Common Fixed Point Theorems of Generalized Multivalued (ψ,ϕ)-Contractions in Complete Metric Spaces with Application
Abstract
:1. Introduction and Preliminaries
- (F1)
- F is strictly increasing, i.e., for all such that , ;
- (F2)
- For each sequence of positive numbers,
- (F3)
- There exists such that .
- (F1)
- F is strictly increasing, i.e., for all such that , ;
- (F2)
- For each sequence of positive numbers,
- (F3)
- F is continuous.
- (Θ1)
- θ is nondecreasing,
- (Θ2)
- for each sequence ,
- (Θ3)
- there exist and such that
- (Θ4)
- θ is continuous.
- (Θ1)’
- is nondecreasing,
- (Θ2)’
- (Θ3)’
- is continuous.
- (i)
- T is a θ-contraction with
- (ii)
- T is an F-contraction with F .
- (Φ1)
- ϕ is nondecreasing,
- (Φ2)
- for each sequence ,
- (Φ3)
- ϕ is continuous on .
- (1)
- is monotone increasing, that is, ,
- (2)
- for all , where stands for the n-th iterate of
- (1)
- , for all ,
- (2)
- for all .
- (1)
- (2)
- (3)
- (i)
- T is a multivalued θ-contraction with
- (ii)
- T is a multivalued F-contraction with .
2. Main Results
3. Some Consequences
4. Application
- (B1):
- and u are bounded and continuous.
- (B2):
- For , and define by
Author Contributions
Funding
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bellman, R. Methods of Nonlinear Analysis. Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1973; Volume 61-II. [Google Scholar]
- Casini, E.; Goebel, K. Why and how much Brouwer’s fixed point theorem fails in noncompact setting? Milan J. Math. 2012, 78, 371–394. [Google Scholar] [CrossRef]
- Durmaz, G.; Mınak, G.; Altun, I. Fixed points of ordered F-contractions. Hacettepe J. Math. Stat. 2016, 45, 15–21. [Google Scholar] [CrossRef]
- El Arwadi, T.; Cherif, M.A. The Schauder and Krasnoselskii fixed-point theorems on a Frechet space. Mediterr. J. Math. 2018, 15, 121. [Google Scholar] [CrossRef]
- Fukhar-ud-din, H.; Khan, A.R. Approximation of common fixed point of two quasi-nonexpansive mappings in convex metric spaces. Mediterr. J. Math. 2018, 15, 77. [Google Scholar] [CrossRef]
- Kumam, P.; Mongkolkeha, C. Common best proximity points for proximity commuting mapping with Geraghty’s functions. Carpathian J. Math. 2015, 31, 359–364. [Google Scholar]
- Ćirić, L. Multi-valued nonlinear contraction mappings. Nonlinear Anal. 2009, 71, 2716–2723. [Google Scholar] [CrossRef]
- De la Sen, M.; Singh, S.L.; Gordji, M.E.; Ibeas, A.; Agarwal, R.P. Best proximity and fixed point results for cyclic multivalued mappings under a generalized contractive condition. Fixed Point Theory Appl. 2013, 2013, 324. [Google Scholar] [CrossRef]
- Petruşel, A.; Petruşel, G. On Reich’s strict fixed point theorem for multi-valued operators in complete metric spaces. J. Nonlinear Variat. Anal. 2018, 2, 103–112. [Google Scholar]
- Phuengrattana, W.; Onjai-uea, N.; Cholamjiak, P. Modified proximal point algorithms for solving constrained minimization and fixed point problems in complete CAT(0) spaces. Mediterr. J. Math. 2018, 15, 97. [Google Scholar] [CrossRef]
- Rosa, V.L.; Vetro, P. Fixed points for Geraghty-contractions in partial metric spaces. J. Nonlinear Sci. Appl. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Singh, S.L.; Mishra, S.N. Coincidence theorems for certain classes of hybrid contractions. Fixed Point Theory Appl. 2009, 2010, 898109. [Google Scholar] [CrossRef]
- Sukprasert, P.; Kumam, P.; Ansari, A.H.; Chandok, S. Some fixed point results for weak contraction mappings in ordered 2-metric spaces. Appl. Anal. Optim. 2009, 71, 5313–5317. [Google Scholar]
- Zaslavski, A.J. Two fixed point results for a class of mappings of contractive type. J. Nonlinear Variat. Anal. 2018, 2, 113–119. [Google Scholar]
- Suzuki, T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2017, 1, 477–500. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef]
- Jleli, M.; Karapinar, E.; Samet, B. Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014, 2014, 439. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 2014, 38. [Google Scholar] [CrossRef]
- Liu, X.-D.; Chang, S.-S.; Xiao, Y.; Zhao, L.-C. Some fixed point theorems concerning (ψ,ϕ)-type contraction in complete metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 4127–4136. [Google Scholar] [CrossRef]
- Berinde, V. Generalized Contractions and Applications; Editura Cub Press: Baia Mare, Romania, 1997. [Google Scholar]
- Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Mizoguchi, N.; Takahashi, W. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 1989, 141, 177–188. [Google Scholar] [CrossRef]
- Piri, H.; Rahrovi, S. Generalized multivalued F-weak contractions on complete metric spaces. Sahand Commun. Math. Anal. 2015, 2, 1–11. [Google Scholar]
- HanÇer, H.A.; Minak, G.; Altun, I. On a broad category of multivalued weakly Picard operators. Fixed Point Theory 2017, 18, 229–236. [Google Scholar] [CrossRef]
- Vetro, F. A generalization of Nadler fixed point theorem. Carpathian J. Math. 2015, 31, 403–410. [Google Scholar]
- Baskaran, R.; Subrahmanyam, P.V. A note on the solution of a class of functional equations. Appl. Anal. 1986, 22, 235–241. [Google Scholar] [CrossRef]
- Bellman, R.; Lee, E. Functional equations in dynamic programming. Aequ. Math. 1978, 17, 1–18. [Google Scholar] [CrossRef]
- Bhakta, T.C.; Mitra, S. Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 1984, 98, 348–362. [Google Scholar] [CrossRef]
- Liu, Z.; Agarwal, R.P.; Kang, S. On solvability of functional equations and system of functional equations arising in dynamic programming. J. Math. Anal. Appl. 2004, 297, 111–130. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Kim, H.; Kang, S. Common fixed point theorems for contractive type mappings and their applications in dynamic programming. Bull. Korean Math. Soc. 2008, 45, 573–585. [Google Scholar] [CrossRef]
- Pathak, H.K.; Cho, Y.; Kang, S.; Lee, B. Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming. Matematiche 1995, 50, 15–33. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameer, E.; Arshad, M.; Shin, D.Y.; Yun, S. Common Fixed Point Theorems of Generalized Multivalued (ψ,ϕ)-Contractions in Complete Metric Spaces with Application. Mathematics 2019, 7, 194. https://doi.org/10.3390/math7020194
Ameer E, Arshad M, Shin DY, Yun S. Common Fixed Point Theorems of Generalized Multivalued (ψ,ϕ)-Contractions in Complete Metric Spaces with Application. Mathematics. 2019; 7(2):194. https://doi.org/10.3390/math7020194
Chicago/Turabian StyleAmeer, Eskandar, Muhammad Arshad, Dong Yun Shin, and Sungsik Yun. 2019. "Common Fixed Point Theorems of Generalized Multivalued (ψ,ϕ)-Contractions in Complete Metric Spaces with Application" Mathematics 7, no. 2: 194. https://doi.org/10.3390/math7020194
APA StyleAmeer, E., Arshad, M., Shin, D. Y., & Yun, S. (2019). Common Fixed Point Theorems of Generalized Multivalued (ψ,ϕ)-Contractions in Complete Metric Spaces with Application. Mathematics, 7(2), 194. https://doi.org/10.3390/math7020194