocated metric is a function D:M×M→[0,∞) such that for all v,w,u∈M:

	(D1)

	
D(v,w)=0⇒v=w,




	(D2)

	
D(v,w)=D(w,v),




	(D3)

	
D(v,w)≤D(v,u)+D(u,w).











The space (M,D) is said to be a dislocated metric space (DMS).



Example 1.

Let M=R0+ and D:M×M→[0,∞) defined by D(v,w)=maxv,w. The pair (M,D) forms a dislocated metric space.





It is obvious that any metric space is a dislocated metric space, but conversely this is not true.



Definition 2.

Let (M,D) be a DMS. A sequence vn in M is called:

	(a) 

	
convergent to a point v∈M if the following limit exists and is finite


limn→∞D(vn,v)=D(v,v);



(4)








	(b) 

	
Cauchy if the following limit


limn→∞D(vn,vm)








exists and is finite.









Moreover, if limn→∞D(vn,vm)=0, then is said that vn is a 0-Cauchy sequence.





Definition 3.

The DMS (M,D) is complete if for each Cauchy sequence vn in M, there is some v∈M such that


l=limn→∞D(vn,v)=D(v,v)=limn,m→∞D(vn,vm).



(5)









Particularly, if each 0-Cauchy sequence vn converges to a point v∈M the pair (M,D) is said to be 0- complete-DMS.



Definition 4.

Let (M,D) be a DMS. A mapping T:M→M is continuous if for any sequence vn in M converging to v∈M, we have Tvn converges to Tv.





Proposition 1

([9]). Let (M,D) be a DMS. For any v,w∈M we have the following

	(i) 

	
If D(v,w)=0 then D(v,v)=D(w,w)=0.




	(ii) 

	
If v≠w then D(v,w)>0.




	(iii) 

	
If vn is a sequence in M such that limn→∞D(vn,vn+1)=0 then


limn→∞D(vn,vn)=limn→∞D(vn+1,vn+1)=0.



















Definition 5.

By a comparison function we mean a function φ:0,∞→0,∞ with the following properties:

	(cf1)

	
φ is increasing;




	(cf2)

	
limn→∞φn(x)=0, for x∈0,∞.









We denote by Φ the class of the comparison function φ:0,∞→0,∞.





Next we list some basic properties of the comparison functions.



Proposition 2

([10,11]). If φ is a comparison function then:

	(cfi)

	
each φk is a comparison function, for all k∈N;




	(cfii)

	
φ is continuous at 0;




	(cfiii)

	
φ(x)<x for all x>0.











Definition 6

([10]). A function φc:0,∞→0,∞ is called a c-comparison function if:

	(ccf1)

	
φc is monotone increasing;




	(ccf2)

	
∑n=0∞φcn(x)<∞, for all x∈0,∞.









We denote by Φc the family of c-comparison functions.





It can be shown that every c-comparison function is a comparison function.



Throughout this paper we denote by Ψ the collection of all c-comparison functions ψ:0,∞→0,∞ that satisfy the following condition



(ccf3) limx→∞(x-ψ(x))=∞.



In the following we recall the concept of α-admissible mappings. A function T:M→M is said to be α-admissible if

	
(A)  α(v,w)≥1⇒α(Tv,Tw)≥1,



for all v,w∈M where α:M×M→[0,∞) is a given function. An α-admissible map T:M→M which satisfies the condition



	
(TA)  α(v,w)≥1 and α(w,u)≥1 implies that α(v,u)≥1, v,w,u∈M



is said to be triangular α-admissible.








Later, the notion of α-admissible mapping and triangular α-admissible mappings are refined by Popescu [12], as follows:

Definition 7

([12]). Let T:M→M and α:M×M→0,∞. We say that T is an α-orbital admissible mapping if for all v∈M we have



(O)  α(v,Tv)≥1⇒α(Tv,T2v)≥1.







Every α-admissible mapping is an α-orbital admissible mapping, for more details on admissible mapping, see e.g., [13,14,15,16,17,18,19,20,21,22,23,24].



Definition 8

([12]). Let α:M×M→0,∞. An α-orbital admissible function T:M→M is said to be triangular α-orbital admissible if it satisfies



(TO)  α(v,w)≥1 and α(w,Tw)≥1 implies that α(v,Tw)≥1, for all v,w∈M.





At the end of this section, we present two further concepts that will be essential in our next considerations.



A set M is regular with respect to mapping α:M×M→[0,∞) if the following condition is satisfied:

	(R)

	
for any sequence {vn} in M such that α(vn,vn+1)≥1 for all n and vn→v∈M as n→∞ we have α(v,vn)≥1, for all n.



A map α:M×M→0,∞ is said to satisfy the condition (U) if




	(U)

	
for any fixed point v of Tm(v) we have α(v,w)≥1 for any w∈M, where m(v) is a positive integer.










2. Main Results


We are now prepared to establish the main result of this paper.



Theorem 4.

Let (M,D) be a complete DMS, a function T:M→M, ψ∈Ψ and α:M×M→0,∞. Suppose that for all v∈M we can find a positive integer m(v) such that for any w∈M


α(v,w)D(Tm(v)v,Tm(v)w)≤ψmaxD(v,w),D(v,Tm(v)v)2,D(w,Tm(v)w)2,D(w,Tm(v)v)+D(v,Tm(v)w)3.



(6)







Suppose also that:

	(i) 

	
T is triangular α-orbital admissible;




	(ii) 

	
there exists v0 in M such that α(v0,Tv0)≥1;




	(iii) 

	
either T is continuous, or




	(iv) 

	
the M space is regular and α satisfies the condition (U).









Then the function T has exactly one fixed point.





Proof. 

Consider the initial value v0∈M and define a sequence vn as follows:


v1=Tm(v0)v0,v2=Tm(v1)v1,…vk+1=Tm(vk)vk,…



(7)







If we denote mk=m(vk) for any k∈N, then we can write vk+1=Tmkvk.



Now, T is α-orbital admissible and α(v0,Tv0)≥1. Thus, from condition (O), we have α(Tv0,T2v0)≥1 and so forth


α(Tn-1v0,Tnv0)≥1,for all n∈N.



(8)







Taking into account (TO) and (8) we easily infer that


α(vk,Tvk)≥1 and α(Tvk,T2vk)≥1 imply that α(vk,T2vk)≥1.











Recursively, we can conclude that


α(vk,Tmvk)≥1,



(9)




for all m∈1,2,….



In the initial inequality (6) letting v=vk−1, w=Tmkvk−1 and using (9) we can find a positive integer, mk−1 such that


D(vk,vk+1)=D(vk,Tmkvk))=D(Tmk−1vk−1,Tmk(Tmk−1vk−1))=D(Tmk−1vk−1,Tmk−1(Tmkvk−1))≤α(vk−1,Tmkvk−1)D(Tmk−1vk−1,Tmk−1(Tmkvk−1))≤ψmaxD(vk−1,Tmkvk−1),D(vk−1,Tmk−1vk−1)2,D(Tmkvk−1,Tmk−1(Tmkvk−1))2,D(Tmkvk−1,Tmk−1vk−1)+D(vk−1,Tmk−1(Tmkvk−1))3.



(10)







Since ψ∈Ψ, the condition (cf1) is satisfied and applying (D3) we obtain


D(vk,vk+1)=D(vk,Tmkvk))<maxD(vk−1,Tmkvk−1),D(vk−1,Tmk−1vk−1)2,D(Tmkvk−1,vk−1)+D(vk−1,Tmk+mk−1vk−1)2,D(Tmkvk−1,vk−1)+D(vk−1,Tmk−1vk−1)+D(vk−1,Tmk+mk−1vk−1)3.



(11)







Let p1∈mk−1,mk,mk+mk−1 such that


maxD(vk−1,Tmk−1vk−1),D(vk−1,Tmkvk−1),D(vk−1,Tmk−1+mkvk−1)=D(vk−1,Tp1vk−1).











Then from (11) together with (cfiii) we get that


D(vk,Tmkvk))≤ψ(D(vk−1,Tp1vk−1))<D(vk−1,Tp1vk−1).



(12)







Using the same arguments, we can find a positive integer mk−2 such that


D(vk−1,Tp1vk−1))=D(Tmk−2vk−2,Tp1(Tmk−2vk−2))≤α(vk−2,Tp1vk−2)D(Tmk−2vk−2,Tmk−2(Tp1vk−2))≤ψmaxD(vk−2,Tp1vk−2),D(vk−2,Tmk−2vk−2)2,D(Tp1vk−2,Tmk−2(Tp1vk−2))2,D(Tp1vk−2,Tmk−2vk−2)+D(vk−2,Tmk−2(Tp1vk−2)3<maxD(vk-2,Tp1vk-2),D(vk−2,Tmk−2vk−2)2,D(Tp1vk−2,vk−2)+D(vk−2,Tp1+mk−2vk−2)2,D(Tp1vk−2,vk−2)+D(vk−2,Tp1vk−2)+D(vk−2,Tp1+mk−2vk−2)3=D(vk−2,Tp1vk−2),



(13)




where p2∈mk−2,p1,mk−2+p1 is chosen such that


D(vk−2,Tp2vk−2)=maxD(vk−2,Tp1vk−2),D(vk−2,Tmk−2vk−2),D(vk−2,Tmk−2+p1vk−2).











Very easily we can see from (12), (13) and taking into account (ccf1), that


D(vk,Tmkvk))≤ψ(D(vk−1,Tp1vk−1))<ψ2(D(vk−2,Tp2vk−2)).



(14)







Since ψ is monotone increasing, by continuing this process, we find that


D(vk,vk+1)=D(vk,Tmkvk))≤ψk(D(v0,Tpkv0)),



(15)




for p1,p2,…,pk∈N. On one hand the inequality (15) shows us, taking into account (cf2) from Definition 5 that


D(vk,vk+1)=D(vk,Tmkvk))→0.



(16)







On the other hand using triangle inequality, for l∈N, we have


D(vk,vk+l)≤D(vk,vk+1)+D(vk+1,vk+2)+…+D(vk+l−1,vk+l)≤ψk(D(v0,Tpkv0))+ψk+1D(v0,Tpk+1v0))+…+ψk+l−1(D(v0,Tpk+l−1v0)).



(17)







We should focus our attention on the set D(v0,Tiv0),i∈N. More precisely, we will show that this set is bounded. In order to prove that, we mention first that by hypothesis there exists a positive integer m0=m(v0) such that (6) holds. Let xi=D(v0,Tim0+sv0), where s∈1,2,…,m0 and l=maxx0,D(v0,Tm0v0). According to (ccf3), we can find a>l>0 such that


t−ψ(t)>l for any t∈[a,∞).



(18)







It is clear then that x0≤l<a and we will show that xi<a for all i∈N. We suppose the contrary, that there exists k∈N such that xk<a≤xk+1. Note that (according to (6), (9) and triangle inequality)


xk=D(v0,Tkm0+sv0)≤D(v0,Tm0v0)+D(Tm0v0,Tkm0+sv0)=D(v0,Tm0v0)+D(Tm0v0,Tm0(T(k−1)m0+sv0)≤l+α(v0,(T(k−1)m0+sv0))D(Tm0v0,Tm0(T(k−1)m0+sv0)≤l+ψmaxD(v0,T(k−1)m0+sv0),D(v0,Tm0v0)2,D(T(k−1)m0+sv0,Tkm0+sv0)2,D(v0,Tkm0+sv0)+D(T(k−1)m0+sv0,Tm0v0)3.



(19)







But,


maxD(v0,T(k−1)m0+sv0),D(v0,Tm0v0)2,D(T(k−1)m0+sv0,Tkm0+sv0)2,D(v0,Tkm0v0+s)+D(T(k−1)m0+sv0,Tm0v0)3≤maxD(v0,T(k−1)m0+sv0),D(v0,Tm0v0)2,D(T(k−1)m0+sv0,v0)+D(v0,Tkm0+sv0)2,D(v0,Tkm0+sv0)+D(T(k−1)m0+sv0,v0)+D(v0,Tm0v0)3=maxxk−1,x02,xk−1+xk2,xk+xk−1+D(v0,Tm0v0)3≤maxxk−1,x0,xk−1+xk2,xk+xk−1+x03<maxl,l2,xk,l=xk.











Since ψ is increasing, from (19) we get


xk≤l+ψ(xk)



(20)




which contradicts (18). This contradiction shows that our assumption was false. Thus, for all i∈N


xi=D(v0,Tim0+sv0)<a.











We have thus demonstrated that the set D(v0,Tim0+sv0):i∈N is bounded, and also, varying s∈0,1,2,…,m0, the set D(v0,Tiv0),i∈N is bounded. Hence,


r(v0)=supiD(v0,Tiv0)<∞.



(21)







With this observation, we return to (17) and we get


D(vk,vk+l)≤D(vk,vk+1)+D(vk+1,vk+2)+…+D(vk+l-1,vk+l)≤ψk(r(v0))+ψk+1(r(v0))+…+ψk+l−1(r(v0))=∑j=kk+l−1ψj(r(v0)).



(22)







The series ∑j=0∞ψj(r(v0)) is convergent due to (ccf2) and its sequence of partial sums, denoted by Sn, is convergent at S. Then


D(vk,vk+l)≤Sk+l−1−Sk→0



(23)




as k→∞, and, therefore vk is a 0-Cauchy sequence. By completeness of (M,D), there is some point v*∈M such that


limn→∞D(vn,v*)=0=limn,m→∞D(vn,vm).



(24)







From the continuity of T it easily follows that


limn→∞D(vn+1,Tv*)=limn→∞D(Tvn,Tv*)=limn,m→∞D(Tvn,Tvm)=limn,m→∞D(vn+1,vm+1)=0








and by the uniqueness of the limit, we get Tv*=v*.



We claim now that v* is a fixed point of T under the hypothesis (iv). The first step in our proof is to show that Tm(v*)v*=v* which means that v* is a fixed point of Tm(v*). Firstly we claim that limk→∞D(Tm(v*)vk,vk)=0. Taking v=Tm(v*)vk−1 and w=vk−1 in (6), there exists mk−1 such that for any k≥1 we have


D(Tm(v*)vk,vk)=D(Tm(v*)(Tmk−1vk−1),Tmk−1vk−1)≤α(Tm(v*)vk−1,vk−1)D(Tmk−1(Tm(v*)vk−1),Tmk−1vk−1)≤ψmaxD(Tm(v*)vk−1,vk−1),D(Tm(v*)vk−1,Tmk−1+m(v*)vk−1)2,D(vk−1,Tm(vk−1)vk−1)2,D(Tm(v*)vk−1,Tmk−1vk−1)+D(vk−1,Tmk−1+m(v*)vk−1)3



(25)







Let q1∈m(v*),mk−1,m(v*)+mk−1 such that


maxD(Tm(v*)vk−1,vk−1),D(Tmk−1vk−1,vk−1),D(Tm(v*)+mk−1vk−1,vk−1)=D(Tq1vk−1,vk−1).











Using triangle inequality, we have


D(Tm(v*)vk−1,Tmk−1+m(v*)vk−1)2≤≤D(Tm(v*)vk−1,vk−1)+D(vk−1,Tmk−1+m(v*)vk−1)2≤D(Tq1vk−1,vk−1)








and


D(Tm(v*)vk−1,Tmk−1vk−1)+D(vk−1,Tmk−1+m(v*)vk−1)3≤≤D(Tm(v*)vk−1,vk−1)+D(vk−1,Tmk−1vk−1)+D(vk−1,Tmk−1+m(v*)vk−1)3≤D(Tq1vk−1,vk−1).











Then, from (25) it follows that


D(Tm(v*)vk,vk)≤ψ(D(Tq1vk−1,vk−1)).



(26)







Repeating this process and keeping in mind the properties (cf1), (cf2) we find that


D(Tm(v*)vk,vk)≤ψk(D(Tqkv0,v0))→0.



(27)







Suppose now that Tm(v*)v*≠v*. Then D(Tm(v*)v*,v*)>0. Since vk→v* as k→∞ and the space M is regular, by triangle inequality we have


0<D(Tm(v*)v*,v*)≤D(Tm(v*)v*,Tm(v*)vk)+D(Tm(v*)vk,vk)+D(vk,v*)≤α(v*,vk)D(Tm(v*)v*,Tm(v*)vk)+D(Tm(v*)vk,vk)+D(vk,v*)≤ψmaxD(v*,vk),D(v*,Tm(v*)v*)2,D(vk,Tm(v*)vk)2,D(vk,Tm(v*)v*)+D(v*,Tm(v*)vk)3+D(Tm(v*)vk,vk)+D(vk,v*)<maxD(v*,vk),D(v*,Tm(v*)v*),D(vk,Tm(v*)vk)2,D(vk,v*)+D(v*,Tm(v*)v*)+D(v*,vk)+D(vk,Tm(v*)vk)3+D(Tm(v*)vk,vk)+D(vk,v*).











Letting k→∞ in the above inequality, and taking (24) respectively (27) into account, we find that


0<D(Tm(v*)v*,v*)<D(v*,Tm(v*)v*)



(28)




which implies that D(v*,Tm(v*)v*)=0. Hence, Tm(v*)v*=v*.



Let w*∈M another point such that Tm(v*)w*=w* and v*≠w*. Since T satisfies (6) and the function α satisfies the condition (U) we get


0<D(v*,w*)=D(Tm(v*)v*,Tm(v*)w*))≤αv*,w*D(Tm(v*)v*,Tm(v*)w*))≤ψmaxD(v*,w*),D(v*,Tm(v*)v*)2,D(w*,Tm(v*)w*)2,D(w*,Tm(v*)v*)+D(v*,Tm(v*)w*)3.











Since


D(w*,Tm(v*)w*)2≤D(w*,v*)+D(v*,Tm(v*)w*)2=D(v*,w*)








we obtain


0<ψ(D(v*,w*))<D(v*,w*).











But the above inequality is possible only if D(v*,w*)=0, that is v*=w*. This is a contradiction.



From the uniqueness of the fixed point we can conclude that v* is a fixed point for T. Indeed,


Tv*=T(Tm(v*)v*)=Tm(v*)(Tv*)



(29)




shows that Tv* is also fixed point of Tm(v*). But, Tm(v*) has a unique fixed point v*. Hence, Tv*=v*.  □





Remark 1.

Denoting by S(x)=∑n=0∞ψn(x), we have from (22)


D(vk,vk+l)≤∑j=kk+l−1ψj(r(v0))=∑j=0l−1ψj(ψk(r(v0)))<∑j=0l−1ψj(ψk(r(v0))).



(30)







Letting l→∞ in the above inequality we obtain


D(vk,v*)<S(ψk(r(v0))).













Example 2.

Let M=a,b,c,d and D:M×M→[0,∞) with D(v,w)=D(w,v) for any v,w∈M, defined as follows


D(a,a)=D(b,b)=D(c,c)=0,D(d,d)=1,D(a,b)=D(a,c)=D(b,c)=1,D(a,d)=D(b,d)=D(c,d)=2.








(It is easy to see that the pair (M,D) is a DMS but not a metric space.) Let T:M→M be defined by


Ta=Tc=a,Tb=c,Td=b.











For x=b and y=c we have


D(Tb,Tc)=D(c,a)=1≥qD(b,c)=1








for any q∈(0,1). Thus, T does not satisfy the Banach contraction condition. We show that the function T satisfies all the assumptions of Theorem 4 with ψ(x)=2x3 for any x≥0 and α:M×M→[0,∞), α(v,w)=1. Since α(v,w)=1 for all v,w∈M the assumptions (i), (ii) and (iv) are fulfilled. We discuss the following possible cases:

	1. 

	
If v,w∈a,b,c and v=w then for m(v)=1 we have D(Tv,Tv)=0 and inequality (6) holds.




	2. 

	
If v=w=d then D(T2d,T2d)=D(c,c)=0 and also (6) holds.




	3. 

	
If v=b,w=c then T2b=T2c=a. Then, for m(b)=2 we have D(T2b,T2c)D(a,a)=0. Thus, the condition (6) is satisfied.




	4. 

	
If v=b,w=d then T2b=a and T2d=c. Then, for m(b)=2 we have D(T2b,T2d)=D(a,c)=1 and D(b,d)=2. Thus,


α(b,d)D(T2b,T2d)=D(a,c)=1≤2·23=ψ(D(b,d)).












	5. 

	
If v=c,w=d then T2c=a and T2d=c. Then, for m(c)=2 we have D(T2c,T2d)=D(a,c)=1 and D(c,d)=2. Thus,


α(c,d)D(T2b,T2d)=D(a,c)=1≤2·23=ψ(D(c,d)).

















On the other hand, we can note that:


T3a=T3b=T3c=T3d=a.











For this reason, there exists m(a)=3 such that for any w∈M the condition (6) is satisfied (since D(a,a)=0).



The conclusion is that T satisfies all the assumptions of Theorem 4. Therefore T has exactly one fixed point, v=a.





Taking, in Theorem 4, α(v,w)=1 we get the following result:

Corollary 1.

Let (M,D) be a complete DMS, a function T:M→M and ψ∈Ψ. Suppose that for all v,w∈M we can find a positive integer m(v) such that


D(Tm(v)v,Tm(v)w)≤≤ψmaxD(v,w),D(v,Tm(v)v)2,D(w,Tm(v)w)2,D(w,Tm(v)v)+D(v,Tm(v)w)3.



(31)







Then the function T has exactly one fixed point.







Corollary 2.

Let (M,D) be a DMS, a function T:M→M and ψ∈Ψ. Suppose that for all v,w∈M we can find a positive integer m(v) such that


D(Tm(v)v,Tm(v)w)≤ψD(v,w).



(32)







Then the function T has exactly one fixed point.





If we take ψ(x)=qx, q∈[0,1) in Corollary 1 respectively in Corollary 2 we find the following consequences:

Corollary 3.

Let (M,D) be a complete DMS, a function T:M→M. Suppose that for all v,w∈M we can find a positive integer m(v) such that


D(Tm(v)v,Tm(v)w)≤≤qmaxD(v,w),D(v,Tm(v)v)2,D(w,Tm(v)w)2,D(w,Tm(v)v)+D(v,Tm(v)w)3.



(33)







Then the function T has exactly one fixed point.







Corollary 4.

Let (M,D) be a complete DMS, a function T:M→M. Suppose that for all v,w∈M we can find a positive integer m(v) such that


D(Tm(v)v,Tm(v)w)≤qD(v,w).



(34)







Then the function T has exactly one fixed point.





Corollary 5.

Let (M,D) be a complete DMS, a function T:M→M. Suppose that for all v,w∈M we can find a positive integer m(v) such that


D(Tm(v)v,Tm(v)w)≤a1D(v,w)+a2D(v,Tm(v)v)+D(w,Tm(v)w)+a3D(w,Tm(v)v)+D(v,Tm(v)w),



(35)




where a1,a2,a3∈R0 and a1+4a2+3a3<1. Then the function T has exactly one fixed point.





Proof. 

Since


D(Tm(v)v,Tm(v)w)≤a1D(v,w)+2a2D(v,Tm(v)v)2+D(w,Tm(v)w)2+3a3D(w,Tm(v)v)+D(v,Tm(v)w)3≤a1D(v,w)+4a2maxD(v,Tm(v)v)2,D(w,Tm(v)w)2+3a3D(w,Tm(v)v)+D(v,Tm(v)w)3≤(a1+4a2+3a3)·maxD(v,w),D(v,Tm(v)v)2,D(w,Tm(v)w)2,D(w,Tm(v)v)+D(v,Tm(v)w)3.











Letting ψ(x)=(a1+4a2+3a3)x the result follows from Theorem 4.  □





If we take m(v)=1 in Theorem 4 we get:

Corollary 6.

Let (M,D) be a complete DMS, a function T:M→M and ψ∈Ψ. Suppose that for all v,w∈M


α(v,w)D(Tv,Tw)≤ψmaxD(v,w),D(v,Tv)2,D(w,Tw)2,D(w,Tv)+D(v,Tw)3.



(36)







Suppose also that:

	(i) 

	
T is triangular α-orbital admissible;




	(ii) 

	
there exists v0 in M such that α(v0,Tv0)≥1;




	(iii) 

	
either T is continuous, or




	(iv) 

	
the space M is regular and the condition (U) is satisfied.









Then the function T has exactly one fixed point.







Example 3.

Let a dislocated metric space (M,D), where X=[0,1] and D(v,w)=maxv,w for any v,w∈M. Let a self mapping T on M be defined as follows:


T(v)=v3for v∈[0,12)∪11for v=1/2v24+12for v∈(12,1)











Let the functions ψ(x)=2x3, x≥0 and α:M×M→0,∞,


αv,w=2for (v,w)∈A×A1for (v,w)=12,12v+1for (v,w)∈(v,12),(12,v):v∈A0otherwise











Let us first notice that vn=Tnv=v3n→0 for any v∈A and Tn1=13n−1→0. Since α(vn,0)=2 we get that assumption (iv) of Theorem 4 is satisfied. Also, since α(0,0)=2≥1 by simple calculation we can conclude that the assumptions (ii) and (iv) are satisfied. We remark that if v=13 and w=12 then T13=19, T12=1. Hence,


DT13,T12=max19,1=1≥q·12=max13,12=D13,12








and


α13,12DT13,T12=13+1max19,1=43≥13=23·12=ψmaxD13,12,D13,192,D12,12,D13,1+D12,193,








which shows us that T does not satisfy the contraction condition of Banach, neither condition (36) of Corollary 6. We must discuss the next cases:

	1. 

	
If v,w∈A then for m(v)=3 we have Tm(v)v=v27 and Tm(v)w=w27. Thus,


α(v,w)DTm(v)v,Tm(v)w=2·maxv,w27≤23·maxv,w=ψ(D(v,w))≤ψ(M(v,w)),








where


M(v,w)=maxD(v,w),D(v,Tm(v)v)2,D(w,Tm(v)w)2,D(w,Tm(v)v)+D(v,Tm(v)w)3












	2. 

	
If v=w=12 we can choose m(v)=4. Then, T412=127 and


α(12,12)DT412,T412=1·127≤13=23·12=ψ(D(12,12))≤ψ(M(12,12)).












	3. 

	
If v=12 and w∈[0,12) then for m(v)=4 we have T412=127 and T4w=w81


α(12,w)DT412,T4w=(w+1)·max127,w81=w+127≤13=23·max12,w)=ψ(D(12,w))≤ψ(M(12,w)).












	4. 

	
If v=12, w=1 and m(v)=4 then T412=127 and T41=181


α(12,1)DT412,T41=(1+1)·127≤23·1=ψ(D(12,1))≤ψ(M(12,1)).











The other cases are not interesting since α(v,w)=0. Therefore v=0 is the unique fixed point for T.











Inspired by Proposition 3 from [7] we will establish a new fixed point result for a T function on a DMS, not necessarily complete.



Corollary 7.

Let (M,D) be a DMS and a function T:M→M. Suppose that for a given v∈M such that D(v,Tv)>0 we can find a positive integer m(v) such that the following two conditions hold:


D(v,Tm(v)v)<D(v,Tv),



(37)




and


D(Tm(v)v,Tm(v)+1v)≤a1D(v,Tv)+a2D(v,Tm(v)v)+D(Tv,Tm(v)+1v)+a3D(Tv,Tm(v)v)+D(v,Tm(v)+1v)



(38)




for any a1,a2,a3∈R0 and a1+4a2+4a3<1.



Suppose also that there exists a point v*∈M such that σ(v*)=infσ(v):v∈M, where σ(v)=D(v,Tv). Then v* is fixed point of T.





Proof. 

Suppose that D(v*,Tm(v*)>0. Then we can find a positive integer m(v*) such that


D(v*,Tm(v*)v*)<D(v*,Tv*).



(39)







Replacing v=v* in (38), using triangle inequality and keeping in mind (39) we have


D(Tm(v*)v*,Tm(v*)+1v*)≤a1D(v*,Tv*)++a2D(v*,Tm(v*)v*)+D(Tv*,v*)+D(v*,Tm(v*)v*)+D(Tm(v*)v*,Tm(v*)+1v*)+a3D(Tv*,v*)+D(v*,Tm(v*)v*)+D(v*,Tm(v*)v*)+D(Tm(v*)v*,Tm(v*)+1v*)<a1+3a2+3a3D(v*,Tv*)+a2+a3D(Tm(v*)v*,Tm(v*)+1v*)



(40)




or, since a1+4a2+4a3<1 we get


σ(Tm(v*)v*)=D(Tm(v*)v*,Tm(v*)+1v*)<a1+3a2+3a31−a2−a3D(v*,Tv*)<D(v*,Tv*)=σ(v*).











This is a contradiction. Hence D(v*,Tv*)=0 and v* a is fixed point of T.  □






3. Ulam-Stability


Definition 9.

Let (M,D) be a DMS and a function T:M→M. We say that the fixed point equation


v=Tv,v∈M



(41)




is generalized Ulam-stable if for each ε>0 and w∈M there exists m(w)∈1,2,… such that for any w*∈M satisfying the inequality


q(Tm(w*)w*,w*)≤ε



(42)




there exists an increasing function η:[0,∞)→[0,∞) continuous at 0, with η(0)=0 and v*∈M a solution of Equation (41) such that


D(v*,w*)≤η(ε).



(43)









Remark 2.

If η(x)=ax for all x≥0, where a>0, the fixed point Equation (41) is said to be Ulam-stable.





Theorem 5.

Let the function η:[0,∞)→[0,∞), defined by η(x):=x-ψ(x), with ψ∈Ψ. Under the hypothesis of Corollary 2 the fixed point Equation (41) is generalized Ulam-stable.





Proof. 

There exists exactly one point v*∈M such that Tv*=v*, which means that v* is a unique solution of fixed point Equation (41). Let w*∈M. There exists m(w*)∈1,2,… such that (42) holds. Keeping in mind the properties of function ψ, the condition imposed on the alpha function and using the triangle inequality we obtain


D(v*,w*)≤D(v*,Tm(w*)w*)+D(Tm(w*)w*,w*)=D(Tm(w*)v*,Tm(w*)w*)+D(Tm(w*)w*,w*)≤α(v*,w*)D(Tm(w*)v*,Tm(w*)w*)+D(Tm(w*)w*,w*)≤ψD(v*,w*)+ε.



(44)







Taking into account the definition of the function β we have


D(v*,w*)−ψD(v*,w*)=η(D(v*,w*))≤ε








which is equivalent with


D(v*,w*)≤η−1(D(v*,w*))











From the assumption, η is continuous and strictly increasing. Thus, η−1 is also continuous and increasing, with η−1(0)=0 Therefore, the Equation (41) is generalized Ulam-stable.  □






4. Application to Boundary Value Problem


Here we consider the following two point boundary value problems for the second order differential equation.


−d2ϑdt2=ℓ(t,ϑ(t));t∈[0,1]ϑ(0)=ϑ(1)=0



(45)




where ℓ:[0,1]×R→R is a continuous function. Recall that the Green’s function associated to (45) is


Λ(t,s)=t(1−s),if0≤t≤s≤1s(1−t),if0≤s≤t≤1



(46)







Let M=C([0,1]) be the space of all continuous functions defined on I=[0,1]. We consider on M, the dislocated metric D given by D(ϑ,ω)=||ϑ−ω||+||ϑ||+||ω|| for all ϑ,ω∈M, where ||ϑ||=maxt∈I|ϑ(t)| for each ϑ∈M.



Clearly, (M,D) is a complete DMS.



It is well known that ϑ∈C2(I) is a solution of (45) is equivalent to that ϑ∈M=C(I) is a solution of the integral equation.


ϑ(t)=∫01Λ(t,s)ℓ(s,ϑ(s))ds,∀t∈I



(47)







Theorem 6.

Let (M,D) be a complete DMS as defined above. Further, we will assume the following conditions hold:

	1. 

	
there exists a continuous function ϱ:I→R+ such that


|ℓ(s,x1)−ℓ(s,x2)|≤8ϱ(s)|x1−x2|








for each s∈I and x1,x2∈R;




	2. 

	
there exists a continuous function Υ:I→R0+ such that


|ℓ(s,x1)|≤8Υ(s)|x1|








for each s∈I and |x1∈R;




	3. 

	
sups∈Iϱ(s)=z1<13;




	4. 

	
sups∈IΥ(s)=z2<13.









The problem (45) has a solution ϑ∈M.





Proof. 

Define the mapping T:C(I)→C(I) by


Tm(ϑ)ϑ(t)=∫01Λ(t,s)ℓ(s,ϑ(s))ds








for all ϑ∈M,s,t∈I and m(ϑ) be a positive integer. Then the Equation (47) is equivalent to finding ϑ∈M that is a fixed point of T.



Now let ϑ,ω∈M=(C[0,1]). We have,


|Tm(ϑ)ϑ(t)-Tm(ϑ)ω(t)|=|∫01Λ(t,s)ℓ(s,ϑ(s))ds-∫01Λ(t,s)ℓ(s,ω(s))ds|≤∫01Λ(t,s)|ℓ(s,ϑ(s))-ℓ(s,ω(s))|ds≤8∫01Λ(t,s)ϱ(s)|ϑ(s))-ω(s)|ds≤8z1||ϑ−ω||supt∈I∫01Λ(t,s)ds



(48)




for each t∈I. On the other hand,


∫01Λ(t,s)ds=t2-t22andsosupt∈I∫01Λ(t,s)ds=18.











From (48), we get,


|Tm(ϑ)ϑ(t)−Tm(ϑ)ω(t)|≤z1||ϑ−ω||



(49)






|Tm(ϑ)ϑ(t)|=|∫01Λ(t,s)ℓ(s,ϑ(s))ds|≤∫01Λ(t,s)|ℓ(s,ϑ(s))|ds≤8∫01Λ(t,s)Υ(s)|ϑ(s)|ds≤8z2||ϑ||supt∈I∫01Λ(t,s)ds=z2||ϑ||.



(50)







Thus ||Tm(ϑ)ϑ(t)||≤z2||ϑ||. Similarly, we derive that


||Tm(ϑ)ω(t)||≤z2||ω||.



(51)







Take z=z1+2z2. Thus z<1. By using (49)–(51), we get,


D(Tm(ϑ)ϑ(t)−Tm(ϑ)ω(t))=||Tm(ϑ)ϑ(t)−Tm(ϑ)ω(t)||+||Tm(ϑ)ϑ(t)||+||Tm(ϑ)ω(t)||≤z1||ϑ−ω||+z2||ϑ||+z2||ω||≤(z1+2z2)(||ϑ−ω||+||ϑ||+||ω||)=zD(ϑ,ω).



(52)







Hence D(Tm(ϑ)ϑ(t),Tm(ϑ)ω(t))≤zD(ϑ(t),ω(t)). Thus all the conditions of Corollary 4 are satisfied. Hence T has exactly one fixed point ϑ∈M, i.e., the problem (45) has a solution ϑ∈C2(I).









Author Contributions


All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.




Funding


This research received no external funding.




Acknowledgments


The authors are grateful to the handling editor and reviewers for their careful reviews and useful comments. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this group No. RG-1437-017.




Conflicts of Interest


The authors declare that they have no competing interests.




References


	



Bryant, V.W. A remark on a fixed point theorem for iterated mappings. Am. Math. Mon. 1968, 75, 399–400. [Google Scholar] [CrossRef]

	



Guseman, L.F., Jr. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1970, 26, 615–618. [Google Scholar] [CrossRef]

	



Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1977, 62, 344–348. [Google Scholar] [CrossRef]

	



Sehgal, V.M. On fixed and periodic points for a class of mappings. J. Lond. Math. Soc. 1972, 5, 571–576. [Google Scholar] [CrossRef]

	



Singh, K.L. Fixed-Point Theorems for Contractive-Type Mappings. J. Math. Anal. Appl. 1979, 72, 283–290. [Google Scholar] [CrossRef]

	



Ray, B.K.; Rhoades, B.E. Fixed point theorems for mappings with a contractive iterate. Pac. J. Math. 1977, 62, 344–348. [Google Scholar] [CrossRef]

	



Jachymski, J. Fixed points of maps with a contractive iterate at a point. Math. Balkhanica 1995, 9, 244–254. [Google Scholar]

	



Iseki, K. A generalization of Sehgal-Khazanchi’s fixed point theorems. Math. Semin. Notes Kobe Univ. 1974, 2, 1–9. [Google Scholar]

	



Alghamdi, M.A.; Hussain, N.; Salimi, P. Fixed point and coupled fixed point theorems on b-metric-like spaces. J. Inequal. Appl. 2013, 402. [Google Scholar] [CrossRef]

	



Berinde, V. Contractii Generalizate şi Aplicatii; Editura Club Press: Baia Mare, Romania, 1997. [Google Scholar]

	



Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Cluj-Napoca, Romania, 2001. [Google Scholar]

	



Popescu, O. Some new fixed point theorems for α-Geraghty-contraction type maps in metric spaces. Fixed Point Theory Appl. 2014, 190. [Google Scholar] [CrossRef]

	



Aksoy, U.; Karapinar, E.; Erhan, I.M. Fixed points of generalized α-admissible contractions on b-metric spaces with an application to boundary value problems. J. Nonlinear Convex Anal. 2016, 17, 1095–1108. [Google Scholar]

	



Alharbi, A.S.; Alsulami, H.; Karapinar, E. On the Power of Simulation and Admissible Functions in Metric Fixed Point Theory. J. Funct. Spaces 2017, 2068163. [Google Scholar] [CrossRef]

	



Ali, M.U.; Kamram, T.; Karapinar, E. An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping. Abstr. Appl. Anal. 2014, 141489. [Google Scholar] [CrossRef]

	



AlMezel, S.; Chen, C.-M.; Karapinar, E.; Rakočević, V. Fixed point results for various α-admissible contractive mappings on metric-like spaces. Abstr. Appl. Anal. 2014, 379358. [Google Scholar]

	



AlSulami, H.; Gulyaz, S.; Karapinar, E.; Erhan, I.M. Fixed point theorems for a class of alpha-admissible contractions and applications to boundary value problem. Abstr. Appl. Anal. 2014, 187031. [Google Scholar]

	



Arshad, M.; Ameer, E.; Karapinar, E. Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces. J. Inequal. Appl. 2016, 63. [Google Scholar] [CrossRef]

	



Aydi, H.; Karapinar, E.; Yazidi, H. Modified F-Contractions via alpha-Admissible Mappings and Application to Integral Equations. Filomat 2017, 31, 1141–148. [Google Scholar] [CrossRef]

	



Aydi, H.; Karapinar, E.; Zhang, D. A note on generalized admissible-Meir-Keeler-contractions in the context of generalized metric spaces. Results Math. 2017, 71, 73–92. [Google Scholar] [CrossRef]

	



Chen, C.M.; Abkar, A.; Ghods, S.; Karapinar, E. Fixed Point Theory for the α-Admissible Meir-KeelerType Set Contractions Having KKM* Property on Almost Convex Sets. Appl. Math. Inform. Sci. 2017, 11, 171–176. [Google Scholar] [CrossRef]

	



Hammache, K.; Karapinar, E.; Ould-Hammouda, A. On Admissible Weak Contractions in b-Metric-Like Space. J. Math. Anal. Appl. 2017, 8, 167–180. [Google Scholar]

	



Karapinar, E.; Samet, B. Generalized (alpha-psi) contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, 793486. [Google Scholar]

	



Karapinar, E.; Kumam, P.; Salimi, P. On α-ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 94. [Google Scholar] [CrossRef]







© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  mathematics-07-00153


  
    		
      mathematics-07-00153
    


  




  





media/file0.png


