Next Article in Journal
Approximation by Sequence of Operators Involving Analytic Functions
Next Article in Special Issue
Some Remarks and New Results in Ordered Partial b-Metric Spaces
Previous Article in Journal
The Extremal Solution To Conformable Fractional Differential Equations Involving Integral Boundary Condition
Previous Article in Special Issue
Strong Convergence of a New Iterative Algorithm for Split Monotone Variational Inclusion Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities, and Fixed Point Problems

1
Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
2
School of Mathematics and Statistics, Linyi University, Linyi 276000, China
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(2), 187; https://doi.org/10.3390/math7020187
Submission received: 30 December 2018 / Revised: 2 February 2019 / Accepted: 13 February 2019 / Published: 16 February 2019

Abstract

:
In this paper, we introduce a multiple hybrid implicit iteration method for finding a solution for a monotone variational inequality with a variational inequality constraint over the common solution set of a general system of variational inequalities, and a common fixed point problem of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces. Strong convergence of the proposed method to the unique solution of the problem is established under some suitable assumptions.

1. Introduction

We suppose that H is a real Hilbert space. We use · , · to stand for the inner product and · the norm. We suppose that C is a convex closed nonempty set in the Hilbert space H, and P C is the well-known metric projection from the space H onto the set C. Here, we also suppose that T is a nonlinear self mapping defined in C. Let Fix ( T ) be the set of all fixed points of T, that is, Fix ( T ) = { x C : x = T x } . We use the notations → and ⇀ to indicate the norm convergence and the weak convergence, respectively. Now, we suppose that A : C H is a nonlinear nonself mapping in C to H. The well-known classical variational inequality (VI), whose set of all solutions denoted by VI ( C , A ) , is to find x * C such that
A x * , x x * 0 , x C .
A mapping T : C C is said to be asymptotically nonexpansive if there exists a sequence { θ n } [ 0 , + ) with lim n θ n = 0 such that
T n x T n y x y + θ n x y , n 0 , x , y C .
This mapping is Lipschitz continuous with the Lipschitz constant L > 1 . Fixed points of Lipschitz continuous mappings are a hot topic and have a lot of applications both in theoretical research, such as in differential equations, control theory, equilibrium problems, and in engineering applications; see References [1,2,3,4,5,6] and the references therein. In particular, T is said to be nonexpansive if | T x T y x y , x , y C , that is, θ 1 for all n . Recently, the variational inequality problem (1) has been extensively studied via the iterative methods of Lipschitz continuous mappings, in particular, (asymptotically) nonexpansve mappings; see References [7,8,9,10,11,12] and the references therein.
We suppose that B 1 , B 2 : C H are two nonlinear monotone mappings. We also suppose that μ 1 and μ 2 are two positive real constants. We consider the problem of finding ( x * , y * ) C × C such that
μ 1 B 1 y * + x * y * , x x * 0 , x C , μ 2 B 2 x * + y * x * , x y * 0 , x C .
Problem (3) is called a general system of variational inequalities (GSVI). From Reference [8], the GSVI (3) can be translated into a fixed point problem of a Lipschitz continuous nonlinear operator in the following way.
Lemma 1
([8]). We suppose that C is a convex subset in a Hilbert space H. Fix two elements x * and y * in C, ( x * , y * ) is a solution of GSVI (3) if and only if x * GSVI ( C , B 1 , B 2 ) , where GSVI ( C , B 1 , B 2 ) is the fixed point set of the mapping G : = P C ( I μ 1 B 1 ) P C ( I μ 2 B 2 ) , and y * = P C ( I μ 2 B 2 ) x * .
The GSVI (3), which includes the variational inequality (1) as a special case, has been investigated via fixed-point algorithms recently in real or complex Hilbert spaces; see References [13,14,15,16,17,18] and the references therein.
A self mapping f : C C is said to be a strict contraction on C if there is a number δ [ 0 , 1 ) such that f ( x ) f ( y ) δ x y for all x , y C . A nonself mapping F : C H is called monotone if F x F y , x y 0 x , y C . It is called η -strongly monotone if there is η > 0 such that
η x y 2 F x F y , x y , x , y C .
Moreover, it is called α -inverse-strongly monotone (or α -cocoercive) if there is a constant α > 0 such that
α F x F y 2 F x F y , x y , x , y C .
The class of inverse-strongly monotone operators or α -cocoercive operators has been in the spotlight of theoretical research and studied from the viewpoint of numerical computation and many results were obtained in Hilbert (and more generally, in Banach) spaces; see References [19,20,21,22,23,24] and the references therein.
Let X be a real Banach space whose dual space is denoted by X * . The well-known normalized duality operator J : X 2 X * is defined by
J ( x ) = { ψ X * : x , ψ = x 2 = ψ 2 } , x X ,
where · , · is the duality pairing between E and E * . A mapping T with domain D ( T ) and range R ( T ) in X is called pseudocontractive if the inequality holds
x y + r ( ( I T ) x ( I T ) y ) x y , x , y D ( T ) , r > 0 .
Kato’s results [25] told us that the notion of pseudocontraction is equivalent to the one that for each x , y D ( T ) , there exists j ( x y ) J ( x y ) such that
T x T y , j ( x y ) x y 2 .
The purpose of this paper is act as a continuation of Reference [26], that is to introduce and analyze a multiple hybrid implicit iteration method for solving a monotone variational inequality with a variational inequality constraint for two inverse-strongly monotone mappings and a common fixed point problem (CFPP) of a countable family of uniformly Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive mapping in Hilbert spaces, which is called the triple hierarchical constrained variational inequality (THCVI). Here, the multiple hybrid implicit iteration method is based on the Moudafi’s viscosity approximation method, Korpelevich’s extragradient method, Mann’s mean method, and the hybrid steepest-descent method. Under some suitable assumptions, strong convergence of the proposed method to the unique solution of the THCVI is derived.

2. Preliminaries

Let { T n } n = 0 be a sequence of continuous pseudocontractive self-mappings on C. Then, { T n } n = 0 is said to be a countable family of -uniformly Lipschitzian pseudocontractive self-mappings on C if there exists a constant > 0 such that each T n is -Lipschitz continuous. We fix an element x in H to see that there exists a unique nearest point in C, denoted by P C x , such that
x P C x x y , y C .
P C is called a metric projection of H onto C. It may be a set-valued operator. Further, C is assumed to be convex and closed, and X is assumed to be Hilbert, P C is, in such a situation, a single-valued operator.
We need the following propositions and lemmas to prove our main results.
Proposition 1
([27]). We suppose C is a convex closed subset of a Banach space X. Let S 0 , S 1 , be a self-mapping sequence on C. Let n = 1 sup { S n x S n 1 x : x C } < . We conclude { S n y } , where y C , converges strongly to some point in C. Moreover, we assume S is a self mapping on C generated by S y = lim n S n y for all y C . Therefore, lim n sup { S x S n x : x C } = 0 .
Proposition 2
([28]). We suppose C is a convex closed subset of a Banach space X and T is a continuous strong pseudocontraction self-mapping. Therefore, T enjoys fixed points. Indeed, it has a unique fixed point.
The following lemma is trivial.
Lemma 2.
In a real Hilbert space H, there holds the inequality
2 y + x , y x + y 2 x 2 , x , y H .
Lemma 3
([29]). We suppose that { a n } is a nonnegative number sequence satisfying the restrictions
a n + 1 a n + λ n γ n λ n a n , n 0 ,
where { λ n } and { γ n } are sequences of real sequences such that
(i) lim sup n γ n 0 or n = 0 | λ n γ n | < ;
(ii) { λ n } [ 0 , 1 ] and n = 0 λ n = , or equivalently,
lim n k = 0 n ( 1 λ k ) = 0 .
Hence, a n 0 as n .
The following lemma is a direct consequence of Yamada [30].
Lemma 4.
Let F : H H be a κ-Lipschitzian and η-strongly monotone. We suppose λ is a positive real number in ( 0 , 1 ] and T : C H is a nonexpansive nonself mapping, and we define the mapping T λ : C H by
T λ x : = T x λ μ F ( T x ) , x C .
If 0 < μ < 2 η κ 2 , then T λ is a contraction operator, that is,
T λ x T λ y ( 1 λ τ ) x y , x , y C ,
where τ = 1 1 μ ( 2 η μ κ 2 ) ( 0 , 1 ] .
Lemma 5
([31]). We suppose that the nonself mapping A : C H is α-inverse-strongly monotone. Then, for a given λ 0 ,
( I λ A ) x ( I λ A ) y 2 x y 2 + λ ( λ 2 α ) A x A y 2 .
In particular, if 0 λ 2 α , then I λ A is nonexpansive. Further, we suppose A : C H is a monotone and hemicontinuous mapping. Then, the following hold:
(i) VI ( C , A ) = { x * C : A y , y x * 0 , y C } ;
(ii) VI ( C , A ) = Fix ( P C ( I λ A ) ) for all λ > 0 ;
(iii) VI ( C , A ) consists of one point if A is strongly monotone and Lipschitz continuous.
Lemma 6
([8]). We suppose the nonself operators B 1 , B 2 : C H are α-inverse-strongly monotone and β-inverse-strongly monotone, respectively. Let the self operator G : C C be defined in G : = P C ( I μ 1 B 1 ) P C ( I μ 2 B 2 ) . G : C C is nonexpansive if 0 μ 1 2 α and 0 μ 2 2 β .
Lemma 7
([32]). We suppose the Banach space X enjoys a weakly continuous duality mapping, and C is a convex closed set in X. Let T : C C be an asymptotically nonexpansive self mapping on C with a nonempty fixed point set. Then, I T is demiclosed at zero, i.e., if { x n } is a sequence in C converging weakly to some x C and the sequence { ( I T ) x n } converges strongly to zero, then ( I T ) x = 0 , where I is the identity mapping of X.
Lemma 8
([33]). Let both { x n } and { h n } be a bounded sequence in a Banach space X. Let { β n } ( 0 , 1 ) be a number sequence such that
0 < lim inf n β n lim sup n β n < 1 .
Suppose that x n + 1 = β n x n + ( 1 β n ) h n n 0 and lim sup n ( h n + 1 h n x n + 1 x n ) 0 . So, lim n h n x n = 0 .

3. Main Results

Let C be a convex closed subset of a real Hilbert space H. Let B 1 , B 2 : C H be monotone mappings, A g : C H be a monotone mapping with A , g : C H , T : C C be an asymptotically nonexpansive mapping, and { S n } n = 0 be a countable family of -uniformly Lipschitzian pseudocontractive self-mappings defined on C. We suppose Ω : = n = 0 Fix ( S n ) GSVI ( C , B 1 , B 2 ) Fix ( T ) and studied the variational inequality for monotone mapping A g over the common solution set Ω of the GSVI (3) and the CFPP of { S n } n = 0 and T:
Find x ¯ VI ( Ω , A g ) : = { x ¯ Ω : ( A g ) x ¯ , y x ¯ 0 y Ω } .
This section introduces the following monotone variational inequality problem with the inequality constraint over the common solution set of the GSVI (2) and the CFPP of T and { S n } n = 0 , which is named the triple hierarchical constrained variational inequality:
Assume that
(C1) T : C C is an asymptotically nonexpansive mapping with a sequence { θ n } ;
(C2) { S n } n = 0 is a countable family of -uniformly Lipschitzian pseudocontractive self-mappings on C;
(C3) B 1 , B 2 : C H are α -inverse-strongly monotone and β -inverse-strongly monotone, respectively;
(C4) GSVI ( C , B 1 , B 2 ) : = Fix ( G ) where G : = P C ( I μ 1 B 1 ) P C ( I μ 2 B 2 ) for μ 1 , μ 2 > 0 ;
(C5) Ω : = n = 0 Fix ( S n ) GSVI ( C , B 1 , B 2 ) Fix ( T ) ;
(C6) n = 1 sup x D S n x S n 1 x < for any bounded subset D of C;
(C7) S : C C is the mapping defined by S x = lim n S n x x C , such that Fix ( S ) = n = 0 Fix ( S n ) ;
(C8) g : C H is l-Lipschitzian and A : C H is ζ -inverse-strongly monotone such that A g is monotone;
(C9) f : C C is a contraction mapping with coefficient δ [ 0 , 1 ) and F : C H is κ -Lipschitzian and η -strongly monotone;
(C10) VI ( Ω , A g ) .
Problem 1.
The objective is to
find x * VI ( VI ( Ω , A g ) , I f ) : = { x * VI ( Ω , A g ) : ( I f ) x * , v x * 0 , v VI ( Ω , A g ) } .
Since the original problem is a variational inequality, in this paper, we call it a triple hierarchical constrained variational inequality. Since the mapping f is a contractive, we easily get that the solution of the problem is unique. Inspired by the results announced recently, we introduce the following multiple hybrid implicit iterative algorithm to find the solution of such a problem.
Algorithm 1: Multiple hybrid implicit iterative algorithm.
Step 0. Take { α n } n = 0 , { β n } n = 0 , { γ n } n = 0 ( 0 , ) , and μ > 0 , choose x 0 C arbitrarily, and let n : = 0 .
Step 1. Given x n C , compute x n + 1 C as
u n = γ n x n + ( 1 γ n ) S n u n , v n = P C ( u n μ 2 B 2 u n ) , z n = P C ( v n μ 1 B 1 v n ) , y n = P C [ α n g ( x n ) + ( I α n A ) z n ] , w n = P C [ α n x n + ( I α n μ F ) T n y n ] , x n + 1 = α n f ( x n ) + β n x n + ( 1 α n β n ) w n .
Update n : = n + 1 and go to Step 1.
We remark here that our algorithm is quite general. It includes mean-valued techniques, gradient techniques, and implicit iteration techniques. Our algorithm can also generate a strong convergence without any compact assumptions in infinite dimensional spaces.
We now state and prove the main result of this paper, that is, the following convergence analysis is presented for our Algorithm 1.
Theorem 1.
We suppose μ 1 ( 0 , 2 α ) , μ 2 ( 0 , 2 β ) , and l + δ < τ : = 1 1 μ ( 2 η μ κ 2 ) ( 0 , 1 ] for μ ( 0 , 2 η κ 2 ) . Let number sequences { α n } , { β n } and { γ n } lie in ( 0 , 1 ] such that
(i) lim n α n = 0 and n = 0 α n = ;
(ii) lim n θ n α n = 0 ;
(iii) 0 < lim inf n β n lim sup n β n < 1 and α n + β n 1 n 0 ;
(iv) 0 < lim inf n γ n lim sup n γ n < 1 and lim n | γ n + 1 γ n | = 0 ;
(v) lim n T n + 1 y n T n y n = 0 . Then, we have the following conclusions:
(a) { x n } n = 0 is bounded;
(b) lim n x n y n = 0 and lim n x n w n = 0 ;
(c) lim n x n G x n = 0 , lim n x n T x n = 0 and lim n x n S x n = 0 ;
(d) If ( x n y n + x n w n ) = o ( α n ) , then { x n } n = 0 converges strongly to the unique solution of the Problem 1.
Proof. 
Observe that the metric projection P VI ( Ω , A g ) is nonexpansive. Indeed, it is firmly nonexpansive. The mapping f is contractive. Thus, the composition mapping P VI ( Ω , A g ) f is a contraction mapping and hence P VI ( Ω , A g ) f has a unique fixed point. Say x * C , that is, x * = P VI ( Ω , A g ) f ( x * ) . By Lemma 5,
{ x * } = Fix ( P VI ( Ω , A g ) f ) = VI ( VI ( Ω , A g ) , I f ) .
Therefore, Problem 1 has a unique solution. Without loss of the generality, we can assume that { α n } ( 0 , 2 ζ ] and { γ n } [ a , b ] ( 0 , 1 ) for some a , b ( 0 , 1 ) . By Lemma 6, we know that G is nonexpansive. It is easy to see that for each n 0 there exists a unique element u n C such that
u n = γ n x n + ( 1 γ n ) S n u n .
Therefore, it can be seen that the multiple hybrid implicit iterative scheme (4) can be rewritten as
u n = γ n x n + ( 1 γ n ) S n u n , z n = G u n , y n = P C [ α n g ( x n ) + ( I α n A ) z n ] , x n + 1 = α n f ( x n ) + β n x n + ( 1 α n β n ) P C [ α n x n + ( I α n μ F ) T n y n ] , n 0 .
Next, we divide the rest of the proof into several steps.
Step 1. We prove { x n } , { y n } , { z n } , { u n } , { v n } , { T n y n } , and { F ( T n y n ) } are bounded. Indeed, We can take an element p Ω = n = 0 Fix ( S n ) GSVI ( C , B 1 , B 2 ) Fix ( T ) arbitrarily. Then, we have S n p = p , G p = p and T p = p . Since S n : C C is a pseudocontraction self mapping, one can show that
u n p x n p , n 0 .
Hence, we get
z n p = G u n p u n p x n p .
Since lim n α n = 0 and 1 > lim sup n β n lim inf n β n > 0 , we may assume that { α n + β n } is a set in [ c , d ] . Here, c , d ( 0 , 1 ) . In addition, since lim n θ n α n = 0 , we may further assume that
θ n ( 1 + α n l ) α n ( τ l δ ) 2 ( α n ( τ l δ ) ) .
From Lemma 5 and (8), we can prove that
y n p ( I α n A ) z n ( I α n A ) p + α n ( g ( x n ) A p ) z n p + α n g ( x n ) A p ( 1 + α n l ) x n p + α n g ( p ) A p .
We have from (6) and using Lemma 4 and (9) that
x n + 1 p α n f ( x n ) p + β n x n p + ( 1 α n β n ) P C [ α n x n + ( I α n μ F ) T n y n ] p α n f ( x n ) f ( p ) + f ( p ) p + β n x n p + ( 1 α n β n ) α n ( x n p ) + ( I α n μ F ) T n y n ( I α n μ F ) p + α n ( I μ F ) p ( α n δ + β n ) x n p + α n f ( p ) p + ( 1 α n β n ) [ α n x n p + ( 1 α n τ ) ( 1 + θ n ) y n p + α n ( I μ F ) p ] ( α n δ + β n ) x n p + α n f ( p ) p + ( 1 α n β n ) [ α n x n p + ( 1 α n τ + θ n ) y n p + α n ( I μ F ) p ] ( α n δ + β n ) x n p + α n f ( p ) p + ( 1 α n β n ) { α n x n p + ( 1 α n τ ) [ ( 1 + α n l ) x n p + α n g ( p ) A p ] + θ n [ ( 1 + α n l ) x n p + α n g ( p ) A p ] + α n ( I μ F ) p } ( α n δ + β n ) x n p + α n f ( p ) p + ( 1 α n β n ) { α n x n p + [ 1 α n ( τ l ) ] x n p + ( 1 α n τ ) α n g ( p ) A p + θ n ( 1 + α n l ) x n p + α n 2 τ g ( p ) A p } + α n ( I μ F ) p ( α n δ + β n ) x n p + α n f ( p ) p + ( 1 α n β n ) [ α n + 1 α n ( τ l ) ] x n p + α n g ( p ) A p + θ n ( 1 + α n l ) x n p + α n ( I μ F ) p = { 1 α n ( τ l δ ) ( α n + β n ) α n [ 1 ( τ l ) ] } x n p + θ n ( 1 + α n l ) x n p + α n ( f ( p ) p + g ( p ) A p + ( I μ F ) p ) [ 1 α n ( τ l δ ) ] x n p + α n ( τ l δ ) 2 x n p + α n ( f ( p ) p + g ( p ) A p + ( I μ F ) p ) = [ 1 α n ( τ l δ ) 2 ] x n p + α n ( τ l δ ) 2 · 2 ( f ( p ) p + g ( p ) A p + ( I μ F ) p ) τ l δ max { x n p , 2 ( f ( p ) p + g ( p ) A p + ( I μ F ) p ) τ l δ } .
By induction, we have
x n + 1 p max { 2 ( p f ( p ) + A p g ( p ) + ( I μ F ) p ) τ l δ , p x 0 } , n 0 .
Thus, { x n } is a bounded sequence, and so are the sequences { y n } , { z n } , { u n } , { T n y n } , and { F ( T n y n ) } . Since { S n } is -uniformly Lipschitzian on C, we know that
S n u n S n u n p + p u n p + p ,
which implies that the set { S n u n } is bounded. Additionally, from Lemma 1 and p Ω GSVI ( C , B 1 , B 2 ) , it follows that ( p , q ) is a solution of the GSVI (3), where q = P C ( I μ 2 B 2 ) p . Noting that v n = P C ( I μ 2 B 2 ) u n for all n 0 , by Lemma 5, we have
v n P C ( I μ 2 B 2 ) u n q + q = P C ( I μ 2 B 2 ) u n P C ( I μ 2 B 2 ) q + q u n q + q ,
which shows that { v n } also is bounded.
Step 2. We prove that x n + 1 x n 0 and y n + 1 y n 0 as n . Indeed, we set
x n + 1 = β n x n + ( 1 β n ) h n
and notice
w n = P C [ ( I α n μ F ) T n y n + α n x n ] .
Then,
h n = α n 1 β n f ( x n ) + ( 1 α n 1 β n ) P C [ α n x n + ( I α n μ F ) T n y n ] .
Simple calculations show that
h n + 1 h n = α n + 1 1 β n + 1 ( f ( x n + 1 ) f ( x n ) ) + ( 1 α n + 1 1 β n + 1 ) { P C [ α n + 1 x n + 1 + ( I α n + 1 μ F ) T n + 1 y n + 1 ] P C [ α n x n + ( I α n μ F ) T n y n ) } + ( α n + 1 1 β n + 1 α n 1 β n ) ( f ( x n ) w n ) .
It follows from (6) that
h n + 1 h n α n + 1 1 β n + 1 f ( x n ) f ( x n + 1 ) + ( 1 α n + 1 1 β n + 1 ) P C [ α n + 1 x n + 1 + ( I α n + 1 μ F ) T n + 1 y n + 1 ] P C [ α n x n + ( I α n μ F ) T n y n ] + | α n + 1 1 β n + 1 α n 1 β n | w n f ( x n ) α n + 1 δ 1 β n + 1 x n x n + 1 + ( 1 α n + 1 1 β n + 1 ) T n + 1 y n + 1 T n + 1 y n + T n + 1 y n T n y n + α n + 1 ( x n + 1 μ F ( T n + 1 y n + 1 ) ) α n ( x n μ F ( T n y n ) ) + | α n + 1 1 β n + 1 α n 1 β n | f ( x n ) T n y n α n ( x n μ F ( T n y n ) ) α n + 1 δ 1 β n + 1 x n + 1 x n + ( 1 α n + 1 1 β n + 1 ) ( 1 + θ n + 1 ) y n + 1 y n + T n y n T n + 1 y n + α n + 1 x n + 1 μ F ( T n + 1 y n + 1 ) + α n x n μ F ( T n y n ) + | α n + 1 1 β n + 1 α n 1 β n | f ( x n ) T n y n α n ( x n μ F ( T n y n ) ) y n + 1 y n + θ n + 1 y n y n + 1 + α n + 1 δ 1 β n + 1 x n + 1 x n + T n + 1 y n T n y n + α n + 1 x n + 1 μ F ( T n + 1 y n + 1 ) + α n x n μ F ( T n y n ) + | α n + 1 1 β n + 1 α n 1 β n | f ( x n ) T n y n α n ( x n μ F ( T n y n ) ) .
Since { α n } ( 0 , 2 ζ ] and A is ζ -inverse-strongly monotone, by Lemma 5, we obtain
y n + 1 y n = P C [ α n g ( x n ) + ( I α n A ) z n ] P C [ α n + 1 g ( x n + 1 ) + ( I α n + 1 A ) z n + 1 ] ( I α n + 1 A ) z n + 1 ( I α n A ) z n + α n + 1 g ( x n + 1 ) α n g ( x n ) = ( I α n + 1 A ) z n + 1 ( I α n + 1 A ) z n + ( α n α n + 1 ) A z n + α n + 1 g ( x n + 1 ) α n g ( x n ) ( I α n + 1 A ) z n + 1 ( I α n + 1 A ) z n + | α n α n + 1 | A z n + α n + 1 g ( x n + 1 ) α n g ( x n ) z n + 1 z n + | α n α n + 1 | A z n + α n + 1 g ( x n + 1 ) + α n g ( x n ) u n + 1 u n + A z n | α n α n + 1 | + α n + 1 g ( x n + 1 ) + α n g ( x n ) .
Furthermore, simple calculations show that
u n + 1 u n = γ n + 1 ( x n + 1 x n ) + ( 1 γ n + 1 ) ( S n + 1 u n + 1 S n u n ) + ( γ n + 1 γ n ) ( x n S n u n ) ,
which hence yields
u n + 1 u n 2 = γ n + 1 x n + 1 x n , u n + 1 u n + ( 1 γ n + 1 ) S n + 1 u n + 1 S n u n , u n + 1 u n + ( γ n + 1 γ n ) x n S n u n , u n + 1 u n = γ n + 1 x n + 1 x n , u n + 1 u n + ( 1 γ n + 1 ) [ S n + 1 u n + 1 S n u n + 1 , u n + 1 u n + S n u n + 1 S n u n , u n + 1 u n ] + ( γ n + 1 γ n ) x n S n u n , u n + 1 u n γ n + 1 x n + 1 x n u n + 1 u n + ( 1 γ n + 1 ) [ S n + 1 u n + 1 S n u n + 1 u n + 1 u n + u n + 1 u n 2 ] + | γ n + 1 γ n | x n S n u n u n + 1 u n .
So it follows that
u n + 1 u n γ n + 1 x n + 1 x n + ( 1 γ n + 1 ) [ S n + 1 u n + 1 S n u n + 1 + u n + 1 u n ] + | γ n + 1 γ n | x n S n u n ,
which immediately leads to
u n + 1 u n x n + 1 x n + 1 γ n + 1 γ n + 1 S n + 1 u n + 1 S n u n + 1 + | γ n + 1 γ n | x n S n u n γ n + 1 x n + 1 x n + 1 a S n + 1 u n + 1 S n u n + 1 + | γ n + 1 γ n | x n S n u n a .
Put D = { u n : n 0 } . Since { u n } is a bounded sequence, we know that D is a bounded set. Then, by the assumption of this theorem, we get
n = 0 sup x D S n + 1 x S n x < .
Noticing that
S n + 1 u n + 1 S n u n + 1 sup x D S n + 1 x S n x , n 0 ,
we have
n = 0 S n + 1 u n + 1 S n u n + 1 < .
Therefore, from (10)–(12) we deduce that
h n + 1 h n θ n + 1 y n + 1 y n + α n + 1 δ 1 β n + 1 x n + 1 x n + T n + 1 y n T n y n + y n + 1 y n + α n + 1 x n + 1 μ F ( T n + 1 y n + 1 ) + α n x n μ F ( T n y n ) + | α n + 1 1 β n + 1 α n 1 β n | f ( x n ) T n y n α n ( x n μ F ( T n y n ) ) u n + 1 u n + | α n α n + 1 | A z n + α n + 1 g ( x n + 1 ) + α n g ( x n ) + θ n + 1 y n + 1 y n + α n + 1 δ 1 β n + 1 x n + 1 x n + T n + 1 y n T n y n + α n + 1 x n + 1 μ F ( T n + 1 y n + 1 ) + α n x n μ F ( T n y n ) + | α n + 1 1 β n + 1 α n 1 β n | f ( x n ) T n y n α n ( x n μ F ( T n y n ) ) x n + 1 x n + 1 a S n + 1 u n + 1 S n u n + 1 + | γ n + 1 γ n | x n S n u n a + | α n α n + 1 | A z n + α n + 1 g ( x n + 1 ) + α n g ( x n ) + θ n + 1 y n + 1 y n + α n + 1 δ 1 β n + 1 x n + 1 x n + T n + 1 y n T n y n + α n + 1 x n + 1 μ F ( T n + 1 y n + 1 ) + α n x n μ F ( T n y n ) + | α n + 1 1 β n + 1 α n 1 β n | f ( x n ) T n y n α n ( x n μ F ( T n y n ) ) ,
which immediately attains
h n + 1 h n x n + 1 x n 1 a S n + 1 u n + 1 S n u n + 1 + | γ n + 1 γ n | x n S n u n a + | α n α n + 1 | A z n + α n + 1 g ( x n + 1 ) + α n g ( x n ) + θ n + 1 y n + 1 y n + α n + 1 δ 1 β n + 1 x n + 1 x n + T n + 1 y n T n y n + α n + 1 x n + 1 μ F ( T n + 1 y n + 1 ) + α n x n μ F ( T n y n ) + | α n + 1 1 β n + 1 α n 1 β n | f ( x n ) T n y n α n ( x n μ F ( T n y n ) ) .
Since lim n θ n = 0 and lim n T n + 1 y n T n y n = 0 (due to condition (v)), from (13) and conditions (i), (iii), (iv), it follows that
lim sup n ( h n + 1 h n x n + 1 x n ) 0 .
Hence, by condition (iii) and Lemma 8, we get lim n h n x n = 0 . Consequently,
lim n x n + 1 x n = lim n ( 1 β n ) h n x n = 0 .
Again from (11) and (12), we conclude that
y n + 1 y n u n + 1 u n + | α n α n + 1 | A z n + α n + 1 g ( x n + 1 ) + α n g ( x n ) x n + 1 x n + 1 a S n + 1 u n + 1 S n u n + 1 + | γ n + 1 γ n | x n S n u n a + | α n α n + 1 | A z n + α n + 1 g ( x n + 1 ) + α n g ( x n ) 0 ( n ) ,
and
z n z n + 1 = G u n G u n + 1 u n u n + 1 0 ( n ) .
Thus,
lim n y n y n + 1 = 0 , lim n u n u n + 1 = 0 and lim n z n z n + 1 = 0 .
Step 3. We prove x n G x n 0 as n . Indeed, noticing w n = P C [ ( I α n μ F ) T n y n + α n x n ] for all n 0 , we have
( I α n μ F ) T n y n + α n x n P C [ α n x n + ( I α n μ F ) T n y n ] , p w n 0 .
From (16), we have
w n p 2 = P C [ ( I α n μ F ) T n y n + α n x n ] p , w n p = P C [ ( I α n μ F ) T n y n + α n x n ] α n x n ( I α n μ F ) T n y n , w n p + α n x n + ( I α n μ F ) T n y n p , w n p α n x n + ( I α n μ F ) T n y n p , w n p = ( I α n μ F ) T n y n ( I α n μ F ) p , w n p + α n x n μ F p , w n p ( 1 α n τ ) T n y n p w n p + α n x n μ F p , w n p 1 2 ( 1 α n τ ) 2 T n y n p 2 + 1 2 w n p 2 + α n x n μ F p , w n p .
Hence, we have
w n p 2 ( 1 α n τ ) 2 T n y n p 2 + 2 α n x n μ F p , w n p ( 1 α n τ ) ( 1 + θ n ) 2 y n p 2 + 2 α n x n μ F p , w n p = ( 1 α n τ ) [ y n p 2 + θ n ( 2 + θ n ) y n p 2 ] + 2 α n x n μ F p , w n p ( 1 α n τ ) y n p 2 + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p , w n p .
From (9) and (17), we get
x n + 1 p 2 = β n ( x n p ) + α n ( f ( x n ) f ( p ) ) + ( 1 α n β n ) ( w n p ) + α n ( f ( p ) p ) 2 β n ( x n p ) + α n ( f ( x n ) f ( p ) ) + ( 1 α n β n ) ( w n p ) 2 + 2 α n f ( p ) p , x n + 1 p α n f ( x n ) f ( p ) 2 + β n x n p 2 + ( 1 α n β n ) w n p 2 + 2 α n f ( p ) p , x n + 1 p α n δ x n p 2 + β n x n p 2 + ( 1 α n β n ) [ ( 1 α n τ ) y n p 2 + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p , w n p ] + 2 α n f ( p ) p , x n + 1 p α n δ x n p 2 + β n x n p 2 + ( 1 α n β n ) { ( 1 α n τ ) ( z n p + α n g ( x n ) A p ) 2 + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p , w n p } + 2 α n f ( p ) p , x n + 1 p α n δ x n p 2 + β n x n p 2 + ( 1 α n β n ) { ( 1 α n τ ) z n p 2 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p , w n p } + 2 α n f ( p ) p , x n + 1 p α n δ x n p 2 + β n x n p 2 + ( 1 α n β n ) ( 1 α n τ ) z n p 2 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p .
We now note that q = P C ( p μ 2 B 2 p ) , v n = P C ( u n μ 2 B 2 u n ) , and z n = P C ( v n μ 1 B 1 v n ) . Then, z n = G u n . By Lemma 5, we have
v n q 2 = P C ( u n μ 2 B 2 u n ) P C ( p μ 2 B 2 p ) 2 u n p μ 2 ( B 2 u n B 2 p ) 2 u n p 2 μ 2 ( 2 β μ 2 ) B 2 u n B 2 p 2
and
z n p 2 = P C ( v n μ 1 B 1 v n ) P C ( q μ 1 B 1 q ) 2 v n q μ 1 ( B 1 v n B 1 q ) 2 v n q 2 μ 1 ( 2 α μ 1 ) B 1 v n B 1 q 2 .
Substituting (19) for (20), we obtain from (7) that
z n p 2 u n p 2 μ 2 ( 2 β μ 2 ) B 2 u n B 2 p 2 μ 1 ( 2 α μ 1 ) B 1 v n B 1 q 2 x n p 2 μ 2 ( 2 β μ 2 ) B 2 u n B 2 p 2 μ 1 ( 2 α μ 1 ) B 1 v n B 1 q 2 .
Combining (18) and (21), we get
x n + 1 p 2 α n δ x n p 2 + β n x n p 2 + ( 1 α n β n ) ( 1 α n τ ) z n p 2 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p α n x n p 2 + β n x n p 2 + ( 1 α n β n ) ( 1 α n τ ) [ x n p 2 μ 2 ( 2 β μ 2 ) B 2 u n B 2 p 2 μ 1 ( 2 α μ 1 ) B 1 v n B 1 q 2 ] + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p = [ 1 α n ( 1 α n β n ) τ ] x n p 2 ( 1 α n β n ) ( 1 α n τ ) [ μ 2 ( 2 β μ 2 ) B 2 u n B 2 p 2 + μ 1 ( 2 α μ 1 ) B 1 v n B 1 q 2 ] + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p x n p 2 ( 1 α n β n ) ( 1 α n τ ) [ μ 2 ( 2 β μ 2 ) B 2 u n B 2 p 2 + μ 1 ( 2 α μ 1 ) B 1 v n B 1 q 2 ] + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p ,
which immediately yields
( 1 α n β n ) ( 1 α n τ ) [ μ 2 ( 2 β μ 2 ) B 2 u n B 2 p 2 + μ 1 ( 2 α μ 1 ) B 1 v n B 1 q 2 ] x n p 2 x n + 1 p 2 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p ( x n p + x n + 1 p ) x n x n + 1 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p .
( 1 α n β n ) ( 1 α n τ ) [ μ 2 ( 2 β μ 2 ) B 2 u n B 2 p 2 + μ 1 ( 2 α μ 1 ) B 1 v n B 1 q 2 ] 0 as n . Since lim inf n ( 1 α n β n ) > 0 (due to condition (iii)), μ 1 ( 0 , 2 α ) , μ 2 ( 0 , 2 β ) , lim n θ n = 0 and lim n α n = 0 , we obtain from (15) that
lim n B 2 u n B 2 p = 0 and lim n B 1 v n B 1 q = 0 .
On the other hand, we have
v n q 2 = P C ( u n μ 2 B 2 u n ) P C ( p μ 2 B 2 p ) 2 u n μ 2 B 2 u n ( p μ 2 B 2 p ) , v n q = u n p , v n q + μ 2 B 2 p B 2 u n , v n q 1 2 [ u n p 2 + v n q 2 u n v n ( p q ) 2 ] + μ 2 B 2 p B 2 u n v n q ,
which implies that
v n q 2 u n p 2 u n v n ( p q ) 2 + 2 μ 2 B 2 p B 2 u n v n q .
In the same way, we derive
z n p 2 = P C ( v n μ 1 B 1 v n ) P C ( q μ 1 B 1 q ) 2 v n μ 1 B 1 v n ( q μ 1 B 1 q ) , z n p = v n q , z n p + μ 1 B 1 q B 1 v n , z n p 1 2 [ v n q 2 + z n p 2 v n z n + ( p q ) 2 ] + μ 1 B 1 q B 1 v n z n p ,
which implies that
z n p 2 v n q 2 v n z n + ( p q ) 2 + 2 μ 1 B 1 q B 1 v n z n p .
Substituting (23) for (24), we deduce from (7) that
z n p 2 u n p 2 u n v n ( p q ) 2 v n z n + ( p q ) 2 + 2 μ 2 B 2 p B 2 u n v n q + 2 μ 1 B 1 q B 1 v n z n p x n p 2 u n v n ( p q ) 2 v n z n + ( p q ) 2 + 2 μ 2 B 2 p B 2 u n v n q + 2 μ 1 B 1 q B 1 v n z n p .
Combining (18) and (25), we have
x n + 1 p 2 α n δ x n p 2 + β n x n p 2 + ( 1 α n β n ) ( 1 α n τ ) z n p 2 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p α n x n p 2 + β n x n p 2 + ( 1 α n β n ) ( 1 α n τ ) [ x n p 2 u n v n ( p q ) 2 v n z n + ( p q ) 2 + 2 μ 1 B 1 q B 1 v n z n p + 2 μ 2 B 2 p B 2 u n v n q ] + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p = [ 1 α n ( 1 α n β n ) τ ] x n p 2 ( 1 α n β n ) ( 1 α n τ ) [ u n v n ( p q ) 2 + v n z n + ( p q ) 2 ] + 2 μ 1 B 1 q B 1 v n z n p + 2 μ 2 B 2 p B 2 u n v n q + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p x n p 2 ( 1 α n β n ) ( 1 α n τ ) [ u n v n ( p q ) 2 + v n z n + ( p q ) 2 ] + 2 μ 1 B 1 q B 1 v n z n p + 2 μ 2 B 2 p B 2 u n v n q + α n g ( x n ) A p × ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p ,
which hence yields
( 1 α n β n ) ( 1 α n τ ) [ u n v n ( p q ) 2 + v n z n + ( p q ) 2 ] x n p 2 x n + 1 p 2 + 2 μ 1 B 1 q B 1 v n z n p + 2 μ 2 B 2 p B 2 u n v n q + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p ( x n p + x n + 1 p ) x n x n + 1 + 2 μ 1 B 1 q B 1 v n z n p + 2 μ 2 B 2 p B 2 u n v n q + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p .
Since lim inf n ( 1 α n β n ) > 0 (due to condition (iii)), lim n θ n = 0 and lim n α n = 0 , we conclude from (15) and (22) that
lim n u n v n ( p q ) = 0 and lim n v n z n + ( p q ) = 0 .
It follows that
u n z n u n v n ( p q ) + v n z n + ( p q ) 0 ( n ) .
That is,
lim n u n G u n = lim n u n z n = 0 .
Additionally, according to (6), we have
u n p 2 = γ n x n p , u n p + ( 1 γ n ) S n u n p , u n p γ n x n p , u n p + ( 1 γ n ) u n p 2 ,
which implicitly yields that
2 u n p 2 2 x n p , u n p = x n p 2 x n u n 2 + u n p 2 .
This immediately implies that
u n p 2 x n p 2 x n u n 2 ,
which together with (3.16), yields
x n + 1 p 2 α n δ x n p 2 + β n x n p 2 + ( 1 α n β n ) ( 1 α n τ ) z n p 2 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p α n x n p 2 + β n x n p 2 + ( 1 α n β n ) ( 1 α n τ ) [ x n p 2 x n u n 2 ] + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p = [ 1 α n ( 1 α n β n ) τ ] x n p 2 ( 1 α n β n ) ( 1 α n τ ) x n u n 2 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p x n p 2 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p ( 1 α n β n ) ( 1 α n τ ) x n u n 2 .
Hence, we have
( 1 α n β n ) ( 1 α n τ ) x n u n 2 x n p 2 x n + 1 p 2 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p ( x n p + x n + 1 p ) x n x n + 1 + α n g ( x n ) A p ( 2 z n p + α n g ( x n ) A p ) + θ n ( 2 + θ n ) y n p 2 + 2 α n x n μ F p w n p + 2 α n f ( p ) p x n + 1 p .
Since lim inf n ( 1 α n β n ) > 0 , lim n θ n = 0 and lim n α n = 0 , we obtain from (15) that
lim n x n u n = 0 .
Moreover, observe that
x n z n x n u n + G u n u n ,
x n G x n x n z n + G u n G x n x n z n + u n x n ,
and
x n y n x n α n g ( x n ) ( I α n A ) z n x n z n + α n g ( x n ) A z n .
Then, from (27) and (28), it follows that
lim n x n z n = 0 , lim n x n G x n = 0 and lim n x n y n = 0 .
Step 4. Let us prove x n S n x n 0 , x n w n 0 and x n T x n 0 as n . Indeed, combining (5) and (8), we obtain that
S n u n u n = γ n 1 γ n x n u n b 1 b x n u n 0 ( n ) .
That is,
lim n S n u n u n = 0 .
Observe { S n } n = 0 is -uniformly Lipschitzian. We further get from (28) and (30) that
S n x n x n S n x n S n u n + S n u n u n + u n x n x n u n + S n u n u n + u n x n = ( + 1 ) x n u n + S n u n u n 0 ( n ) .
That is,
lim n x n S n x n = 0 .
We note that { α n + β n } [ c , d ] ( 0 , 1 ) for some c , d ( 0 , 1 ) , and observe that
x n T n y n x n x n + 1 + x n + 1 T n y n x n x n + 1 + α n f ( x n ) T n y n + β n x n T n y n + ( 1 α n β n ) P C [ α n x n + ( I α n μ F ) T n y n ] T n y n x n x n + 1 + α n f ( x n ) T n y n + β n x n T n y n + α n x n μ F ( T n y n ) .
Then,
x n T n y n 1 1 β n { x n x n + 1 + α n ( f ( x n ) T n y n + x n μ F ( T n y n ) ) } 1 1 d { x n x n + 1 + α n ( f ( x n ) T n y n + x n μ F ( T n y n ) ) } .
Hence, we get
y n T n y n y n x n + x n T n y n y n x n + 1 1 d { x n x n + 1 + α n ( f ( x n ) T n y n + x n μ F ( T n y n ) ) } .
Consequently, from (15), (29) and lim n α n = 0 , we obtain that
lim n x n T n y n = 0 and lim n y n T n y n = 0 .
So it follows that
x n w n x n α n x n ( I α n μ F ) T n y n x n T n y n + α n x n μ F ( T n y n ) 0 ( n ) .
That is,
lim n x n w n = 0 .
We also note that
y n T y n y n T n y n + T n y n T n + 1 y n + T n + 1 y n T y n y n T n y n + T n y n T n + 1 y n + ( 1 + θ 1 ) T n y n y n = T n y n T n + 1 y n + ( 2 + θ 1 ) T n y n y n .
By the condition (v) and (32), we get
lim n y n T y n = 0 .
Further, noticing that
x n T x n x n y n + y n T y n + T y n T x n y n T y n + ( 2 + θ 1 ) x n y n ,
we deduce from (29) that
lim n x n T x n = 0 .
Step 5. Set S ¯ : = ( 2 I S ) 1 . We aim to prove x n S ¯ x n 0 as n . We show that S : C C is pseudocontractive and -Lipschitzian such that lim n S x n x n = 0 , where S x = lim n S n x x C . Observe that for all x , y C , lim n S n x S x = 0 and lim n S n y S y = 0 . Since each S n is a pseudocontractive operator, we get
S x S y , x y = lim n S n x S n y , x y x y 2 .
This presents that S is pseudocontractive. Note that { S n } n = 0 is -uniformly Lipschitzian
S x S y = lim n S n x S n y x y , x , y C .
This means that S is -Lipschitzian. Since the boundedness of { x n } and putting D = conv ¯ { x n : n 0 } (the closure of convex hull of the set { x n : n 0 } ), we have n = 1 sup x D S n x S n 1 x < . Hence, by Proposition 1, we get
lim n S n x n S x n = 0 .
Thus, combining (31) with (35) we have
x n S x n x n S n x n + S n x n S x n 0 ( n ) .
That is,
lim n x n S x n = 0 .
Define S ¯ : = ( 2 I S ) 1 . S ¯ : C C is nonexpansive, Fix ( S ¯ ) = Fix ( S ) = n = 0 Fix ( S n ) and lim n x n S ¯ x n = 0 . Indeed, put S ¯ : = ( 2 I S ) 1 , where I is the identity mapping of H. Then, S ¯ is nonexpansive and the fixed point set Fix ( S ¯ ) = Fix ( S ) = n = 0 Fix ( S n ) . Observe that
x n S ¯ x n = S ¯ S ¯ 1 x n S ¯ x n S ¯ 1 x n x n = x n S x n .
From (36), it follows that
lim n x n S ¯ x n = 0 .
Step 6. We aim to present
lim sup n ( I f ) x * , x * x n 0 ,
where { x * } = VI ( VI ( Ω , A g ) , I f ) . Indeed, we choose a subsequence { x n i } of { x n } such that
lim i ( I f ) x * , x * x n i = lim sup n ( I f ) x * , x * x n .
We suppose a subsequence x n i x ¯ C . Observe that G and S ¯ have the nonexpansivity and that T has the asymptotically nonexpansivity. Since ( I G ) x n 0 , ( I T ) x n 0 and ( I S ¯ ) x n 0 , by Lemma 7, we have that x ¯ Fix ( G ) = GSVI ( C , B 1 , B 2 ) , x ¯ Fix ( T ) and x ¯ Fix ( S ¯ ) = n = 0 Fix ( S n ) . Then, x ¯ Ω = n = 0 Fix ( S n ) GSVI ( C , B 1 , B 2 ) Fix ( T ) . We present that x ¯ VI ( Ω , A g ) . As a fact, let y Ω be a arbitrarily fixed point. Then, it follows from (6), (8), and the monotonicity of A g that
y n y 2 ( z n y ) α n ( A z n g ( x n ) ) 2 = z n y 2 + 2 α n A z n g ( x n ) , y z n + α n 2 A z n g ( x n ) 2 x n y 2 + 2 α n A z n g ( z n ) , y z n + 2 α n l z n x n y z n + α n 2 A z n g ( x n ) 2 x n y 2 + 2 α n A y g ( y ) , y z n + 2 α n l z n x n y z n + α n 2 A z n g ( x n ) 2 ,
which implies that, for all n 0 ,
0 x n y 2 y n y 2 α n + 2 ( A g ) y , y z n + 2 l z n x n y z n + α n A z n g ( x n ) 2 ( x n y + y n y ) x n y n α n + 2 ( A g ) y , y z n + 2 l z n x n y z n + α n A z n g ( x n ) 2 .
From (29), it is easy to see that x n i x ¯ leads to z n i x ¯ . Since lim n α n = 0 and x n y n = o ( α n ) (due to the assumption), we have
0 lim inf n { ( x n y + y n y ) x n y n α n + 2 ( A g ) y , y z n + 2 l z n x n y z n + α n A z n g ( x n ) 2 } = lim inf n 2 ( A g ) y , y z n lim i 2 ( A g ) y , y z n i = 2 ( A g ) y , y x ¯ .
It follows that
( A g ) y , y x ¯ 0 , y Ω .
Accordingly, Lemma 5 and the Lipschitz continuity and monotonicity of A g grant that
( A g ) x ¯ , y x ¯ 0 , y Ω ;
that is, x ¯ VI ( Ω , A g ) . Consequently, from { x * } = VI ( VI ( Ω , A g ) , I f ) , we have
lim sup n ( I f ) x * , x * x n = lim i ( I f ) x * , x * x n i = ( I f ) x * , x * x ¯ 0 .
Step 7. Finally, we prove x n x * as n . Indeed, from (4) we get
x n + 1 x * 2 = β n x n x * , x n + 1 x * + α n f ( x n ) x * , x n + 1 x * + ( 1 α n β n ) w n x * , x n + 1 x * = α n [ f ( x n ) f ( x * ) , x n + 1 x * + f ( x * ) x * , x n + 1 x n + f ( x * ) x * , x n x * ] + β n x n x * , x n + 1 x * + ( 1 α n β n ) [ w n x n , x n + 1 x * + x n x * , x n + 1 x * ] α n [ δ x n x * x n + 1 x * + f ( x * ) x * x n + 1 x n + f ( x * ) x * , x n x * ] + β n x n x * x n + 1 x * + w n x n x n + 1 x * + ( 1 α n β n ) x n x * x n + 1 x * [ 1 α n ( 1 δ ) ] x n x * x n + 1 x * + α n f ( x * ) x * x n + 1 x n + α n f ( x * ) x * , x n x * + w n x n x n + 1 x * [ 1 α n ( 1 δ ) ] 2 2 x n x * 2 + 1 2 x n + 1 x * 2 + α n f ( x * ) x * x n + 1 x n + α n f ( x * ) x * , x n x * + w n x n x n + 1 x * ,
which immediately yields
x n + 1 x * 2 2 α n f ( x * ) x * x n + 1 x n + [ 1 α n ( 1 δ ) ] 2 x n x * 2 + 2 α n f ( x * ) x * , x n x * + 2 w n x n x n + 1 x * [ 1 α n ( 1 δ ) ] x n x * 2 + α n ( 1 δ ) · 2 1 δ { f ( x * ) x * x n + 1 x n + f ( x * ) x * , x n x * + w n x n α n · x n + 1 x * } .
Since w n x n = o ( α n ) , n = 0 α n = , and lim n α n = 0 , we deduce from (15), (38), and (39) that n = 0 α n ( 1 δ ) = and
lim sup n { f ( x * ) x * x n + 1 x n + f ( x * ) x * , x n x * + w n x n α n · x n + 1 x * } 0 .
Therefore, applying Lemma 3 to relation (40), we conclude that x n x * as n . This completes the proof. □

Author Contributions

These authors contributed equally to this work.

Funding

This research was funded by the Natural Science Foundation of Shandong Province of China (ZR2017LA001) and Youth Foundation of Linyi University (LYDX2016BS023). The first author was partially supported by the Innovation Program of Shanghai Municipal Education Commission (15ZZ068), Ph.D. Program Foundation of Ministry of Education of China (20123127110002) and Program for Outstanding Academic Leaders in Shanghai City (15XD1503100).

Acknowledgments

The authors are grateful to the editor and the referees for useful suggestions which improved the contents of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Granas, A.; Dugundji, J. Fixed Point Theory; Monographs in Mathematics; Springer: New York, NY, USA, 2003. [Google Scholar]
  2. Gasinski, L.; Papageorgiou, S. Nonlinear Analysis. In Studies in Mathematical Analysis and Applications; Chapman & Hall/CRC Hall: Boca Raton, FL, USA, 2005; Volume 9. [Google Scholar]
  3. Qin, X.; Yao, J.C. Projection splitting algorithms for nonself operators. J. Nonlinear Convex Anal. 2017, 18, 925–935. [Google Scholar]
  4. Arqub, O.A.; Al-Smadi, M. Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painleve equations in Hilbert space. Chaos Solitons Fractals 2018, 117, 161–167. [Google Scholar] [CrossRef]
  5. Arqub, O.A.; Maayah, B. Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator. Chaos Solitons Fractals 2018, 117, 117–124. [Google Scholar] [CrossRef]
  6. Sen, M.D.L. On some relations between accretive, positive, and pseudocontractive operators and passivity results in Hilbert spaces and nonlinear dynamic systems. Discret. Dyn. Nat. Soc. 2017, 2017, 1497867. [Google Scholar]
  7. Cho, S.Y. Viscosity approximation splitting methods for monotone and nonexpansive operators in Hilbert spaces. J. Nonlinear Convex Anal. 2018, 19, 251–264. [Google Scholar]
  8. Ceng, L.C.; Wang, C.Y.; Yao, J.C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 2008, 67, 375–390. [Google Scholar] [CrossRef]
  9. Nguyen, L.V.; Qin, X. Some results on strongly pseudomonotone quasi-variational inequalities. Set-Valued Var. Anal. 2019. [Google Scholar] [CrossRef]
  10. Cho, S.Y.; Bin Dehaish, B.A.; Qin, X. Weak convergence of a splitting algorithm in Hilbert spaces. J. Appl. Anal. Comput. 2017, 7, 427–438. [Google Scholar]
  11. Qin, X.; Yao, J.C. Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators. J. Inequal. Appl. 2016, 2016, 232. [Google Scholar] [CrossRef]
  12. Chang, S.S.; Wen, C.F.; Yao, J.C. Zero point problem of accretive operators in Banach spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 105–118. [Google Scholar] [CrossRef]
  13. Yao, Y. Projection methods for firmly type nonexpansive operators. J. Nonlinear Convex Anal. 2018, 19, 407–415. [Google Scholar]
  14. Ceng, L.C. Approximation of common solutions of a split inclusion problem and a fixed-point problem. J. Appl. Numer. Optim. 2019, 1, 1–12. [Google Scholar]
  15. Zhao, X.; Ng, K.F.; Li, C.; Yao, J.C. Linear regularity and linear convergence of projection-based methods for solving convex feasibility problems. Appl. Math. Optim. 2018, 78, 613–641. [Google Scholar] [CrossRef]
  16. Qin, X.; Cho, S.Y. Convergence analysis of a monotone projection algorithm in reflexive Banach spaces. Acta Math. Sci. 2017, 37, 488–502. [Google Scholar] [CrossRef]
  17. Kim, J.K.; Khanna, K.; Ram, T. On h-generalized operators variational-like inequalities. Commun. Optim. Theory 2018, 2018, 14. [Google Scholar]
  18. Qin, X.; Petrusel, A.; Yao, J.C. CQ iterative algorithms for fixed points of nonexpansive mappings and split feasibility problems in Hilbert spaces. J. Nonlinear Convex Anal. 2018, 19, 157–165. [Google Scholar]
  19. Qin, X.; Cho, S.Y.; Wang, L. Strong convergence of an iterative algorithm involving nonlinear mappings of nonexpansive and accretive type. Optimization 2018, 67, 1377–1388. [Google Scholar] [CrossRef]
  20. Zaslavski, A.J. Structure of approximate solutions of autonomous variational problems. Appl. Anal. Optim. 2017, 1, 113–151. [Google Scholar]
  21. Bnouhachem, A. Strong convergence algorithm for split equilibrium problems and hierarchical fixed point problems. Sci. World J. 2014, 2014, 390956. [Google Scholar] [CrossRef]
  22. Ceng, L.C.; Petrusel, A.; Yao, J.C.; Yao, Y. Hybrid viscosity extragradient method for systems of variational inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in Banach spaces. Fixed Point Theory 2018, 19, 487–497. [Google Scholar] [CrossRef]
  23. Chang, S.S.; Wen, C.F.; Yao, J.C. Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces. Optimization 2018, 67, 1183–1196. [Google Scholar] [CrossRef]
  24. Ceng, L.C.; Lin, Y.C.; Wen, C.F. Iterative methods for triple hierarchical variational inequalities with mixed equilibrium problems, variational inclusions, and variational inequalities constraints. J. Inequal. Appl. 2015, 2015, 16. [Google Scholar] [CrossRef]
  25. Kato, K. Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 1967, 19, 508–520. [Google Scholar] [CrossRef]
  26. Ceng, L.C.; Yuan, Q. Hybrid Mann viscosity implicit iteration methods for triple hierarchical variational inequalities, systems of variational inequalities and fixed point problems. Mathematics 2019, 7, 142. [Google Scholar] [CrossRef]
  27. Reich, S. Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 1979, 67, 274–276. [Google Scholar] [CrossRef]
  28. Deimling, K. Zeros of accretive operators. Manuscr. Math. 1974, 13, 365–374. [Google Scholar] [CrossRef]
  29. Xue, Z.; Zhou, H.; Cho, Y.J. Iterative solutions of nonlinear equations for m-accretive operators in Banach spaces. J. Nonlinear Convex Anal. 2000, 1, 313–320. [Google Scholar]
  30. Yamada, Y. The hybrid steepest-descent method for variational inequalities problems over the intersection of the fixed point sets of nonexpansive mappings. In Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications; Butnariu, D., Censor, Y., Reich, S., Eds.; North-Holland: Amsterdam, The Netherlands, 2001; pp. 473–504. [Google Scholar]
  31. Iiduka, H. Iterative algorithm for solving triple-hierarchical constrained optimization problem. J. Optim. Theory Appl. 2011, 148, 580–592. [Google Scholar] [CrossRef]
  32. Chang, S.S.; Cho, Y.J.; Zhou, H. Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings. J. Korean Math. Soc. 2001, 38, 1245–1260. [Google Scholar]
  33. Suzuki, T. Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 2005, 305, 227–239. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Ceng, L.-C.; Yuan, Q. Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities, and Fixed Point Problems. Mathematics 2019, 7, 187. https://doi.org/10.3390/math7020187

AMA Style

Ceng L-C, Yuan Q. Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities, and Fixed Point Problems. Mathematics. 2019; 7(2):187. https://doi.org/10.3390/math7020187

Chicago/Turabian Style

Ceng, Lu-Chuan, and Qing Yuan. 2019. "Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities, and Fixed Point Problems" Mathematics 7, no. 2: 187. https://doi.org/10.3390/math7020187

APA Style

Ceng, L. -C., & Yuan, Q. (2019). Triple Hierarchical Variational Inequalities, Systems of Variational Inequalities, and Fixed Point Problems. Mathematics, 7(2), 187. https://doi.org/10.3390/math7020187

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop