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Abstract

:

In this article, we study a modified viscosity splitting method combined with inertial extrapolation for accretive operators in Banach spaces and then establish a strong convergence theorem for such iterations under some suitable assumptions on the sequences of parameters. As an application, we extend our main results to solve the convex minimization problem. Moreover, the numerical experiments are presented to support the feasibility and efficiency of the proposed method.
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1. Introduction


Throughout this paper, we let E be a real Banach space with norm ∥.∥ and E* be its dual space. The normalized duality mapping J from E into 2E* is defined by the following equation:


J(x)={f∈E*:⟨x,f⟩=∥f∥∥x∥=∥x∥2}∀x∈E.








we denote the generalized duality pairing between E and E* by ⟨.,.⟩ and the single-valued duality mapping by j.



The inclusion problem is to find x∈E such that


0∈(A+B)x








where A:E→E is an operator and B:E→2E is a set-valued operator. Please note that on the one hand, this problem takes into account some special cases, such as variational inequalities, convex programming, minimization problem, and split feasibility problem [1,2,3]. On the other hand, as an important branch of nonlinear functional analysis and optimization theory, it has been studied numerous times in the literature to solve the real-world problem, such as machine learning, image reconstruction, and signal processing; see [4,5,6,7] and the references therein.



In 2012, Takashashi et al. [8] studied a Halpern-type iterative method for an α-inverse strongly monotone mapping A and a maximal monotone operator B in a Hilbert space as follows:


xn+1=βnxn+(1−βn)(αnu+(1−αn)JrnB(xn−rnAxn)),








under certain conditions, the algorithm was showed to converge strongly to a solution of A+B. Furthermore, Lopez et al. [9] introduced the following method for accretive operators:


xn+1=αnu+(1−αn)(JrnB(xn−rn(Axn+an))+bn),








they studied strong convergence theorems for Halpern-type splitting methods in Banach spaces. In 2016, Pholasa et al. [10] extended the above results [8,9] and studied the modified forward-backward splitting methods in Banach spaces:


xn+1=βnxn+(1−βn)(αnu+(1−αn)JrnB(xn−rnAxn)),








it was proved that xn converges strongly to a point z=Q(u) under some mild conditions, where Q is the sunny nonexpansive retraction.



Inertial extrapolation is an important technique to speed up the convergence rate [11,12,13,14]. Recently, the fast-iterative algorithms by using inertial extrapolation studied by some authors [15,16,17]. For instance, in 2003, Moudafi et al. [18] studied the following inertial proximal point algorithm of a maximal monotone operator:


yn=xn+θn(xn−xn−1),xn+1=(I+λnT)−1(yn).











If λn is non-decreasing and θn∈[0,1) is chosen such that


∑n=1∞θn∥xn−xn−1∥2<∞,








then xn converges to a zero point of T. In 2015, Lorenz et al. [19] applied inertial extrapolation technique to forward-backward algorithm for monotone operators in Hilbert spaces. They proved that the iterative process defined by


yn=xn+θn(xn−xn−1),xn+1=(I+rnB)−1(yn−rnAyn).








converges weakly to a solution of the inclusion 0∈(A+B)(x). In 2018, Cholamjiak et al. [20] proposed a Halpern-type inertial iterative method for monotone operators in Hilbert spaces and they proved the strong convergence of the algorithm.



Inspired and motivated by the above-mentioned works, we apply inertial extrapolation algorithms and viscosity approximation to give an extension, and then we study a modified splitting method for accretive operators in Banach spaces. The strong convergence theorems for such iterations are established and some applications including the numerical experiments are presented to support our main theorem.




2. Preliminaries


Recall that a Banach space E is said to be uniformly convex if for any ϵ∈(0,2], there exists a δ=δE(ϵ)>0 such that x,y∈E with ∥x∥=∥y∥=1, and ∥x−y∥≥ϵ, then ∥x+y∥/2≤1−δ. We denote the modulus of smoothness ρE:R+→R+ of E as follows:


ρE(t)=sup{∥x+ty∥+∥x−ty∥2−1:∥x∥=1,∥y∥=1},








for 1<q≤2, a Banach space E is said to be q-uniformly smooth if there exists a constant cq>0 such that ρE(t)≤cqtq,t>0. E is said to be uniformly smooth if limn→∞ρE(t)/t=0. It is obvious that q-uniformly smooth Banach space must be uniformly smooth and E is uniformly smooth if and only if the norm of E is uniformly Fréchet differentiable.



Let I be the identity operator. We denote by D(A)={z∈E:Az≠∅}, R(A)=⋃{Az:z∈D(A)} the domain and range of an operator A⊂E×E, respectively. A is called accretive if for each x,y∈D(A), there exists j(x−y)∈J(x−y) such that


⟨u−v,j(x−y)⟩≥0,∀u∈Ax,v∈Ay.











An accretive operator A is called α-inverse strongly accretive, if for each x,y∈D(A), there exists j(x−y)∈J(x−y) such that


⟨u−v,j(x−y)⟩≥α∥u−v∥2,∀u∈Ax,v∈Ay.











It is well-known that an accretive operator A is m-accretive if R(I+rA)=E for all r>0. If A is an accretive operator which satisfies the range condition, then, for each r>0, the mapping JrA:R(I+rA)→D(A) is defined by JrA=(I+rA)−1, which is called the resolvent operator of A.



Let C be a nonempty, closed and convex subset of E, and let D be a nonempty subset of C. A mapping T:C→D is called a retraction of C onto D, if for all x∈D, there is Tx=x. We called T is sunny if T has the following property: T(tx+(1−t)Tx)=Tx for each x∈C and t≥0 whenever tx+(1−t)Tx∈C. It is known that a sunny nonexpansive retraction is a sunny retraction which is also nonexpansive.



The following lemmas are needed to prove our results.



Lemma 1

([21]).Let E be a smooth Banach space. Then the following inequality holds:


∥x+y∥2≤∥x∥2+2⟨y,j(x+y)⟩,∀x,y∈E.













Lemma 2

([22]).For any r>0, give 0<s≤r and x∈E, if


Tr:=JrB(I−rA)=(I+rB)−1(I−rA)








then Fix(Tr)=(A+B)−1(0). In addition, there holds the relation


∥x−Tsx∥≤2∥x−Trx∥.













Lemma 3

([23]).If a Banach space E is uniformly smooth, then the duality mapping J is single valued and norm-to-norm uniformly continuous on each bounded subset of E.





Lemma 4

([21]).Let E be a uniformly smooth Banach space and T:C→C be a nonexpansive mapping with a fixed point. Let f:C→C be a contraction with coefficient ρ∈(0,1) and t∈(0,1), the unique fixed point xt∈C of the contraction C∋x↦tf(x)+(1−t)Tx converges strongly as t→0 to a fixed point of T. Define a mapping Q:C→D by Qu=s−limt→0xt. Then Q is the unique sunny nonexpansive retract from C onto D.





Lemma 5

([24]).Assume {an}⊂R+, {δn}⊂(0,1) and {bn}⊂R be the sequences such that


an+1≤(1−δn)an+bn,n≥0,








(i) If Σn=0∞δn=∞; (ii) limsupn→∞bnδn≤0orΣn=1∞|bn|<∞; then limn→∞an=0.





Lemma 6

([25]).Assume {sn} is a sequence of nonnegative real numbers such that


sn+1≤(1−γn)sn+γnτn,n≥1,










sn+1≤sn−ηn+dn,n≥1,








where {γn} is a sequence in (0,1), {ηn} is a sequence of nonnegative real numbers and {τn}, {dn} are real sequences such that

	(i) 

	
Σn=0∞γn=∞,




	(ii) 

	
limn→∞dn=0,




	(iii) 

	
limk→∞ηnk=0 implies lim supk→∞τnk≤0 for any subsequence {nk}⊂{n}.









Then limn→∞sn=0.





Lemma 7

([26]).Let A be a single-valued α-isa in a real uniformly convex Banach space with Fréchet differentiable norm. Then, for all x,y∈E and given s>0, there exists a continuous, strictly increasing and convex function Φ:R+→R+ with Φ(0)=0 such that


∥Trx−Try∥2≤∥x−y∥2−r(2α−rk)∥Ax−Ay∥2−Φ(∥(I−JrB)(I−rA)x−(I−JrB)(I−rA)y∥)








where k is the uniform smoothness coefficient of E.





Lemma 8

([27]).Let E be a uniformly convex Banach space. Then, for all x,y∈E and t∈[0,1], there exists a convex continuous and strictly increasing function g:[0,∞)→[0,∞) with g(0)=0 such that


∥tx+(1−t)y∥2≤t∥x∥2+(1−t)∥y∥2−t(1−t)g(∥x−y∥).














3. Main Results


Theorem 1.

Let E be a uniformly convex and uniformly smooth Banach space. Let A:E→E be an α-inverse-strongly accretive mapping and B:E→2E be an m-accretive operator. Assume that Ω=(A+B)−1(0)≠∅. Let f:E→E be a contraction with coefficient ρ∈[0,1) and {βn}⊂(0,1), {αn}, {δn} be real number sequences in [0,1) and rn⊂(0,+∞). Define a sequence {xn} in E as follows:


wn=xn+αn(xn−xn−1),yn=δnwn+(1−δn)JrnB(wn−rnAwn),xn+1=βnf(xn)+(1−βn)yn.



(1)




for all n∈N, where x0,x1∈E and JrnB=(I+rnB)−1. Assume that the following conditions hold:


(i)∑n=1∞αn∥xn−xn−1∥<∞;(ii)limn→∞βn=0,∑n=1∞βn=∞;(iii)0<lim infn→∞rn<lim supn→∞rn<2αk;(iv)lim supn→∞δn<1.











Then the sequence {xn} converges strongly to z=Q(f(z)), where Q is the sunny nonexpansive retraction of E onto Ω.





Proof. 

Let Tn=JrnB(I−rnA), z=Q(f). Then, we have


∥yn−z∥=∥δnwn+(1−δn)Tnwn−z∥≤δn∥wn−z∥+(1−δn)∥Tnwn−z∥≤δn∥wn−z∥+(1−δn)∥wn−z∥≤∥wn−z∥≤∥xn+αn(xn−xn−1)−z∥≤∥xn−z∥+αn∥(xn−xn−1)∥.











In view of Lemma 2, we have


∥xn+1−z∥=∥βnf(xn)+(1−βn)yn−z∥≤βn∥f(xn)−z∥+(1−βn)∥yn−z∥≤βn∥f(xn)−f(z)∥+βn∥f(z)−z∥+(1−βn)∥yn−z∥≤βnρ∥xn−z∥+βn∥f(z)−z∥+(1−βn)(∥xn−z∥+αn∥(xn−xn−1)∥)=[1−βn(1−ρ)]∥xn−z∥+βn∥f(z)−z∥+(1−βn)αn∥(xn−xn−1)∥.











From the restriction and Lemma 5, we find that {xn} is bounded. Hence {wn}, {yn} are also bounded.



Using the inequality in Lemma 1 and Lemma 8 , we find that


∥wn−z∥2=∥xn+αn(xn−xn−1)−z∥2≤∥xn−z∥2+2αn⟨xn−xn−1,j(wn−z)⟩,



(2)




and


∥xn+1−z∥2=∥βnf(xn)+(1−βn)yn−z∥2=∥βn(f(xn)−f(z))+(1−βn)(yn−z)+βn(f(z)−z)∥2≤∥βn(f(xn)−f(z))+(1−βn)(yn−z)∥2+2βn⟨f(z)−z,j(xn+1−z)⟩≤βn∥f(xn)−f(z)∥2+(1−βn)∥yn−z∥2−βn(1−βn)g(∥(f(xn)−f(z))−(yn−z)∥)+2βn⟨f(z)−z,j(xn+1−z)⟩≤βnρ2∥xn−z∥2+(1−βn)∥yn−z∥2+2βn⟨f(z)−z,j(xn+1−z)⟩.



(3)







In view of Lemmas 7 and 8, we get


∥yn−z∥2=∥δnwn+(1−δn)Tnwn−z∥2≤δn∥wn−z∥2+(1−δn)∥Tnwn−z∥2≤δn∥wn−z∥2+(1−δn)[∥wn−z∥2−rn(2α−rnk)∥Awn−Az∥2−Φ(∥(I−JrnB)(I−rnA)wn−(I−JrnB)(I−rnA)z∥)]=∥wn−z∥2−(1−δn)rn(2α−rnk)∥Awn−Az∥2−(1−δn)Φ(∥wn−rnAwn−Tnwn+rnAz∥).



(4)







Substitute (2), (4) into (3), we get


∥xn+1−z∥2≤βnρ2∥xn−z∥2+2βn⟨f(z)−z,j(xn+1−z)⟩+(1−βn)∥wn−z∥2−(1−βn)(1−δn)rn(2α−rnk)∥Awn−Az∥2−(1−βn)(1−δn)Φ(∥wn−rnAwn−Tnwn+rnAz∥)≤βnρ2∥xn−z∥2+2βn⟨f(z)−z,j(xn+1−z)⟩+(1−βn)∥xn−z∥2+2(1−βn)αn⟨xn−xn−1,j(wn−z)⟩−(1−βn)(1−δn)rn(2α−rnk)∥Awn−Az∥2−(1−βn)(1−δn)Φ(∥wn−rnAwn−Tnwn+rnAz∥)=(1−βn(1−ρ2))∥xn−z∥2+2βn⟨f(z)−z,j(xn+1−z)⟩+2(1−βn)αn⟨xn−xn−1,j(wn−z)⟩−(1−βn)(1−δn)rn(2α−rnk)∥Awn−Az∥2−(1−βn)(1−δn)Φ(∥wn−rnAwn−Tnwn+rnAz∥).



(5)







We can check that βn(1−ρ2) is in (0,1), by the condition (iii), we can show that (1−βn)(1−δn)rn(2α−rnk) is positive. Then, we have


∥xn+1−z∥2≤(1−βn(1−ρ2))∥xn−z∥2+2βn⟨f(z)−z,j(xn+1−z)⟩+2(1−βn)αn⟨xn−xn−1,j(wn−z)⟩,



(6)




and


∥xn+1−z∥2≤∥xn−z∥2−(1−βn)(1−δn)rn(2α−rnk)∥Awn−Az∥2−(1−βn)(1−δn)Φ(∥wn−rnAwn−Tnwn+rnAz∥)+2βn⟨f(z)−z,j(xn+1−z)⟩+2(1−βn)αn⟨xn−xn−1,j(wn−z)⟩.



(7)







For each n≥1, let


sn=∥xn−z∥2,γn=βn(1−ρ2),τn=21−ρ2⟨f(z)−z,j(xn+1−z)⟩+2αn(1−βn)βn(1−ρ2)⟨xn−xn−1,j(wn−z)⟩,ηn=(1−βn)(1−δn)rn(2α−rnk)∥Awn−Az∥2+(1−βn)(1−δn)Φ(∥wn−rnAwn−Tnwn+rnAz∥),dn=2βn⟨f(z)−z,j(xn+1−z)⟩+2(1−βn)αn⟨xn−xn−1,j(wn−z)⟩.



(8)




we find from (6), (7) that


sn+1≤(1−γn)sn+γnτn,








and also


sn+1≤sn−ηn+dn.











Notice that ∑n=1∞βn=∞, we see that ∑n=1∞γn=∞. By the boundedness of {wn}, {xn} and the restriction limn→∞βn=0, implies that limn→∞dn=0.



On the other hand, using Lemma 6, it remains to show that limk→∞ηnk=0 implies lim supk→∞τnk≤0, for any subsequence {nk}⊂{n}. Let ηnk be a subsequence of ηn such that limk→∞ηnk=0. It follows from the restrictions and the property of ϕ, we derive from (8) the following


limk→∞∥Awnk−Az∥=0=limk→∞∥wnk−rnkAwnk−Tnkwnk+rnkAz∥=0.











By the triangle inequality, it turns out that


limk→∞∥Tnkwnk−wnk∥=0.








and moreover, since 0<lim infn→∞rn, there exists ϵ>0, such that rn≥ϵ for all n>0, in view of the inequality in Lemma 2, we have


∥Tϵwnk−wnk∥≤2∥Tnkwnk−wnk∥.











It turns out that


lim supk→∞∥Tϵwnk−wnk∥≤0.











Therefore, we can get


∥Tϵwnk−wnk∥=0.



(9)







Please note that


∥Tϵwnk−xnk∥≤∥Tϵwnk−wnk∥+∥wnk−xnk∥≤∥Tϵwnk−wnk∥+αn∥xnk−xnk−1∥











We get from condition (i) and (9) that


limk→∞∥Tϵwnk−xnk∥=0.



(10)







Put zt=tf(zt)+(1−t)Tϵzt for any t∈(0,1). Apply Lemma 4, we get zt→Q(f)=z,t→0. Then we have


∥zt−xnk∥2=∥tf(zt)+(1−t)Tϵzt−xnk∥2=∥t(f(zt)−xnk)+(1−t)(Tϵzt−xnk)∥2≤(1−t)2∥Tϵzt−xnk∥2+2t⟨f(zt)−xnk,j(zt−xnk)⟩=(1−t)2∥Tϵzt−xnk∥2+2t⟨f(zt)−zt,j(zt−xnk)⟩+2t⟨zt−xnk,j(zt−xnk)⟩≤(1−t)2(∥Tϵzt−Tϵwnk∥+∥Tϵwnk−xnk∥)2+2t⟨f(zt)−zt,j(zt−xnk)⟩+2t⟨zt−xnk,j(zt−xnk)⟩≤(1−t)2(∥zt−wnk∥+∥Tϵwnk−xnk∥)2+2t⟨f(zt)−zt,j(zt−xnk)⟩+2t∥zt−xnk∥2≤(1−t)2(∥zt−xnk∥+αn∥xnk−xnk−1∥+∥Tϵwnk−xnk∥)2+2t⟨f(zt)−zt,j(zt−xnk)⟩+2t∥zt−xnk∥2











This implies that


⟨zt−f(zt),j(zt−xnk)⟩≤(1−t)22t(∥zt−xnk∥+αn∥xnk−xnk−1∥+∥Tϵwnk−xnk∥)2+2t−12t∥zt−xnk∥2.



(11)







From (10), (11) we obtain


lim supk→∞⟨zt−f(zt),j(zt−xnk)⟩≤(1−t)22tM2++2t−12tM2=t2M2→0,ast→0,



(12)




for some M>0 large enough. Since the duality mapping J is norm-to-norm uniformly continuous on bounded sets of E, we see that ∥j(zt−xnk)−j(z−xnk)∥→0,t→0. Then, we have that


∥⟨zt−f(zt),j(zt−xnk)⟩−⟨z−f(zt),j(z−xnk)⟩∥=∥⟨zt−z+z−f(zt),j(zt−xnk)⟩−⟨z−f(zt),j(z−xnk)⟩∥≤∥⟨zt−z,j(zt−xnk)⟩∥+∥⟨z−f(zt),j(zt−xnk)⟩−⟨z−f(zt),j(z−xnk)⟩∥≤∥zt−z∥∥zt−xnk∥+∥z−f(zt)∥∥j(zt−xnk)−j(z−xnk)∥



(13)







From (12), (13) and let t→0, we get that


lim supk→∞⟨z−f(z),j(z−xnk)⟩≤0.



(14)







On the other hand, we have


∥ynk−xnk∥=∥δnkwnk+(1−δnk)Tnkwnk−xnk∥≤δnk∥wnk−xnk∥+(1−δnk)∥Tnkwnk−xnk∥≤δnk∥wnk−xnk∥+(1−δnk)∥Tnkwnk−wnk∥+(1−δnk)∥wnk−xnk∥=∥wnk−xnk∥+(1−δnk)∥Tnkwnk−wnk∥≤αnk∥xnk−xnk−1∥+(1−δnk)∥Tnkwnk−wnk∥










∥xnk+1−xnk∥=∥βnkf(xnk)+(1−βnk)ynk−xnk∥≤βnk∥f(xnk)−xnk∥+(1−βnk)∥ynk−xnk∥≤βnk∥f(xnk)−f(z)∥+βnk∥f(z)−xnk∥+(1−βnk)∥ynk−xnk∥≤βnk∥f(xnk)−f(z)∥+βnk∥f(z)−xnk∥+(1−βnk)αnk∥xnk−xnk−1∥+(1−βnk)(1−δnk)∥Tnkwnk−wnk∥











From condition (i),(ii) and (9), we have


limn→∞∥xnk+1−xnk∥=0.



(15)







From (14) and (15), we obtain


lim supk→∞⟨z−f(z),j(z−xnk+1)⟩≤0.











This implies that lim supk→∞τnk≤0 that means by Lemma 6, we get limn→∞sn=0. Hence, we see that xn→z,n→∞. This finishes the proof. □





Corollary 1.

Let E be a uniformly convex and uniformly smooth Banach space. Let A:E→E be an α-inverse-strongly accretive mapping and B:E→2E be an m-accretive operator. Assume that Ω=(A+B)−1(0)≠∅. Let {βn}⊂(0,1), {αn}, {δn} be real number sequences in [0,1) and rn⊂(0,+∞). Define a sequence {xn} in E as follows:


wn=xn+αn(xn−xn−1),yn=δnwn+(1−δn)JrnB(wn−rnAwn),xn+1=βnu+(1−βn)yn.








for all n∈N, where u,x0,x1∈E and JrnB=(I+rnB)−1. Assume that the following conditions hold:


(i)∑n=1∞αn∥xn−xn−1∥<∞;(ii)limn→∞βn=0,∑n=1∞βn=∞;(iii)0<lim infn→∞rn<lim supn→∞rn<2αk;(iv)lim supn→∞δn<1.











Then the sequence {xn} converges strongly to z=Q(u), where Q is the sunny nonexpansive retraction of E onto Ω.





Proof. 

In this case, the map f:E→E defined by f(x)=u, ∀x∈E is a strict contraction with constant ρ=0. The proof follows from Theorem 1 above. □





Corollary 2.

Let H be a uniformly convex and uniformly smooth Hilbert space. Let A:H→H be an α-inverse-strongly monotone operator and B:H→2H be a maximal monotone operator. Assume that Ω=(A+B)−1(0)≠∅. Let f:H→H be a contraction with coefficient ρ∈[0,1) and {βn}⊂(0,1), {αn},{δn} be real number sequences in [0,1) and rn⊂(0,2α). Define a sequence {xn} in E as follows:


wn=xn+αn(xn−xn−1),yn=δnwn+(1−δn)JrnB(wn−rnAwn),xn+1=βnf(xn)+(1−βn)yn.








for all n∈N, where x0,x1∈E and JrnB=(I+rnB)−1. Assume that the following conditions hold:


(i)∑n=1∞αn∥xn−xn−1∥<∞;(ii)limn→∞βn=0,∑n=1∞βn=∞;(iii)0<lim infn→∞rn<lim supn→∞rn<2αk;(iv)lim supn→∞δn<1.











Then the sequence {xn} converges strongly to z=P(f(z)), where P is the metric projection of H onto Ω.





Proof. 

We only need to replace Banach space E with Hilbert space H in the proof of Theorem 1. □





Corollary 3.

(Convex minimization problem) Let H be a real Hilbert space. Let f:H→R be a convex and differentiable function with K-Lipschitz continuous gradient ∇f and g:H→R a convex and lower semi-continuous function which f+g attains a minimizer. Let {βn}⊂(0,1), {αn}, {δn} be real number sequences in [0,1) and rn⊂(0,2α). Define a sequence {xn} in H as follows:


wn=xn+αn(xn−xn−1),yn=δnwn+(1−δn)Jrn∂g(wn−rn∇f(wn)),xn+1=βnf(xn)+(1−βn)yn.








for all n∈N, where x0,x1∈E and JrnB=(I+rnB)−1. Assume that the following conditions hold:


(i)∑n=1∞αn∥xn−xn−1∥<∞;(ii)limn→∞βn=0,∑n=1∞βn=∞;(iii)0<lim infn→∞rn<lim supn→∞rn<2α;(iv)lim supn→∞δn<1.











Then the sequence {xn} converges strongly to a minimizer of f+g.





Proof. 

We get that gradient ∇f is K-Lipschitz continuous, then it is 1K inverse strongly monotone, and g is a convex and lower semi-continuous function, so ∂g is maximal monotone. Thus, let A=∇f and B=∂g in Theorem 1, the conclusion of Theorem 1 still holds. □






4. Applications and Numerical Experiments


In this section, we give a concrete example of the numerical results to support the main theorem. Furthermore, we give it to compare the efficiency of our proposed algorithm with the algorithm of Pholasa et al. [10]. And we also show the algorithm presented in this paper converges more quickly. The whole codes are written by Matlab R2013b. All the results are carried out by personal computer with Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz and RAM 8.00GB.



Example 1.

Let l3 be a uniformly convex and uniformly smooth Banach space, we set Ax=5x+(1,1,1,0,0,0...) and Bx=6x where x=(x1,x2,x3,...)∈l3. We can check that A:l3→l3 is a 15-isa, B:l3→l3 is an m-accretive operator and R(I+rB)=l3 for all r>0. we take rn=0.02, αn=0.4 for all n∈N. Let βn=11000n+1, δn=1200n and f(x)=13x be a contraction with coefficient ρ=13. Starting x0=(1.8,3.2,9.6,...), x1=(1.4290014,2.5542525,7.6982578,...) and using algorithm (1) in Theorem 1, we obtain the following numerical results.



From Table 1 we see that x600=(−0.0909,−0.0909,−0.0909,0.0000,0.0000,0.0000,...) is an approximation of a solution with an error 1.8770214×10−9. And we make the same choices for x1 as reported in Table 1. In terms of the number of iterations and the errors, we provide the numerical examples to demonstrate the performance and to compare our proposed algorithm with the iterative algorithm with αn=0.



In these 600 experiments, Table 2 shows that the final approximation solution is the same as Table 1. Figure 1 shows that the number of iterations and errors of our algorithm and the algorithm with αn=0 for the above initial points. We can see that the convergence of our algorithm is faster than the algorithm of Pholasa et al. [10].






5. Conclusions


In this paper, we give a modified inertial viscosity splitting algorithm for accretive operators in Banach spaces. The strong convergence theorems are established, and the numerical experiments are presented to support that the inertial extrapolation greatly improves the efficiency of the algorithm. In Theorem 1 and Corollary 1, if f(xn)=u and A is an inverse strongly monotone operator in Hilbert space, it is the main results of Cholamjiak et al. [20]. In Theorem 1, if αn=0, f(xn)=u and E is a uniformly convex and q-uniformly smooth Banach space, it is the main results of Pholasa et al. [10]. Furthermore, some other results are also improved (see [8,9,18,19,26]).



The introduction of the inertial viscosity splitting algorithms sheds new light on inclusion problem. Combined with recent research findings ([4,13,19,20]), Theorem 1 can be further applied to the fixed-point problem, the split feasibility problem and the variational inequality problem. Indeed, it is an important but unsolved problem to choose the optimal inertia parameters αn in the acceleration algorithm. In the future, more work will be devoted to the wide application of the proposed algorithm and the improvement of its convergence rate.
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Figure 1. Error plotting of ∥xn+1−xn∥l3. 
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Table 1. Numerical results of Example 1 for iteration process.






Table 1. Numerical results of Example 1 for iteration process.





	n
	xn
	∥xn+1−xn∥l3





	1
	(1.4290014,2.5542525,7.6982578,0.0000000,0.0000000,0.0000000,...)
	2.1732179



	10
	(−0.0677632,−0.0506892,0.0273635,0.0000000,0.0000000,0.0000000,...)
	8.911330×10−2



	20
	(−0.0908530,−0.0908328,−0.0907403,0.0000000,0.0000000,0.0000000,...)
	1.9408448×10−4



	30
	(−0.0908917,−0.0908919,−0.0908926,0.0000000,0.0000000,0.0000000,...)
	6.7808717×10−7



	40
	(−0.0908964,−0.0908964,−0.0908964,0.0000000,0.0000000,0.0000000,...)
	5.1789690×10−7



	50
	(−0.0908991,−0.0908991,−0.0908991,0.0000000,0.0000000,0.0000000,...)
	3.1714100×10−7



	60
	(−0.0909009,−0.0909009,−0.0909009,0.0000000,0.0000000,0.0000000,...)
	2.1345961×10−7



	70
	(−0.0909021,−0.0909021,−0.0909021,0.0000000,0.0000000,0.0000000,...)
	1.5346777×10−7



	80
	(−0.0909030,−0.0909030,−0.0909030,0.0000000,0.0000000,0.0000000,...)
	1.1564503×10−7



	90
	(−0.0909037,−0.0909037,−0.0909037,0.0000000,0.0000000,0.0000000,...)
	9.0267844×10−8



	100
	(−0.0909043,−0.0909043,−0.0909043,0.0000000,0.0000000,0.0000000,...)
	7.2416422×10−8



	200
	(−0.0909067,−0.0909067,−0.0909067,0.0000000,0.0000000,0.0000000,...)
	1.7357133×10−8



	300
	(−0.0909075,−0.0909075,−0.0909075,0.0000000,0.0000000,0.0000000,...)
	7.6097663×10−9



	400
	(−0.0909079,−0.0909079,−0.0909079,0.0000000,0.0000000,0.0000000,...)
	4.2517012×10−9



	500
	(−0.0909082,−0.0909082,−0.0909082,0.0000000,0.0000000,0.0000000,...)
	2.7101525×10−9



	600
	(−0.0909083,−0.0909083,−0.0909083,0.0000000,0.0000000,0.0000000,...)
	1.8770214×10−9
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Table 2. Numerical results for iteration process Algorithm (1) with αn=0 in Example 1.






Table 2. Numerical results for iteration process Algorithm (1) with αn=0 in Example 1.





	n
	xn
	∥xn+1−xn∥l3





	1
	(1.4290014,2.5542525,7.6982578,0.0000000,0.0000000,0.0000000,...)
	1.9308196



	10
	(0.1216527,0.2789583,0.9980697,0.0000000,0.0000000,0.0000000,...)
	2.702205×10−1



	20
	(−0.0670158,−0.0493531,0.031391,0.0000000,0.0000000,0.0000000,...)
	3.034530×10−2



	30
	(−0.0882106,−0.0862275,−0.0771619,0.0000000,0.0000000,0.0000000,...)
	3.407800×10−3



	40
	(−0.0905947,−0.0903721,−0.0893543,0.0000000,0.0000000,0.0000000,...)
	3.8297598×10−4



	50
	(−0.0908649,−0.0908399,−0.0907256,0.0000000,0.0000000,0.0000000,...)
	4.3220033×10−5



	60
	(−0.0908968,−0.0908940,−0.0908812,0.0000000,0.0000000,0.0000000,...)
	5.0028407×10−6



	70
	(−0.0909015,−0.0909012,−0.0908997,0.0000000,0.0000000,0.0000000,...)
	6.7427458×10−7



	80
	(−0.0909028,−0.0909028,−0.0909026,0.0000000,0.0000000,0.0000000,...)
	1.7183921×10−7



	90
	(−0.0909036,−0.0909036,−0.0909036,0.0000000,0.0000000,0.0000000,...)
	9.9664118×10−8



	100
	(−0.0909042,−0.0909042,−0.0909042,0.0000000,0.0000000,0.0000000,...)
	7.5993686×10−8



	200
	(−0.0909067,−0.0909067,−0.0909067,0.0000000,0.0000000,0.0000000,...)
	1.7674516×10−8



	300
	(−0.0909075,−0.0909075,−0.0909075,0.0000000,0.0000000,0.0000000,...)
	7.6990015×10−9



	400
	(−0.0909079,−0.0909079,−0.0909079,0.0000000,0.0000000,0.0000000,...)
	4.2884018×10−9



	500
	(−0.0909082,−0.0909082,−0.0909082,0.0000000,0.0000000,0.0000000,...)
	2.7286629×10−9



	600
	(−0.0909083,−0.0909083,−0.0909083,0.0000000,0.0000000,0.0000000,...)
	1.8876276×10−9
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