

  mathematics-07-00170




mathematics-07-00170







Mathematics 2019, 7(2), 170; doi:10.3390/math7020170




Article



The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach



Tongshuai Liu and Huanhe Dong *[image: Orcid]





College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China









*



Correspondence: mathsdong@126.com







Received: 4 January 2019 / Accepted: 7 February 2019 / Published: 13 February 2019



Abstract

:

In this paper, the Lax pair of the modified nonlinear Schrödinger equation (mNLS) is derived by means of the prolongation structure theory. Based on the obtained Lax pair, the mNLS equation on the half line is analyzed with the assistance of Fokas method. A Riemann-Hilbert problem is formulated in the complex plane with respect to the spectral parameter. According to the initial-boundary values, the spectral function can be defined. Furthermore, the jump matrices and the global relations can be obtained. Finally, the potential q(x,t) can be represented by the solution of this Riemann-Hilbert problem.
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1. Introduction


In mathematics and physics, nonlinear partial differential equations play an important role due to their abundant mathematical structure and properties. Many works on nonlinear evolution equations have been studied, such as the Hamiltonian structure [1,2], the infinite conservation laws [3,4], the Bäcklund transformation [5,6] and so on [7,8,9]. Besides, the exact solution of these equations, which can be expressed in various forms by different methods, is also a significant subject of soliton research [10,11,12,13,14,15,16,17,18,19,20,21,22]. In recent years, with the development of soliton theory, more and more researchers pay attention to the Riemann-Hilbert approach. The Riemann-Hilbert approach was introduced by Fokas to analyze the initial-boundary values problem for linear and nonlinear partial differential equations [23,24]. In the past 20 years, many researchers have discussed a lot of nonlinear integrable equations for the initial-boundary values problem [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,41]. They have all made a great contribution to the development of this method. The core idea of this method is to construct the associated Riemann-Hilbert problem by the Lax pair of the integrable equation, and then in addition to the initial-boundary values problem, the long-time asymptotic behavior of the solution can be analyzed [42,43,44,45,46]. However, as we all know, it is difficult to determine whether a nonlinear evolution equation possesses a Lax pair or not. As far as we are concerned, the prolongation structure method is an efficient way to obtain the Lax pair, which was firstly proposed in 1975 by Wahlquist and Estabrook [47]. In recent years, a large number of scholars have improved this method, for example, Hermann deduced the prolongation structure method connection in 1976 [48], Deconinck applied the prolongation structure method to semi-discrete systems firstly [49], Wang used this approach to get the integrability of many nonlinear wave equation [50] and so on [51,52]. In this way, we can get the Lax pair of the nonlinear evolution equation easily as long as it is integrable.



In this paper, we mainly talk about the modified nonlinear Schrödinger(mNLS) equation


iqt+qxx+i(|q|2q)x+2ρ|q|2q=0,



(1)




which is very important in plasma physics. Recently, many properties of this equation have been studied, such as the Hamiltonian structure [53], the Darboux transformation [54], the numerical solutions [55,56] and so on [57,58]. Actually, it can become the derivative NLS equation by certain gauge transformation [59]. In this paper, we mainly discuss the mNLS equation on the half line. For simplicity, we let ρ=1. Supposing that the solution q(x,t) of the mNLS equation exists, and the initial-boundary values are defined as follows,



Initial values:


q0(x)=q(x,0),0<x<∞,



(2)




Boundary values:


g0(t)=q(0,t),g1(t)=qx(0,t),0<t<T.



(3)







In order to formulate a Riemann-Hilbert problem, we need to reconstruct the Lax pair of Equation (1). Based on the initial-boundary values, the corresponding spectral functions can be defined. Eventually, the potential function q(x,t) can be expressed in terms of the solution of this Riemann-Hilbert problem.



This paper is divided into four sections. The construction of the prolongation structure for the mNLS equation is in Section 2 and then in Section 3, we reconstruct the Lax pair to formulate the Riemann-Hilbert problem and some conditions and relations are derived. In the last section, we define the spectral functions according to the initial-boundary values and the Riemann-Hilbert problem is investigated.




2. The Prolongation Structures of the mNLS Equation


In order to obtain the Lax pair of the mNLS equation, we analyze the prolongation structure of this equation. This process mainly involves a fundamental theorem in Lie algebra [51].



Theorem 1.

Suppose X and Y are two elements of Lie algebra g=sl(n+1,C) with [X,Y]=aY, (a≠0) and X∈range ad Y, it means that there exist Z∈g such that [Y,Z]=X, so we obtain Y=e± and X=±12ah, where e± are the nilpotent and h is the neutral elements of g.





In the beginning, we introduce these variables


u¯=p,ux=v,ux¯=px=q.



(4)







Then Equation (1) is equivalent to this set of equations as follows


ux−v=0,px−q=0,iut+vx+2iuuxu¯+iu2u¯x+2u2u¯=0,ipt−qx+2iu¯u¯xu+iu¯2ux−2u¯2u=0.



(5)







We define the set of two-forms I={α1,α2,α3,α4}, where


α1=du∧dt+vdt∧dx,α2=dp∧dt+qdt∧dx,α3=idu∧dx−dv∧dt+(2iuvp+iu2q+2u2p)dt∧dx,α4=idp∧dx+dq∧dt+(ip2v+2ipqu−2p2u)dt∧dx.



(6)







It is easy to find that I is a closed ideal, actually, dI⊂I. After that, we define the differential one-forms


ωi=dyi−Fi(u,v,p,q;yi)dx−Gi(u,v,p,q;yi)dt.



(7)







At the same time, we suppose Fi=Fjiyj,Gi=Fjiyj. According to the general theory of exterior differential systems, if I˜=I⋃ωi is a closed ideal, it must satisfy


dωi=∑i=14(fjiαj)+nji∧ωj.



(8)







Combining (5)–(8), we obtain


Fv=Fq=0,iGv+Fu=0,iGq−Fp=0,−Guv−Gpq+(2iuvp+iqu2+2u2p)Gv−(2ipqu+ip2v−2p2u)Gq+[F,G]=0.



(9)




where the bracket [,] denotes the Lie bracket, namely [F,G]=FG−GF.



After a lengthy calculation, one solution of this set of equations can be derived


F=x0+ux1+px2,G=ix1v−ix2q−u2px1−p2ux2+iux3−ipx4−ipux5+x6.



(10)




with the integrability conditions


2ix1−x3−i[x1,x5]=0,2ix2+x4+i[x2,x5]=0,i[x0,x3]+[x1,x6]=0,−i[x0,x4]+[x2,x6]=0,[x0,x5]+[x1,x4]−[x2,x3]=0,[x1,x3]=0,[x2,x4]=0,[x0,x6]=0.



(11)




where all {xi}, i={1,2,…,6.} are pending matrices. Here {x1,x2,…,x6} depend on an incomplete Lie algebra, called prolongation algebra.



The next step is to embed the prolongation algebra in sl(n+1,C). According to (11) and Theorem 1, we deduce that x1 and x2 is nilpotent and x5 is neutral element. So we have


x1=0ξ00,x2=00−ξ0,x5=−ξ200ξ2.



(12)







Bringing the above results into (11), we obtain


x0=−iξ2+i00iξ2−i,x3=0−2iξ3+2iξ00,x4=00−2iξ3+2iξ0,x6=−2iξ4−2i+4iξ2002iξ4+2i+4iξ2.



(13)




where ξ is spectral parameter. Hence, the expressions of F and G can be presented eventually


F=−iξ2+iξq−ξq¯iξ2−i,G=−2iξ4−2i+4iξ2+iξ2|q|22ξ3q−2ξq−ξ|q|2q+iξqx−2ξ3q¯+2ξq¯+ξ|q|2q¯+iξq¯x2iξ4+2i−4iξ2−iξ2|q|2.



(14)







So, the mNLS equation admits Lax pair


ψx=Fψ,ψt=Gψ,



(15)




where ψ=(v1,v2)T.




3. Spectral Analysis


From the previous paragraph, we know the Lax pair of the mNLS equation. By introducing


Q=0q−q¯0,σ3100−1.



(16)




where the q¯ denotes the conjugation of q, the Lax pair (15) can be rewritten in this form


ψx+iξ2σ3ψ−iσ3ψ=ξQψ,ψt+2iξ4σ3+2iσ3−4iξ2σ3=−iξ2Q2+2iξ3Q−2ξQ+ξQ3+iξσ3Qx.



(17)







In our analysis, we assume that q decays to zero sufficiently fast as x→±∞. So, it is correct to extend the column vector ψ to a 2×2 matrix. For simplicity, we substitute λ2 for ξ2−1. Letting ψ=Ψe−i(ξ2x+2ξ4t)σ3, then the Lax pair (17) becomes


Ψx+iξ2[σ3,Ψ]=ξQΨ,Ψt+2iξ4[σ3,Ψ]=(−iξ2Q2σ3+2ξ3Q−2ξQ+ξQ3+iξσ3Qx)Ψ



(18)







We can write (18) in full derivative form


d(ei(ξ2x+2ξ4t)σ^3Ψ(x,t;ξ))=ei(λ2x+2λ4t)σ^3U(x,t;ξ)Ψ.



(19)




where


U=U1dx+U2dt=ξQdx+(−iξ2Q2σ3+2ξ3Q−2ξQ+ξQ3+iξσ3Qx)dt.



(20)




and σ^3 denotes the operator to matrix by σ^3M=[σ3,M], hence it is easy to prove eσ^3M=eσ3Me−σ3, where M is a 2×2 matrix.



3.1. The Reconstruction of Lax Pair


Expanding the solution of (19) in this way


Ψ=D+Ψ1ξ+Ψ2ξ2+Ψ3ξ3+O(1ξ4),ξ→∞,



(21)




where D,Ψ1,Ψ2,Ψ3 are independent of ξ. Bringing this equation into the first equation of (18), and comparing the same order of ξ’s frequency, we obtain the following equations


O(1):Dx+i[σ3,Ψ2]−i[σ3,D]=QΨ1;O(ξ):i[σ3,Ψ1]=QD;O(ξ2):i[σ3,D]=0.



(22)







Using the same method, taking (21) into another equation of (18), we have


O(1):Dt−4i[σ3,Ψ2]+2i[σ3,D]=−iQ2σ3Ψ2+2QΨ3−2QΨ1+Q3Ψ1+iσ3QxΨ1;O(ξ):2i[σ3,Ψ3]−4i[σ3,Ψ1]=−iQ2σ3Ψ1+2QΨ2−2QD+Q3D+iσ3QxD;O(ξ2):2i[σ3,Ψ2]−4i[σ3,D]=−iQ2σ3D+2QΨ1;O(ξ3):2i[σ3,Ψ1]=2QD;O(ξ4):2i[σ3,D]=0.



(23)







For (22), We find that D is a diagonal matrix from O(ξ2). Without loss of generality, we suppose


D=D01100D022.



(24)







From O(ξ) we have


Ψ1o=i2QDσ3.



(25)




where Ψ1o denotes the off-diagonal part of Ψ1. So, we can get Dx from O(1) easily


Dx=i2Q2σ3D.



(26)







For (23), after a lengthy calculation, we get


Dt=3i4Q4σ3D+12QQxD−12QxQD=(3i4|q|4+q¯qx−qq¯x)σ3D.



(27)







The mNLS equation admits the conservation law


2(|q|2)t=(2iqxq¯−3|q|4−2iqq¯x)x.



(28)







From the above results, we find (26) and (27) admit the conservation law. Define


D(x,t)=ei∫(0,0)(x,t)Δ(x,t)σ3.



(29)




where Δ is the differential one-form, and it is given by


Δ(x,t)=Δ1dx+Δ2dt=−12qq¯dx+[34q2q¯2+i2(qq¯x−qxq¯)]dt.



(30)







It is not difficult to find that the integral is path independent. So, we introduce


Ψ(x,t;ξ)=ei∫(0,0)(x,t)Δσ¯3μ(x,t;ξ)D(x,t),0<x<∞,0<t<T.



(31)







Then the form of the Lax pair (18) can be replaced with


d(ei(λ2x+2λ4t)σ^3μ(x,t;ξ))=W(x,t;ξ).



(32)




where


W(x,t;ξ)=ei(λ2x+2λ4t)σ^3V(x,t;ξ)μ,V=V1dx+V2dt=e−i∫(0,0)(x,t)Δσ^3(U−iΔσ3).



(33)







Considering the definitions of U and Δ, we have


V1(x,t;ξ)=i2qq¯ξqe−2i∫(0,0)(x,t)Δ−ξq¯e2i∫(0,0)(x,t)Δ−i2qq¯,V2(x,t;ξ)=V211(x,t;ξ)V212(x,t;ξ)V221(x,t;ξ)V222(x,t;ξ).



(34)




where


V211(x,t;ξ)=iξ2qq¯−3i4q2q¯2+12(qq¯x−qxq¯),V212(x,t;ξ)=(2ξ3−2ξq−ξq|q|2+iξqx)e−2i∫(0,0)(x,t)Δ,V221(x,t;ξ)=(−2ξ3q¯+2ξq¯+ξq¯|q|2+iξq¯x)e2i∫(0,0)(x,t)Δ,V222(x,t;ξ)=−iξ2qq¯+3i4q2q¯2−12(qq¯x−qxq¯).











Thus, (32) changes into


μx+iλ2[σ3,μ]=V1μ,μt+2iλ4[σ3,μ]=V2μ.



(35)








3.2. The Riemann-Hilbert Problem And Some Relations


Supposing that q(x,t) is smooth function in the domain D={0<x<∞,0<t<T}. Then we define the eigenfunctions μj(x,t,;ξ)(j=1,2,3) of (34) as follows


μj(x,t;ξ)=I+∫(xj,tj)(x,t)e−i(λx+2λ2t)σ^3W(x′,t′;ξ),0<x<∞,0<t<T.



(36)







The integral curve is from (xj,tj) to (x,t), where (x1,t1)=(0,T),(x2.t2)=(0,0) and (x3,t3)=(∞,t). Furthermore, the point (x,t) is an arbitrary point in the domain D. We know that the integral of (36) is independent of the path of integration. Without loss of generality, we will consider the particular integral paths as follows, see Figure 1.



By this method, we get


μ1(x,t;ξ)=I+∫0xeiλ2(x′−x)σ^3(V1μ1)(x′,t;λ)dx′−e−iλ2xσ^3∫tTe2iλ4(t′−t)σ^3(V2μ1)(0,t′;ξ)dt′,μ2(x,t;ξ)=I+∫0xeiλ2(x′−x)σ^3(V1μ2)(x′,t;ξ)dx′−e−iλ2xσ^3∫0te2iλ4(t′−t)σ^3(V2μ2)(0,t′;ξ)dt′,μ3(x,t,;ξ)=I−∫∞xeiλ2(x′−x)σ^3(V1μ3)(x′,t;ξ)dx′.



(37)







Noting that the first column of μj includes e−2i[λ2(x′−x)+2λ4(t′−t)]. So, in different integral paths, we have the following inequalities


ℓ1:(x1,t1)→(x,t):0<x′<x,t<t′<T,ℓ2:(x2,t2)→(x,t):0<x′<x,0<t′<t,ℓ3:(x3,t3)→(x,t):x<x′<∞.



(38)







Due to the exponential function decaying sufficiently, these inequalities imply that the first of the functions μj(x,t;ξ),(j=1,2,3) are analytic if


μ1(1)(x,t;ξ):ξ∈{Imξ2≥0}∩{Imξ4≤0},μ2(1)(x,t;ξ):ξ∈{Imξ2≥0}∩{Imξ4≥0},μ3(1)(x,t;ξ):ξ∈{Imξ2≤0}.



(39)







At the same time, the second column of the functions μj(x,t;ξ),(j=1,2,3) are analytic if


μ1(2)(x,t;ξ):ξ∈{Imξ2≤0}∩{Imξ4≥0},μ2(2)(x,t;ξ):ξ∈{Imξ2≤0}∩{Imξ4≤0},μ3(2)(x,t;ξ):ξ∈{Imξ2≥0}.



(40)







Hence, we get


μ1(x,t;ξ)=(μ1D2(x,t;ξ),μ1D3(x,t;ξ)),μ2(x,t;ξ)=(μ2D1(x,t;ξ),μ2D4(x,t;ξ)),μ3(x,t;ξ)=(μ3D3∪D4(x,t;ξ),μ3D1∪D2(x,t;ξ)).



(41)




where μjDi stands for μj is analytic if ξ∈Di, where Di=ωi∪(−ωi),−ωi={−ξ∈C|ξ∈ωi},ωi={ξ∈C|i−14π<ξ<i4π}, see Figure 2.



The eigenfunctions μj(j=1,2,3) possess these properties.

	
detμ1(x,t;ξ)=detμ2(x,t;ξ)=detμ3(x,t;ξ)=1;



	
μj11(x,t;ξ)=μj22(x,t;ξ¯)¯,μj12(x,t;ξ)=μj21(x,t;ξ¯)¯;



	
μj11(x,t;−ξ)=μj11(x,t;ξ),μj12(x,t;−ξ)=−μj12(x,t;ξ),



μj21(x,t;−ξ)=−μj21(x,t;ξ),μj22(x,t;−ξ)=μj22(x,t;ξ).





where the eigenfunctions μj(x,t;ξ)=μj11(x,t;ξ)μj12(x,t;ξ)μj21(x,t;ξ)μj22(x,t;ξ)(j=1,2,3).



For the purpose of formulating a Riemann-Hilbert problem, our main task is to find the jump matrices for every Di(i=1,2,3,4) to any other regions. Then we define the spectral functions s(ξ) and S(ξ)


μ3(x,t;ξ)=μ2(x,t;ξ)e−i(λ2x+2λ4t)σ^3s(ξ),μ1(x,t;ξ)=μ2(x,t;ξ)e−i(λ2x+2λ4t)σ^3S(ξ).



(42)







According to the above definition, we have


μ1(x,t;ξ)=μ3(x,t;ξ)e−i(λ2x+2λ4t)σ^3(s(ξ))−1S(ξ).



(43)







Combining (37) with (42), we acquire


s(ξ)=μ3(0,0;ξ),S(ξ)=(e2iλ4Tσ^3μ2(0,T;ξ))−1.



(44)







Owing to (37), it is clear to see that


μ1(0,t;ξ)=I−∫tTe2iλ4(t′−t)σ^3(V2μ1)(0,t′;ξ)dt′,μ2(0,t;ξ)=I+∫0te2iλ4(t′−t)σ^3(V2μ2)(0,t′;ξ)dt′,μ3(x,0;ξ)=I+∫∞xeiλ2(x′−x)σ^3(V1μ3)(x′,0;ξ)dx′,μ2(x,0;ξ)=I+∫0xeiλ2(x′−x)σ^3(V1μ2)(x′,0;ξ)dx′,



(45)







Considering the initial values q(x,0)=u0(x), q(0,t)=g0(t), boundary values q(0,t)=g0(t) and qx(0,t)=g1(t). For convenience, the initial-boundary values of q¯(x,t) can be written in this form, namely q¯(x,0)=u¯0(x),q¯(0,t)=g¯0(t), and q¯x(0,t)=g¯1(t). Then V2(0,t;ξ) and V1(x,0;ξ) can be expressed with


V1(x,0;ξ)=i2|u0|2ξu0ei∫0x|u0|2dx′−ξu¯0e−i∫0x|u0|2dx′−i2|u0|2,V2(0,t;ξ)=V211(0,t;ξ)V212(0,t;ξ)V221(0,t;ξ)V222(0,t;ξ).



(46)




where


V211(0,t;ξ)=iξ2|g0|2−3i4|g0|4−12(g0g¯1−g1g¯0)=−V222(x,t;ξ),V212(0,t;ξ)=(2ξ3g0−2ξg0−ξg0|g0|2+iξg1)e−2i∫0tΔ2(0,t′)dt′,V221(0,t;ξ)=(−2ξ3g¯0+2ξg¯0+ξg¯0|g0|2+iξg¯1)e2i∫0tΔ2(0,t′)dt′.








with


Δ2(0,t′)=34|g0|4+i2(g0g1¯−g1g¯0).











Due to μj have symmetry, the s(ξ) and S(ξ) also have symmetry


s11(ξ)=s22(ξ¯)¯,s21(ξ)=s12(ξ¯)¯,










S11(ξ)=S22(ξ¯)¯,S21(ξ)=S12(ξ¯)¯.











Without loss of generality, we assume


s(ξ)=a(ξ¯)¯b(ξ)b(ξ¯)¯a(ξ),S(ξ)=A(ξ¯)¯B(ξ)B(ξ¯)¯A(ξ).



(47)







According to (42) and (44), we have


s(ξ)=I−∫∞0eiλ2(x′−x)σ^3(V1μ3)(x′,0;ξ)dx′,S(ξ)=(I+∫0Te2iλ4t′σ^3(V2μ2)(0,t′;ξ)dt′)−1.



(48)







The spectral functions s(ξ),S(ξ) have the following properties

	
b(ξ)a(ξ)=μ312(0,0;ξ)μ322(0,0;ξ)=μ3(2)(0,0;ξ),e−4iλ4TB(ξ)A(ξ¯)¯=μ212(0,T;ξ)μ222(0,T;ξ)=μ2(2)(0,T;ξ).



	
a(−ξ)=a(ξ),b(−ξ)=−b(ξ),A(−ξ)=A(ξ),B(−ξ)=−B(ξ).



	
dets(ξ)=detS(ξ)=1.



	
a(ξ)=1+O(1ξ),b(ξ)=O(1ξ),ξ→∞,Imξ2≥0,A(ξ)=1+O(1ξ),B(ξ)=O(1ξ),ξ→∞,Imξ4≥0.








These spectral functions do not exist independently, but depend on each other and satisfy certain relationships, we call it global relation


B(ξ)a(ξ)−A(ξ)b(ξ)=e4iλ4Tc+(ξ),Imξ2≥0.



(49)




where


c+(ξ)=∫0∞e2iλ2x′(V1μ3)(x′,T;ξ)dx′.











For simplicity, we define M(x,t;ξ)


M+=(μ2D1a(ξ),μ3D1∪D2),ξ∈D1,M−=(μ1D2d(ξ),μ3D1∪D2),ξ∈D2,M+=(μ3D3∪D4,μ1D3d(ξ¯)¯),ξ∈D3,M−=(μ3D3∪D4,μ2D4a(ξ¯)¯),ξ∈D4.



(50)




where


d(ξ)=a((ξ)A(ξ¯)¯−b(ξ)B(ξ¯)¯,ξ∈D¯2.



(51)







Synthesizing the above definitions, we can get


detM(x,t;ξ)=1,



(52)




and


M(x,t;ξ)=I+O(1ξ),ξ→∞.



(53)







Theorem 2.

Given a smooth function q(x,t). Define M(x,t;ξ) as (50), and define μj(x,t;ξ)(j=1,2,3) like (37). Then the jump matrices can be derived through


M+(x,t;ξ)=M−(x,t;ξ)J(x,t;ξ),ξ4∈R,



(54)




where


J=J1(x,t;ξ),argξ2=0,J2(x,t;ξ),argξ2=π2,J3(x,t;ξ)=J2J1−1J4,argξ2=π,J4(x,t;ξ),argξ2=32π.



(55)




and


J1=1aa¯ba¯e−2iθ(ξ)b¯ae2iθ(ξ)1,J2=10−Γ(ξ)e2iθ(ξ)1,J4=1Γ(ξ¯)¯e2iθ(ξ)01.



(56)




with


θ(ξ)=λ2x+2λ4t=(ξ2−1)x+2(ξ2−1)2t,Γ(ξ)=B(ξ¯)¯a(ξ)d(ξ).



(57)









According to definition, we have to consider the residue conditions of M(x,t;ξ). By analyzing, we can know that both a(ξ) and d(ξ) have an even zero. Hence, we suppose that

	
a(ξ) has 2n simple zeros {εj}j=12n, 2n=2n1+2n2. Furthermore, εj(j=1,2,…,2n1) lie in D1, ε¯j(j=1,2,…,2n2) lie in D2.



	
d(ξ) has 2N simple zeros {γj}j=12N, 2N=2N1+2N2. In addition, γj(j=1,2,…,2N1) lie in D3, γ¯j(j=1,2,…,2N2) lie in D4.



	
a(ξ) and d(ξ) do not have any of the same zeros.








Theorem 3.

For convenience, the mark [M(x,t;ξ)]1 denotes the first column of M(x,t;ξ). Similarly, [M(x,t;ξ)]2 denotes the second column. At the same time, we let a˙(ξ)=dadξ. Then, we get the residue condition as follows:


(i)Res{[M(x,t;ξ)]1,εj}=1a˙(εj)b(εj)e2iθ(εj)[M(x,t;εj)]2,j=1,2,…,2n1,(ii)Res{[M(x,t;ξ)]2,ε¯j}=1a˙(ε¯j)b(ε¯j)¯e−2iθ(ε¯j)[M(x,t;ε¯j)]1,j=1,2,…,2n2,(iii)Res{[M(x,t;ξ)]1,γj}=B(γ¯j)¯a(γj)d˙(γj)e2iθ(γj)[M(x,t;γj)]2,j=1,2,…,2N1,(iv)Res{[M(x,t;ξ)]2,γ¯j}=B(γ¯j)a(γ¯j)d˙(γ¯j)¯e2iθ(γ¯j)[M(x,t;γ¯j)]1,j=1,2,…,2N2.



(58)









Proof. 

Just prove (i), and the other proof can be proved in the same way. Firstly, we take account of M(x,t;ξ)=(μ2D1a(ξ),μ3D1∪D2), the simple zeros εj(j=1,2,…,2n1) of a(ξ) are the simple poles of μ2D1a(ξ). Then we get


Res{μ2D1(x,t;ξ)a(ξ),εj}=limξ→εj(ξ−εj)μ2D1(x,t;ξ)a(ξ)=limξ→εjμ2D1(x,t;εj)a(ξ)−a(εj)ξ−εj=μ2D1(x,t;εj)a˙(εj),











Then taking ξ=εj into the equation


μ3D1∪D2=e−2iθ(ξ)b(ξ)μ2D1+a(ξ)μ2D4,








we obtain


μ3D1∪D2(x,t;εj)=e−2iθ(εj)b(εj)μ2D1(x,t;εj)+a(εj)μ2D4(x,t;εj),











Finally,


Res{μ2D1a(ξ),εj}=e2iθ(εj)a˙(εj)b(εj)μ3D1∪D2(x,t;εj).








 □





Now, we discuss how to derive the potential q(x,t) from the spectral functions μj(x,t;ξ)(j=1,2,3). Reviewing what we did before, when (21) is a solution of (19), we have Ψ1o=i2QDσ3. Suppose


μ=I+m(1)ξ+m(2)ξ2+m(3)ξ3+O(ξ4),ξ→∞,








is a solution of (32).



As ξ→∞, letting m(x,t)=m12(1)(x,t), namely


m(x,t)=limξ→∞(ξμj(x,t;ξ))12.











By direct calculation, we have


q(x,t)=2im(x,t)e2i∫(0,0)(x,t)Δm(x,t),



(59)







After that, it is clear to find that


qq¯=4|m|2,qq¯x−qxq¯=4(mm¯x−mxm¯)−32i|m|4.



(60)




and


Δ=−2|m|2dx+[2i(mm¯x−mxm¯)+28|m|4]dt.



(61)







Eventually, we can get the final form of the potential q(x,t).





4. The Spectral Map and the Regular Riemann-Hilbert Problem


4.1. The Spectral Map


Definition 1.

For initial values q0(x)=q(x,0), the map S can be defined by


S:{q0(x)}→{a(ξ),b(ξ)}








with


b(ξ)a(ξ)=μ3(2)(x,0;ξ),Imξ2≥0,








where μ3(x,0;ξ) is the unique solution of the Volterra linear integral equation


μ3(x,0;ξ)=I+∫∞xeiλ2(x′−x)σ^3V1(x′,0;ξ)μ3(x′,0;ξ)dx′








and V1(x,0;ξ) is given by Equation (46).





Proposition 1.

a(ξ) and b(ξ) possess these properties.

	(i) 

	
a(ξ) and b(ξ) are analytic for {ξ∈C|Imξ2>0} and continuous for {ξ∈C|Imξ2≥0},




	(ii) 

	
a(ξ)a(ξ¯)¯−b(ξ)b(ξ¯)¯=1,ξ2∈R,




	(iii) 

	
a(ξ)=1+O(1ξ),b(ξ)=O(1ξ),ξ→∞,Imξ2≥0,




	(iv) 

	
a(−ξ)=a(ξ),b(−ξ)=−b(ξ),Imξ2≥0,




	(v) 

	
We define Q:{a(ξ),b(ξ)}→{q0(x)}, as the inverse of map S, with


q0(x)=2im(x)e4i∫0x|m(x′)|2dx′,m(x)=limξ→∞(ξM(x)(x,ξ))12.



(62)




where M(x)(x,ξ) is the unique solution of the following Riemann-Hilbert problem.







	
M(x)(x,ξ)=M−(x)(x,ξ),Imξ2≤0M+(x)(x,ξ),Imξ2≥0 is a meromorphic function.



	
M+(x)(x,ξ)=M−(x)(x,ξ)J(x)(x,ξ),ξ2∈R,where


J(x)(x,ξ)=1a(ξ)a(ξ¯)¯b(ξ)a(ξ)e−2iλ2x−b(ξ¯)¯a(ξ)e2iλ2x1,ξ2∈R.



(63)







	
M(x)(x,ξ)=I+O(1ξ),ξ→∞.



	
a(ξ) has 2n simple zeros {εj}j=12n, 2n=2n1+2n2, such that εj,(j=1,2,…,2n1) lie in D1, and ε¯j,(j=1,2,…,2n2) lie in D2.



	
The first column of M+(x) has simple poles at ξ=εj,j=1,2,…,2n1. Furthermore, the second column of M−(x) has simple poles at ξ=ε¯j,j=1,2,…,2n2. The relevant residues are given by


Res{[M(x)(x,ξ)]1,εj}=e2i(εj2−1)xa˙(εj)b(εj)[M(x)(x,εj)]2,j=1,2,…,2n1,



(64)






Res{[M(x)(x,ξ)]2,ε¯j}=e−2i(ε¯j2−1)xa˙(ε¯j)b(ε¯j)¯[M(x)(x,ε¯j)]1,j=1,2,…,2n2.



(65)














Definition 2.

For boundary values g0(t)=q(0,t),g1(t)=qx(0,t), the map S˜ can be defined by


S˜:{g0(t),g1(t)}→{A(ξ),B(ξ)}








with


B(ξ)A(ξ)=μ1(2)(0,t;ξ),Imξ2≥0,








where μ1(0,t;ξ) is the unique solution of the Volterra linear integral equation


μ1(0,t;ξ)=I−∫tTe2iλ4(t′−t)σ^3V2(0,t′;ξ)μ1(0,t′,ξ)dt′








and V2(0,t;ξ) is given by (46).





Proposition 2.

A(ξ) and B(ξ) possess these properties.

	(i) 

	
A(ξ) and B(ξ) are analytic for {ξ∈C|Imξ4>0} and continuous {ξ∈C|Imξ4≥0},




	(ii) 

	
A(ξ)A(ξ¯)¯−B(ξ)B(ξ¯)¯=1,ξ4∈R,




	(iii) 

	
A(ξ)=1+O(1ξ),B(ξ)=O(1ξ),ξ→∞,Imξ4≥0,




	(iv) 

	
A(−ξ)=A(ξ),B(−ξ)=−B(ξ),Imξ4≥0,




	(v) 

	
We define Q˜:{A(ξ),B(ξ)}→{g0(t),g1(t)}, as the inverse of map S˜, with


g0(t)=2im12(1)(t)e2i∫0tΔ2(t′)dt′,g1(t)=(4m12(2)+|g0(t)|2m12(1)(t))e2i∫0tΔ2(t′)dt′+ig0(t)(2m22(2)(t)+|g0(t)|2),



(66)




where


Δ2(t)=4|m12(1)|4+8(Re[m12(1)m¯12(3)]−|m12(1)|2Re[m22(2)]),








with the functions m(i)(t)(i=1,2,3.) are depend on


M(t)(t,ξ)=I+m(1)(t)ξ+m(2)(t)ξ2+m(3)(t)ξ3+O(1ξ4),ξ→∞,








where Mt(t,ξ) is the unique solution of the following Riemann-Hilbert problem







	
M(t)(t,ξ)=M−(t)(t,ξ),Imξ4≤0M+(t)(t,ξ),Imξ4≥0 is a meromorphic function.



	
M+(t)(t,ξ)=M−(t)(t,ξ)J(t)(t,ξ),ξ4∈R,where


J(t)(t,ξ)=1A(ξ)A(ξ¯)¯B(ξ)A(ξ¯)¯e−4iλ4t−B(ξ¯)¯A(ξ)e4iλ4t1,ξ4∈R.



(67)







	
M(t)(t,ξ)=I+O(1ξ),ξ→∞.



	
A(ξ) has 2N simple zeros {γj}j=12N, 2N=2N1+2N2, such that γj(j=1,2,…,2N1) lie in D3, and γ¯j(j=1,2,…,2N2) lie in D4.



	
The first column of M+(t) has simple poles at ξ=γj,j=1,2,…,2N1. And the second column of M−(t) has simple poles at ξ=γ¯j,j=1,2,…,2N2. The relevant residues are given by


Res{[M(t)(t,ξ)]1,γj}=e4i(γj2−1)2tA˙(γj)B(γj)[m(t)(t,γj)]2,j=1,2,…,2N1,



(68)






Res{[M(t)(t,ξ)]2,γ¯j}=e−4i(γ¯j2−1)2tA˙(γ¯j)b(γ¯j)¯[M(t)(t,γ¯j)]1,j=1,2,…,2N2.



(69)















4.2. The Regular Riemann-Hilbert Problem


Theorem 4.

Given the smooth function q0(x), which is compatible with g0(t) and g1(t). The spectral functions a(ξ),b(ξ), A(ξ), and B(ξ) are defined according to the previous definitions. Furthermore, they satisfy the global relation (49). Clearly, it becomes B(ξ)a(ξ)−A(ξ)b(ξ)=0 when ξ→∞. Define the M(x,t;ξ) as the solution of this following Riemann-Hilbert problem.

	
M(x,t;ξ) is a sectionally meromorphic function in {ξ∈C|ξ4∈R}.



	
The residue condition of M(x,t;ξ) satisfies Theorem 3



	
M(x,t;ξ) satisfies the jump condition


M+(x,t;ξ)=M−(x,t;ξ)J(x,t;ξ),ξ4∈R,








where the jump matrices are defined by (55)–(57).



	
M(x,t;ξ)=I+O(1ξ),ξ→∞.








Then, M(x,t;ξ) not only exists but is unique. In this way, the solution of the mNLS equation can be derived, which can be defined by


q(x,t)=2im(x,t)e2i∫(0,0)(x,t)Δ,m(x,t)=limξ→∞(ξμj(x,t;ξ))12,Δ=−2|m|2dx+[2i(mm¯x−mxm)+28|m|4]dt.



(70)







Besides, q(x,t) also satisfies the initial-boundary values condition


q(x,0)=q0(x),q(0,t)=g0(t),andqx(0,t)=g1(t).













Proof. 

Actually, if there are no zeros of a(ξ) and d(ξ), then the 2×2 function M(x,t;ξ) satisfies a non-singular Riemann-Hilbert problem. Due to the jump matrices J(x,t;ξ) possessing symmetry, we can find that this problem has a unique solution. On the other hand, when a(ξ) and d(ξ) have a certain number of zeros, by specific mapping, the singular Riemann-Hilbert problem can become no zeros with a system of algebraic equations; the unique solvability can be proved by the following theorem. □





Theorem 5.

The Riemann-Hilbert problem in Theorem 4 with the vanishing boundary condition


M(x,t;ξ)→0,ξ→∞,








has only the zero solution.





Proof. 

Firstly, we suppose that the matrix function M(x,t;ξ) is a solution of the Riemann-Hilbert problem in Theorem 4. At the same time, A† means the complex conjugate transpose of A, where A is a 2×2 matrix. We define


H+(ξ)=M+(ξ)M−†(−ξ¯),Imξ4≥0,H−(ξ)=M−(ξ)M+†(−ξ¯),Imξ4≤0,



(71)




where the x and t are dependent with each other. H+(ξ) and H−(ξ) are analytic in {ξ∈C|Imξ4>0} and {ξ∈C|Imξ4<0}, respectively. Due to the symmetry, we can obtain from (54) and (55)


J1†(−ξ¯)=J1(ξ),J3†(−ξ¯)=J3(ξ),J2†(−ξ¯)=J4(ξ).



(72)







Then


H+(ξ)=M−(ξ)J(ξ)M−†(−ξ¯),Imξ4∈R,H−(ξ)=M−(ξ)J†(−ξ¯)M−†(−ξ¯),Imξ4∈R.



(73)







From the above two equations, it is easy to find that H+(ξ)=H−(ξ). This means that H+(ξ) and H−(ξ) define an entire function decaying at infinity, hence the H+(ξ)≡0 and H−(ξ)≡0. Finding J3(iℏ)(ℏ∈R) is a 2×2 unit Hermitian matrix for any ℏ∈R. It is not difficult to see that J3(iℏ)(ℏ∈R) is a positive definite matrix. Now that H−(ℏ)=0 for ℏ∈iR, we have


M+(iℏ)J3(iℏ)M+†(iℏ)=0.



(74)







After simple calculation, we have M+(iℏ)=0 for ℏ∈R. Therefore, M+(ξ)=0, M−(ξ)=0. □





Remark 1.

q(x,t) satisfies the mNLS equation.



In fact, if M(x,t;ξ) is the solution of the Riemann-Hilbert problem defined by Theorem 4 and q(x,t) is defined as the previous definition, with the help of the dressing method [45], we can find that q(x,t) satisfies the Lax pair (18). Hence, q(x,t) satisfies the mNLS equation.





Remark 2.

Using the same proof method in Reference [32] can we prove that q(x,t) satisfies the initial values q(x,0)=q0(x) and boundary values q(0,t)=g0(t),qx(0,t)=g1(t), so in this paper, we leave this proof out.







5. Conclusions


In this paper, we mainly studied the initial-boundary values problem for the mNLS equation on the half line. Before we did this, with the help of prolongation structure theory, the Lax pair of this equation was derived. Then we reconstructed the Lax pair to obtain a Riemann-Hilbert problem, and therefore, the potential function has been represented by its solution. In future work, the long time asymptotic behavior for the solutions will be analyzed.
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Figure 1. Integral paths. 
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Figure 2. Dj,j=1,2,3,4. 
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