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Abstract: In this investigation, by using the Komatu integral operator, we introduce the new class
L

η,ρ
Σ,t(p̃) of bi-univalent functions based on the rule of subordination. Moreover, we use the Faber

polynomial expansions and Fibonacci numbers to derive bounds for the general coefficient |an| of the
bi-univalent function class.

Keywords: bi-univalent functions; subordination; Faber polynomials; Fibonacci numbers; Komatu
integral operator

1. Introduction and Preliminaries

Let C be the complex plane and D = {z : z ∈ C and |z| < 1} be the open unit disc in C. Further,
let A represent the class of functions analytic in D, thus satisfying the condition:

f (0) = f ′(0)− 1 = 0.

Then, each of the functions f in A has the following Taylor series expansion:

f (z) = z + a2z2 + a3z3 + . . . = z +
∞

∑
n=2

anzn. (1)

Suppose S is a subclass of A consisting of univalent functions in D.
In the Koebe-One Quarter Theorem, every univalent function f in A has an inverse f−1 satisfying

f−1( f (z)) = z(z ∈ D) and f
(

f−1(ω)
)
= ω

(
|ω| < r0( f ); r0( f ) ≥ 1

4

)
, where

g(ω) = f−1(ω) = ω− a2ω2 +
(

2a2
2 − a3

)
ω3 −

(
5a3

2 − 5a2a3 + a4

)
ω4 + . . . (2)

A function f in A is said to be bi-univalent in D if both f and f−1 are univalent in D. Let Σ
indicate the class of bi-univalent functions in D given by Equation (1). For a brief historical account
and for several notable investigations of functions in Σ, see the pioneering work on this subject by
Srivastava et al. [1] (see also [2–5]). The interest on the estimates for the first two coefficients |a2|, |a3|
of the bi-univalent functions continues to attract many researchers (for examples, see [6–9]). However,
determination of the bounds for an is a remarkable problem in Geometric Function Theory. The
coefficient estimate problem for each of the general coefficients |an|(n ∈ N\{1, 2}; N = {1, 2, 3, . . .})
is still an open problem.

The Faber polynomials established by Faber [10] play a crucial role in numerous areas of
mathematical sciences, such as Geometric Function Theory. Grunsky [11] established some sufficient
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conditions for the univalency of a given function, and in these conditions, the expansions of the Faber
polynomials play an important role.

By utilizing the Faber polynomial expansions for a function f in A, the coefficients of its inverse
map g = f−1 can be stated by (see [12,13]):

g(ω) = f−1(ω) = ω +
∞

∑
n=2

1
n

K−n
n−1(a2, a3, . . .) ωn,

where
K−n

n−1 = (−n)!
(−2n+1)!(n−1)! an−1

2 + (−n)!
[2(−n+1)]!(n−3)! an−3

2 a3

+ (−n)!
(−2n+3)!(n−4)! an−4

2 a4

+ (−n)!
[2(−n+2)]!(n−5)! an−5

2
[
a5 + (−n + 2)a2

3
]

+ (−n)!
(−2n+5)!(n−6)! an−6

2 [a6 + (−2n + 5)a3a4]

+ ∑
j≥7

an−j
2 Vj,

such that Vj(7 ≤ j ≤ n) is a homogeneous polynomial in the variables a2, a3, . . . , an. In the following,
the first three terms of K−n

n−1 are stated by:

1
2 K−2

1 = −a2,
1
3 K−3

2 = 2a2
2 − a3,

1
4 K−4

3 = −
(
5a3

2 − 5a2a3 + a4
)
.

In general, the expansion of Kp
n(p ∈ Z = {0, ±1, ±2, . . .}) is stated by:

Kp
n = pan +

p(p− 1)
2

G2
n +

p !
(p− 3) ! 3 !

G3
n + . . . +

p !
(p− n) ! n !

Gn
n ,

where G p
n = G p

n (a1, a2, . . .) and by [14]:

Gm
n (a1, a2, . . . , an) =

∞

∑
n=1

m !(a1)
δ1 . . . (an)

δn

δ1! . . . δn!
,

while a1 = 1, the sum is taken over all nonnegative integers δ1, . . . , δn satisfying:

δ1 + δ2 + . . . + δn = m,
δ1 + 2δ2 + . . . + nδn = n.

The first and the last polynomials are:

G1
n = an, Gn

n = an
1 .

Several authors worked on using Faber polynomial expansions to find coefficient bounds for functions
in Σ, see [15–18] for examples.

Next, we recall some definitions and lemmas used in this paper.

Definition 1. Let the functions f , g be analytic in D. A function f is subordinate to g, indicated as f ≺ g, if
there exists a Schwarz function:

v(z) =
∞

∑
n=1

cnzn(v(0) = 0, |v(z)| < 1),
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analytic in D such that:
f (z) = g(v(z))(z ∈ D).

Lemma 1. (See [19]) For two analytic functions u(z), v(ω)(u(0) = v(0) = 0, |u(z)| < 1, |v(ω)| < 1),
suppose that:

u(z) =
∞
∑

n=1
xnzn(z ∈ D),

v(ω) =
∞
∑

n=1
ynωn(ω ∈ D).

Then:
|x1| ≤ 1, |x2| ≤ 1− |x1|2, |y1| ≤ 1, |y2| ≤ 1− |y1|2. (3)

Definition 2. (See [20]) The Komatu integral operator of f ∈ A is denoted by L
η
t f (z) and defined by:

L
η
t f (z) = z +

∞
∑

n=2

( t
t+n−1

)η

anzn(t > 0, η ≥ 0, z ∈ D)

= tη

Γ(η)

1∫
0

ξt−2
(

log 1
ξ

)η−1
f (zξ)dξ.

It is easy to verify that:

L
η
t

(
z f ′(z)

)
= z
(
L

η
t f (z)

)′
.

By suitably specializing the parameters η and t we obtain the following operators studied by various
authors:

(i) L0
t f (z) = f (z);

(ii) L1
2 f (z) = A[ f ](z) called Libera operator [21];

(iii) L−k
1 f (z) = Dk f (z) (k ∈ N0 = (0, 1, 2, . . .)) called Salagean differential operator [22];

(iv) L−k
2 f (z) = L f (z) (k ∈ N0 = (0, 1, 2, . . .)) was studied by Uralegaddi and Somanatha [23];

(v) L
η
2 f (z) = Iη f (z) was studied by Jung et al. [24].

Using the operator Lη
t , we now establish the class Lη,ρ

Σ,t(p̃)

Definition 3. A function f ∈ Σ is said to be in the class:

L
η,ρ
Σ,t(p̃)(ρ ≥ 1, t > 0, η ≥ 0, z, ω ∈ D)

if the following subordination relationships are satisfied:[
(1− ρ)

L
η
t f (z)

z
+ ρ
(
L

η
t f (z)

)′]
≺ p̃(z) =

1 + τ2z2

1− τz− τ2z2

and [
(1− ρ)

L
η
t g(ω)

ω
+ ρ
(
L

η
t g(ω)

)′]
≺ p̃(ω) =

1 + τ2ω2

1− τω− τ2ω2 ,

where the function g is given by (2) and τ = 1−
√

5
2 ≈ −0.618.

Remark 1. The function p̃(z) is not univalent in D, but it is univalent in the disc |z| < 3−
√

5
2 ≈ −0.38.

For example, p̃(0) = p
(
− 1

2τ

)
and p̃

(
e±iarccos(1/4)

)
=
√

5
5 . Also, it can be written as:
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1
|τ| =

|τ|
1− |τ| ,

which indicates that the number |τ| divides [0,1] so that it fulfills the golden section (see for details
Dziok et al. [25]).

Additionally, Dziok et al. [25] indicate a useful connection between the function p̃(z) and the Fibonacci
numbers. Let {Λn} be the sequence of Fibonacci numbers:

Λ0 = 0, Λ1 = 1, Λn+2 = Λn + Λn+1(n ∈ N0 = {0, 1, 2, . . .}),

then

Λn =
(1− τ)n − τn

√
5

, τ =
1−
√

5
2

.

If we set:

p̃(z) = 1 +
∞

∑
n=1

p̃nzn = 1 + (Λ0 + Λ2)τz + (Λ1 + Λ3)τ
2z2 +

∞

∑
n=3

(Λn−3 + Λn−2 + Λn−1 + Λn)τ
nzn,

then the coefficients p̃n satisfy:

p̃n =


τ (n = 1)
3τ2 (n = 2)
τp̃n−1 + τ2p̃n−2 (n = 3, 4, . . .)

. (4)

In this paper, we study the new class Lη,ρ
Σ,t(p̃) of bi-univalent functions established by using the

Komatu integral operator. Furthermore, we use the Faber polynomial expansions and Fibonacci
numbers to derive bounds for the general coefficient |an| of the bi-univalent function class.

2. Main Result and Its Consequences

First, we get a bound for the general coefficients of functions in L
η,ρ
Σ,t(p̃).

Theorem 1. For ρ ≥ 1, t > 0 and η ≥ 0, let the function f given by (1) be in the function class L
η,ρ
Σ,t(p̃).

If am = 0(2 ≤ m ≤ n− 1), then:

|an| ≤
|τ|

[1 + (n− 1)ρ]
( t

t+n−1
)η (n ≥ 3).

Proof. By the definition of subordination yields:[
(1− ρ)

L
η
t f (z)

z
+ ρ
(
L

η
t f (z)

)′]
≺ p̃(u(z)) (5)

and [
(1− ρ)

L
η
t g(ω)

ω
+ ρ
(
L

η
t g(ω)

)′]
≺ p̃(v(ω)). (6)

Now, an application of Faber polynomial expansion to the power series L
η,ρ
Σ,t(p̃) (for examples,

see [12,13]) yields:
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(1− ρ)
L

η
t f (z)

z
+ ρ
(
L

η
t f (z)

)′
= 1 +

∞

∑
n=2
Fn−1(a2, a3, . . . , an)zn−1,

where
Fn−1(a2, a3, . . . , an) = [1 + (n− 1)ρ]

( t
t+n−1

)η

× ∑
i1+2i2+...+(n−1)in−1=n−1

(1−(i1+i2+...+in−1))!
[
(a2)

i1 (a3)
i2 ...(an)

in−1
]

(i1!)(i2!)...(in−1!) .

In particular, the first two terms are F1 = (1 + ρ)
( t

t+1
)ηa2, F2 = (1 + 2ρ)

( t
t+2
)ηa3.

By the same token, for its inverse map g = f−1, it is seen that:

(1− ρ)
L

η
t g(ω)

ω + ρ
(
L

η
t g(ω)

)′
= 1 +

∞
∑

n=2
[1 + (n− 1)ρ]

( t
t+n−1

)η × 1
n K−n

n−1(a2, a3, . . .)ωn−1

= 1 +
∞
∑

n=2
Fn−1(b2, b3, . . . , bn)ωn−1.

Next, the Equations (5) and (6) lead to:

p̃(u(z)) = 1 + p̃1(u(z)) + p̃2(u(z))
2 + . . .

= 1 + p̃1x1z +
(
p̃1x2 + p̃2x2

1
)
z2 + . . .

= 1 +
∞
∑

n=1

n
∑

k=1
p̃kGk

n(x1, x2, . . . , xn)zn,

and
p̃(v(ω)) = 1 + p̃1(v(ω)) + p̃2(v(ω))2 + . . .

= 1 + p̃1x1ω +
(
p̃1y2 + p̃2y2

1
)

ω2 + . . .

= 1 +
∞
∑

n=1

n
∑

k=1
p̃kGk

n(y1, y2, . . . , yn)ωn.

Comparing the corresponding coefficients of (5) and (6) yields:

[1 + (n− 1)ρ]
( t

t+n−1
)ηan = p̃1xn−1,

[1 + (n− 1)ρ]
( t

t+n−1
)ηbn = p̃1yn−1.

For am = 0 (2 ≤ m ≤ n− 1), we get bn = −an and thus:

[1 + (n− 1)ρ]
(

t
t + n− 1

)η

an = p̃1xn−1 (7)

and

− [1 + (n− 1)ρ]
(

t
t + n− 1

)η

an = p̃1yn−1. (8)

Now, taking the absolute values of either of the two equations written above and from (4), we obtain:

|an| ≤
|τ|

[1 + (n− 1)ρ]
( t

t+n−1
)η .

Relaxing the coefficient restrictions imposed in Theorem 1, we obtain the following initial coefficient
bounds for functions in L

η,ρ
Σ,t(p̃). �

Theorem 2. Let f ∈ L
η,ρ
Σ,t(p̃). Then:
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|a2| ≤ min


|τ|√∣∣∣(1 + 2ρ)

( t
t+2
)η − 3(1 + ρ)2( t

t+1
)2η
∣∣∣|τ|+ (1 + ρ)2( t

t+1
)2η

, |τ|
√

3

(1 + 2ρ)
( t

t+2
)η


and

|a3| ≤ min
{

3τ2

(1+2ρ)( t
t+2 )

η ,

|τ|
(1+2ρ)( t

t+2 )
η

[
1 +

(1+2ρ)( t
t+2 )

η |τ|−(1+ρ)2( t
t+1 )

2η∣∣∣(1+2ρ)( t
t+2 )

η−3(1+ρ)2( t
t+1 )

2η
∣∣∣|τ|+(1+ρ)2( t

t+1 )
2η

]}

Proof. Substituting n by 2 and 3 in (7) and (8), respectively, we find that:

(1 + ρ)

(
t

t + 1

)η

a2 = p̃1x1, (9)

(1 + 2ρ)

(
t

t + 2

)η

a3 = p̃1x2 + p̃2x2
1, (10)

− (1 + ρ)

(
t

t + 1

)η

a2 = p̃1y1, (11)

(1 + 2ρ)

(
t

t + 2

)η(
2a2

2 − a3

)
= p̃1y2 + p̃2y2

1. (12)

Obviously, we obtain:
x1 = −y1. (13)

If we add the Equation (12) to (10) and use (13), we get:

2(1 + 2ρ)

(
t

t + 2

)η

a2
2 = p̃1(x1 + y2) + 2p̃2x2

1. (14)

Using the value of x2
1 from (9), we get:[

2(1 + 2ρ)

(
t

t + 2

)η

p̃2
1 − 2(1 + ρ)2

(
t

t + 1

)2η

p̃2

]
a2

2 = p̃3
1(x2 + y2). (15)

Combining (15) and (3), we obtain:

2
∣∣∣(1 + 2ρ)

( t
t+2
)η
p̃2

1 − (1 + ρ)2 ( t
t+1
)2η

p̃2

∣∣∣|a2|2 ≤ |p̃1|3(|x2|+ |y2|)

≤ 2|p̃1|3
(

1− |x1|2
)

= 2|p̃1|3 − 2|p̃1|3|x1|2.

It follows from (9) that:

|a2| ≤
|τ|√∣∣∣(1 + 2ρ)

( t
t+2
)η − 3(1 + ρ)2( t

t+1
)2η
∣∣∣|τ|+ (1 + ρ)2( t

t+1
)2η

. (16)

Additionally, by (3) and (14):

2(1 + 2ρ)
( t

t+2
)η |a2|2 ≤ |p̃1|(|x2|+ |y2|) + 2|p̃2||x1|2

≤ 2|p̃1|
(

1− |x1|2
)
+ 2|p̃2||x1|2

= 2|p̃1|+ 2|x1|2(|p̃2| − |p̃1|).
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Since |p̃2| > |p̃1|, we get:

|a2| ≤ |τ|
√

3

(1 + 2ρ)
( t

t+2
)η .

Next, in order to derive the bounds on |a3|, by subtracting (12) from (10), we may obtain:

2(1 + 2ρ)

(
t

t + 2

)η

a3 = 2(1 + 2ρ)

(
t

t + 2

)η

a2
2 + p̃1(x2 − y2). (17)

Evidently, from (14), we state that:

a3 =
p̃1(x2 + y2) + 2p̃2x2

1

2(1 + 2ρ)
( t

t+2
)η +

p̃1(x2 − y2)

2(1 + 2ρ)
( t

t+2
)η =

p̃1x2 + p̃2x2
1

(1 + 2ρ)
( t

t+2
)η

and consequently

|a3| ≤
|p̃1||x2|+ |p̃2||x1|2

(1 + 2ρ)
( t

t+2
)η ≤

|p̃1|
(

1− |x1|2
)
+ |p̃2||x1|2

(1 + 2ρ)
( t

t+2
)η =

|p̃1|+ |x1|2(|p̃2| − |p̃1|)
(1 + 2ρ)

( t
t+2
)η

Since |p̃2| > |p̃1|, we must write:

|a3| ≤
3τ2

(1 + 2ρ)
( t

t+2
)η .

On the other hand, by (3) and (17), we have:

2(1 + 2ρ)
( t

t+2
)η |a3| ≤ 2(1 + 2ρ)

( t
t+2
)η |a2|2 + |p̃1|(|x2|+ |y2|)

≤ 2(1 + 2ρ)
( t

t+2
)η |a2|2 + 2|p̃1|

(
1− |x1|2

)
.

Then, with the help of (9), we have:

(1 + 2ρ)

(
t

t + 2

)η

|a3| ≤
[
(1 + 2ρ)

(
t

t + 2

)η

−
(1 + ρ)2( t

t+1
)2η

|p̃1|

]
|a2|2 + |p̃1|.

By considering (16), we deduce that:

|a3| ≤
|τ|

(1 + 2ρ)
( t

t+2
)η

1 +
(1 + 2ρ)

( t
t+2
)η |τ| − (1 + ρ)2( t

t+1
)2η∣∣∣(1 + 2ρ)

( t
t+2
)η − 3(1 + ρ)2( t

t+1
)2η
∣∣∣|τ|+ (1 + ρ)2( t

t+1
)2η

.

�

3. Conclusions

Our motivation is to get many interesting and fruitful usages of a wide variety of Fibonacci
numbers in Geometric Function Theory. We introduced and investigated a new subclass of bi-univalent
functions related to Komatu integral operator connected with Fibonacci numbers to obtain the estimates
of the general coefficient |an| of the bi-univalent function class L

η,ρ
Σ,t(p̃). Furthermore, we obtained

second and third Taylor-Maclaurin coefficients of functions in this class. These results were an
improvement on the estimates obtained in the recent studies. Some interesting remarks of the results
presented here were also discussed.

The geometric properties of the function class Lη,ρ
Σ,t(p̃) vary according to the values assigned to the

parameters. However, some results for the special cases of the parameters included could be expressed
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as illustrative examples. The image of the unit circle |z| = 1 under p̃(z) is a curve identified by the
following equation: (

10x−
√

5
)

y2 =
(√

5− 2x
)(√

5x− 1
)2

,

which is translated and revolved trisectrix of Maclaurin. The curve p̃
(
reit) is a closed curve without

any loops for 0 < r ≤ r0 =
(

3−
√

5
)

/2 ≈ 0.38. For r0 < r < 1, it has a loop, and for τ = 1, it has

a vertical asymptote. Since τ fulfills the Equation τ2 = 1 + τ, this expression can be used to obtain
higher powers τn as a linear function of lower powers, which in turn can be solved all the way down
to a linear combination of τ and 1. This recurrence relationships yield Fibonacci numbers Λn:

τn = Λnτ + Λn−1.

In this way, one can introduce and study different subclasses of the function class Lη,ρ
Σ,t(p̃), which we

studied in this paper.
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