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Abstract

:

We prove that in Minkowski spaces, a harmonic function does not necessarily satisfy the mean value formula. Conversely, we also show that a function satisfying the mean value formula is not necessarily a harmonic function. Finally, we conclude that in a Minkowski space, if all harmonic functions have the mean value property or any function satisfying the mean value formula must be a harmonic function, then the Minkowski space is Euclidean.
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1. Introduction


Harmonic functions play a crucial role in many areas of mathematics, physics, and engineering. In mathematics, a harmonic function in a Euclidean space is a twice continuously-differentiable function that satisfies the following equation:


Δf=∑i=1n∂2f∂(xi)2=0.











It is well known that harmonic functions in Euclidean spaces admit the mean value property, and vice versa. Namely, f is a harmonic function in Ω(⊂Rn), if and only if for any point x0∈Ω⊂Rn, we have (see [1,2]):


f(x0)=1vol(Br(x0))∫Br(x0)f(x)dx1⋯dxn,








where Br(x0)(⊂Ω) denotes the ball centered at x0 of radius r. In this short note, we are able to discuss this issue in a Minkowski space.



Recall that in a Euclidean space (Rn,∥·∥), the norm of a vector y=(y1,⋯,yn) is defined as:


∥y∥:=∑i=1n(yi)2.











Thus, by computing the Hessian of ∥y∥2, the metric on a Euclidean space is given by:


g:=∑i=1nδijdxidxj,








where δii=1 for 1≤i≤n and δij=0 if i≠j.



To compare it with the Minkowski metric, we now equip it with a norm F(y) on Rn such that:


g:=∑i=1ngij(y)dxidxj,gij:=12∂2(F2)∂yi∂yj.











Here, the functions gij(y) are smooth in Rn\0, and gij(cy)=cgij(y) for any c>0. We also require the matrix (gij) to be positive definite. Then, (Rn,F) is called a Minkowski space. It is a special Finsler manifold with zero flag curvature (see [3]). Obviously, a Euclidean space is a Minkowski space.



Up to now, there have been many research works about harmonic functions on Riemannian manifolds. For more details, we refer the reader to [4,5,6,7,8], and so on. In the meantime, the study of harmonic functions has now been developed for Finsler manifolds. One can see Xia [9], Zhang [10], and the references therein. For a more general harmonic map on Finsler manifolds, we refer the reader to [11].




2. Preliminaries


In this section, we shall briefly review some fundamental concepts that are necessary for the present paper.



Let (Rn,F) be a Minkowski space. For a smooth function f, the gradient of f at x is defined by ∇f(x):=L−1(df), where L:TxM→Tx*M,y↦∑i=1nF∂F∂yidxi is the Legendre transform. Specifically, ∇f can be written as:


∇f(x)=∑i,j=1ng*ij(x,df)∂f∂xj∂∂xi,df(x)≠0;0,df(x)=0,








where g*ij(x,η)=12∂2(F*(x,η))2∂ηi∂ηj and F* is the dual metric of F. It holds that gij(x,∇f)=g*ij(x,df). However, ∇f may not be necessarily written explicitly. We note that if f is a smooth function, then the gradient ∇f is smooth in {x∈Rn|df(x)≠0} and only continuous at x where df(x)=0.



Let V=Vi∂∂xi be a smooth vector field. The divergence of V with respect to an arbitrary volume form dμ is defined by:


divV:=∑i=1n∂Vi∂xi+Vi∂logσ∂xi,








where dμ=σ(x)dx1⋯dxn. Then, the Finsler-Laplacian of f can be defined by:


Δf:=div(∇f).











There are many Finslerian Laplacians, as described in the Kluwer monograph edited by Peter Antonelli and Brad Lackey. In this article, we discuss the nonlinear Laplacian proposed by Shen [3].



For simplicity, we choose the Busemann–Hausdorff volume form dμ, for which in a Minkowski space, the σ(x) is constant. Then, in a Minkowski space (Rn,F), the Laplacian of f can be expressed as:


Δf(x)=∑i,j=1ngij(∇f)∂2f∂xixj,ifdf(x)≠0.











In fact, setting ∇f(x)=∑i=1nfi∂∂xi, fi=∂f∂xi, and fij=∂2f∂xi∂xj, we have fi=∑j=1ngij(∇f)fj, and thus:


Δf=∑i=1n∂∂xi∑j=1ngij(∇f)fj=∑i,j=1n∂gij(∇f)∂xifj+∑i,j=1ngij(∇f)fij=−∑i,j,p,q=1ngip(∇f)∂gpq(∇f)∂xigjq(∇f)fj+∑i,j=1ngij(∇f)fij=−∑i,p,q=1ngip(∇f)∂gpq(∇f)∂xifq+∑i,j=1ngij(∇f)fij=−∑i,p,q,r=1ngip(∇f)∂gpq(∇f)∂fr∂fr∂xifq+∑i,j=1ngij(∇f)fij=−∑i,p,r=1ngip(∇f)∑q=1n∂gpr(∇f)∂fqfq∂fr∂xi+∑i,j=1ngij(∇f)fij=∑i,j=1ngij(∇f)fij.











The sixth step is due to ∂gij∂yk=∂gik∂yj=12∂3(F2)∂yi∂yj∂yk for any 1≤i,j,k≤n, while the final step follows from the Euler lemma, which shows that ∑i=1n∂h(y)∂yiyi=λh(y) if h(cy)=cλh(y) for c>0. The Laplacian in a Minkowski space is a nonlinear operator, and when (Rn,F) is a Euclidean space, it is just Δf=∑i=1n∂2f∂(xi)2.



If a smooth function f satisfies:


Δf=0inΩ(⊂Rn),



(1)




then f is called a harmonic function in Ω. Since Δf has no definition at x where df(x)=0, in general, (1) is viewed in the sense of the distribution:


∫Ωdφ(∇f)dx1⋯dxn=0,∀φ∈C0∞(Ω).











Apparently, in a Minkowski space, linear functions are harmonic functions. However, this is not necessarily true if the volume form is not Busemann–Hausdorff. In [9], Xia obtained a Liouville-type theorem on harmonic functions in a complete Finsler manifold. Based on this, we conclude that any positive or negative harmonic function in a Minkowski space is constant.



In the Finsler setting, the definition of the harmonic function is the same as the Riemannian case in form. Furthermore, it is easy to see that in a Finsler manifold (M,F,dμ), the harmonic functions are the local minimizers of the energy functional:


E(u)=∫MF2(x,∇u)dμ.











Unlike the Laplacian on Riemannian manifolds, the Finsler Laplacian is a nonlinear operator. In fact, this is the major difference between Finsler and Riemannian manifolds. Therefore, all harmonic functions in Finsler manifolds cannot construct a vector space, while in the Riemannian situation, the kernel of the Laplacian is not the same.




3. Some Important Counterexamples


We know that, in Euclidean spaces, a function is harmonic if and only if it satisfies the mean value formula. In the following, we will show that this is not true in a Minkowski space. The proofs are simple and straightforward by giving some counterexamples.



Example 1.

Let (Rn,F) be a Minkowski space, where F=∑i=1n(yi)2+12y1. Suppose that f(x)=∑i=1naixi+b. Then, f(x) is a harmonic function and f(0)=b. Notice that in a Minkowski space, the ball centered at x0 of radius r is Br(x0)={x∈Rn|F(x−x0)≤r}. A direct computation yields:


∫F(x)≤1f(x)dx1⋯dxn=∫34(x1+23)2+∑i=2n(xi)2≤43f(x)dx1⋯dxn=∫34(x1+23)2+∑i=2n(xi)2≤43(a1x1+b)dx1⋯dxn=∫34(x˜1)2+∑i=2n(xi)2≤43(a1x˜1−23a1+b)dx˜1⋯dxn(byx˜1=x1+23)=∫34(x˜1)2+∑i=2n(xi)2≤43(−23a1+b)dx˜1⋯dxn=(−23a1+b)∫34(x1+23)2+∑i=2n(xi)2≤43dx1⋯dxn=(−23a1+b)vol(F(x)≤1).











Clearly, when a1≠0, one obtains:


f(0)≠1vol(F(x)≤1)∫F(x)≤1f(x)dx1⋯dxn.













From the discussion above, we have:



Theorem 1.

In a Minkowski space, a harmonic function does not necessarily satisfy the mean value property.





In what follows, we will consider the functions satisfying the mean value formula.



Theorem 2.

In a Minkowski space, a function satisfying the mean value formula is not necessarily a harmonic function.





Proof. 

Let (Rn,F) be a Minkowski space where F is defined as Example 1. Let u(x¯)=u(x2,⋯,xn) be a harmonic function in a domain of the Euclidean space (Rn−1,α¯) where α¯=∑i=2n(yi)2. In this case, one can easily check:


Δ(Rn−1,α¯)u=∑i=2n∂2u∂(xi)2=0.











Thus, u(x¯) satisfies the mean value formula in (Rn−1,α¯). Set:


f(x1,x2,⋯,xn)=u(x2,⋯,xn).











Then f(0)=u(0), and by the mean value formula in Euclid spaces, we have:


∫F(x)≤1f(x)dx1⋯dxn=∫34(x1+23)2+∑i=2n(xi)2≤43f(x)dx1⋯dxn=∫34(x1+23)2+∑i=2n(xi)2≤43u(x2,⋯,xn)dx1⋯dxn=∫−223dx1∫∑i=2n(xi)2≤43−34(x1+23)2u(x2,⋯,xn)dx2⋯dxn=u(0,⋯,0)∫−223dx1∫∑i=2n(xi)2≤43−34(x1+23)2dx2⋯dxn=f(0)∫−223dx1∫∑i=2n(xi)2≤43−34(x1+23)2dx2⋯dxn=f(0)∫34(x1+23)2+∑i=2n(xi)2≤43dx1⋯dxn=f(0)vol(F(x)≤1).











Therefore, the function f(x) satisfies the mean value formula in (Rn,F). However, by a direct calculation, we see that:


Δf(x)=∑i,j=1ngij(∇f)∂2f∂xi∂xj,








is not necessarily equal to zero everywhere. Indeed, one can take f(x)=(x2+1)+x2x3 in (Rn,F) to check. This completes the proof. □






4. Further Discussion and Conclusions


To give a cleaner path to the question, we list some examples above that are special cases of a Randers–Minkowski space. From the discussions, we can conclude that in a Minkowski space, a harmonic function has no relationship with the mean value formula, and vice versa. One can see that the method of the proof on the mean value formula in Euclidean spaces does not work here. Indeed, if Δf=0, then we have:


0=∫F(x)≤1Δfdx1⋯dxn=∫F(x)=1gn(n,∇f)dν≠∫F(x)=1∂f∂ndν,








where n is the normal vector that points outwards {F(x)=1}, and dν denotes the induced volume form.



By the definition of harmonic functions, we see that it depends on both the metric and the volume form. Maybe a Minkowski metric is not so “good” as the Euclidean one, and some properties of harmonic functions cannot hold. In the following, we show that the mean value property has its own unique feature of harmonic function in Euclidean spaces. In fact, we prove the following two theorems.



Theorem 3.

If all harmonic functions defined on a Minkowski space satisfy the mean value property, then the Minkowski space is Euclidean.





Proof. 

Let f be a harmonic function in a Minkowski space (M,F). That is Δf=0, and thus:


0=∫F(x−x0)≤CΔfdx1⋯dxn=∫F(x−x0)=Cg∂∂r(∂∂r,∇f)dν,



(2)




where ∂∂r=x−x0F(x−x0) is the normal vector that points outwards {F(x−x0)=C}. This is because, for any curve x=x(t) with w=x′(t) on {F(x−x0)=C}, one has:


0=∑i=1nFxidxidt=gx−x0(x−x0,w)C.











Since f satisfies the mean value formula, we also have:


0=∂∂r∫F(x−x0)=Cfdν=∫F(x−x0)=C∂f∂rdν,∀C.



(3)







Combining (2) and (3), we obtain that, for any harmonic function f, any x0, and any constant C,


∫F(x−x0)=Cg∂∂r(∂∂r,∇f)−∂f∂rdν=0.











The arbitrary choice of f, x0, and C gives that:


g∂∂r(∂∂r,∇f)−∂f∂r=0.











Given x0=0, a direct computation yields:


∑i,j,k=1ngij(x)xigjk(∇f)∂f∂xk=∑k=1nxk∂f∂xk.











Let the harmonic function f=xp. Then:


∑i,j=1ngij(x)xigjp(∇xp)=xp.











Notice that ∇xp is a constant vector. Taking the derivation by xq in both sides above, we reach:


2∑i,j=1nCijq(x)xigjp(∇xp)+∑j=1ngqj(x)gjp(∇xp)=δqp.











Since ∑i=1nCijq(x)xi=0, it follows that:


∑j=1ngqj(x)gjp(∇xp)=δqp.











Taking the derivation by xs again, we deduce:


∑j=1nCqjs(x)gjp(∇xp)=0.











Now that the matrix (gjp(∇xp)) is positive, the Cartan tensor Cqjs(x)=0 for all q,j and s, which implies that F is Euclidean. This finishes the proof.  □





From the proof above, we can also obtain the following.



Theorem 4.

If any function defined on a Minkowski space admitting the mean value property is harmonic, then the Minkowski space is Euclidean.





In Section 2, we have shown that using the BH volume form, any linear function is harmonic, and also, any positive or negative harmonic function in a Minkowski space is constant. At the end of this section, we again give a property of the harmonic function in Minkowski spaces.



Proposition 1.

Let Ω be a bounded domain in a Minkowski space. Assume that f is a harmonic function in Ω and f|∂Ω=C. Then, f is constant in Ω¯.





Remark 1.

If the Minkowski space is Euclidean, the result is obvious from the maximum principle. However, there is no such maximum principle in Finsler manifolds since Δf has no definition at extreme points.





Proof. 

We may as well suppose that f|∂Ω=0. Otherwise, we replace it by f˜=f−C. Since Δf=0, we have:


12Δ∇ff2=fΔf+F(∇f)2=F(∇f)2.











By the divergence theorem, it follows that:


∫Ω12Δ∇ff2dx1⋯dxn=∫Ωdiv(f∇f)dx1⋯dxn=∫∂Ωgn(n,f∇f)dν=0,








where n is the normal vector that points outwards ∂Ω. This gives that:


∫ΩF(∇f)2dx1⋯dxn=0,








which yields ∇f=0, and thus, f is constant.  □









Funding


This project is supported by AHNSF(No. 1608085MA03) and TLXYXM(No. 2018tlxyzd02).




Conflicts of Interest


The author declares no conflict of interest.




Data Availability


No data were used to support this study.




References


	



Axler, S.; Bourdon, P.; Ramey, W. Harmonic Function Theory; Spinger: New York, NY, USA, 2001. [Google Scholar]

	



Han, Q.; Lin, F. Elliptic Partial Differential Equations; American Mathematical Society: New York, NY, USA, 2011. [Google Scholar]

	



Shen, Z. Lectures on Finsler Geometry; World Scientific Publishing Co.: Singapore, 2001. [Google Scholar]

	



Epstein, B.; Schiffer, M. On the mean-value property of harmonic functions. J. D Anal. Math. 1965, 14, 109–111. [Google Scholar] [CrossRef]

	



Flatto, L. Functions with a mean value property II. Am. J. Math. 1963, 85, 248–270. [Google Scholar] [CrossRef]

	



Hansen, W.; Netuka, I. Volume densities with the mean value property for harmonic functions. Proc. Am. Math. Soc. 1995, 123, 135–140. [Google Scholar] [CrossRef]

	



Kuran, U. On the mean-value property of harmonic functions. Bull. Lond. Math. Soc. 1972, 4, 311–312. [Google Scholar] [CrossRef]

	



Ni, L. Mean value theorems on manifolds. Asian J. Math. 2007, 11, 277–304. [Google Scholar] [CrossRef]

	



Xia, C. Local gradient estimate for harmonic functions on Finsler manifolds. Calc. Var. Part. Differ. Equ. 2014, 51, 849–865. [Google Scholar] [CrossRef]

	



Zhang, F. Study on the Properties of Some Functions in Finsler Manifolds. Ph.D. Dissertation, Zhejiang University, Zhejiang, China, 2014. (In Chinese)[Google Scholar]

	



He, Q.; Yin, S.; Zhao, W. Harmonic Maps and Laplacian on Finsler Manifolds; Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]







© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  mathematics-07-00196


  
    		
      mathematics-07-00196
    


  




  





