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Abstract: We prove that in Minkowski spaces, a harmonic function does not necessarily satisfy the
mean value formula. Conversely, we also show that a function satisfying the mean value formula is
not necessarily a harmonic function. Finally, we conclude that in a Minkowski space, if all harmonic
functions have the mean value property or any function satisfying the mean value formula must be a
harmonic function, then the Minkowski space is Euclidean.
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1. Introduction

Harmonic functions play a crucial role in many areas of mathematics, physics, and engineering.
In mathematics, a harmonic function in a Euclidean space is a twice continuously-differentiable
function that satisfies the following equation:

∆ f =
n

∑
i=1

∂2 f
∂(xi)2 = 0.

It is well known that harmonic functions in Euclidean spaces admit the mean value property, and
vice versa. Namely, f is a harmonic function in Ω(⊂ Rn), if and only if for any point x0 ∈ Ω ⊂ Rn,
we have (see [1,2]):

f (x0) =
1

vol(Br(x0))

∫
Br(x0)

f (x)dx1 · · · dxn,

where Br(x0)(⊂ Ω) denotes the ball centered at x0 of radius r. In this short note, we are able to discuss
this issue in a Minkowski space.

Recall that in a Euclidean space (Rn, ‖ · ‖), the norm of a vector y = (y1, · · · , yn) is defined as:

‖y‖ :=

√
n

∑
i=1

(yi)2.

Thus, by computing the Hessian of ‖y‖2, the metric on a Euclidean space is given by:

g :=
n

∑
i=1

δijdxidxj,

where δii = 1 for 1 ≤ i ≤ n and δij = 0 if i 6= j.
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To compare it with the Minkowski metric, we now equip it with a norm F(y) on Rn such that:

g :=
n

∑
i=1

gij(y)dxidxj, gij :=
1
2

∂2(F2)

∂yi∂yj .

Here, the functions gij(y) are smooth in Rn \ 0, and gij(cy) = cgij(y) for any c > 0. We also
require the matrix (gij) to be positive definite. Then, (Rn, F) is called a Minkowski space. It is a special
Finsler manifold with zero flag curvature (see [3]). Obviously, a Euclidean space is a Minkowski space.

Up to now, there have been many research works about harmonic functions on Riemannian
manifolds. For more details, we refer the reader to [4–8], and so on. In the meantime, the study of
harmonic functions has now been developed for Finsler manifolds. One can see Xia [9], Zhang [10],
and the references therein. For a more general harmonic map on Finsler manifolds, we refer the reader
to [11].

2. Preliminaries

In this section, we shall briefly review some fundamental concepts that are necessary for the
present paper.

Let (Rn, F) be a Minkowski space. For a smooth function f , the gradient of f at x is defined by
∇ f (x) := L−1(d f ), where L : Tx M→ T∗x M, y 7→ ∑n

i=1 F ∂F
∂yi dxi is the Legendre transform. Specifically,

∇ f can be written as:

∇ f (x) =


n
∑

i,j=1
g∗ij(x, d f ) ∂ f

∂xj
∂

∂xi , d f (x) 6= 0;

0, d f (x) = 0,

where g∗ij(x, η) = 1
2

∂2(F∗(x,η))2

∂ηi∂ηj
and F∗ is the dual metric of F. It holds that gij(x,∇ f ) = g∗ij(x, d f ).

However, ∇ f may not be necessarily written explicitly. We note that if f is a smooth function, then the
gradient ∇ f is smooth in {x ∈ Rn|d f (x) 6= 0} and only continuous at x where d f (x) = 0.

Let V = Vi ∂
∂xi be a smooth vector field. The divergence of V with respect to an arbitrary volume

form dµ is defined by:

divV :=
n

∑
i=1

(
∂Vi

∂xi + Vi ∂ log σ

∂xi

)
,

where dµ = σ(x)dx1 · · · dxn. Then, the Finsler-Laplacian of f can be defined by:

∆ f := div(∇ f ).

There are many Finslerian Laplacians, as described in the Kluwer monograph edited by Peter
Antonelli and Brad Lackey. In this article, we discuss the nonlinear Laplacian proposed by Shen [3].

For simplicity, we choose the Busemann–Hausdorff volume form dµ, for which in a Minkowski
space, the σ(x) is constant. Then, in a Minkowski space (Rn, F), the Laplacian of f can be expressed as:

∆ f (x) =
n

∑
i,j=1

gij(∇ f )
∂2 f

∂xixj , if d f (x) 6= 0.
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In fact, setting ∇ f (x) = ∑n
i=1 f i ∂

∂xi , fi = ∂ f
∂xi , and fij = ∂2 f

∂xi∂xj , we have f i = ∑n
j=1 gij(∇ f ) f j,

and thus:

∆ f =
n

∑
i=1

∂

∂xi

( n

∑
j=1

gij(∇ f ) f j

)
=

n

∑
i,j=1

∂gij(∇ f )
∂xi f j +

n

∑
i,j=1

gij(∇ f ) fij

= −
n

∑
i,j,p,q=1

gip(∇ f )
∂gpq(∇ f )

∂xi gjq(∇ f ) f j +
n

∑
i,j=1

gij(∇ f ) fij

= −
n

∑
i,p,q=1

gip(∇ f )
∂gpq(∇ f )

∂xi f q +
n

∑
i,j=1

gij(∇ f ) fij

= −
n

∑
i,p,q,r=1

gip(∇ f )
∂gpq(∇ f )

∂ f r
∂ f r

∂xi f q +
n

∑
i,j=1

gij(∇ f ) fij

= −
n

∑
i,p,r=1

gip(∇ f )
( n

∑
q=1

∂gpr(∇ f )
∂ f q f q

)
∂ f r

∂xi +
n

∑
i,j=1

gij(∇ f ) fij

=
n

∑
i,j=1

gij(∇ f ) fij.

The sixth step is due to
∂gij

∂yk = ∂gik
∂yj = 1

2
∂3(F2)

∂yi∂yj∂yk for any 1 ≤ i, j, k ≤ n, while the final step follows

from the Euler lemma, which shows that ∑n
i=1

∂h(y)
∂yi yi = λh(y) if h(cy) = cλh(y) for c > 0. The

Laplacian in a Minkowski space is a nonlinear operator, and when (Rn, F) is a Euclidean space, it is

just ∆ f = ∑n
i=1

∂2 f
∂(xi)2 .

If a smooth function f satisfies:

∆ f = 0 in Ω(⊂ Rn), (1)

then f is called a harmonic function in Ω. Since ∆ f has no definition at x where d f (x) = 0, in general, (1)
is viewed in the sense of the distribution:∫

Ω
dϕ(∇ f )dx1 · · · dxn = 0, ∀ϕ ∈ C∞

0 (Ω).

Apparently, in a Minkowski space, linear functions are harmonic functions. However, this is not
necessarily true if the volume form is not Busemann–Hausdorff. In [9], Xia obtained a Liouville-type
theorem on harmonic functions in a complete Finsler manifold. Based on this, we conclude that any
positive or negative harmonic function in a Minkowski space is constant.

In the Finsler setting, the definition of the harmonic function is the same as the Riemannian case
in form. Furthermore, it is easy to see that in a Finsler manifold (M, F, dµ), the harmonic functions are
the local minimizers of the energy functional:

E(u) =
∫

M
F2(x,∇u)dµ.

Unlike the Laplacian on Riemannian manifolds, the Finsler Laplacian is a nonlinear operator.
In fact, this is the major difference between Finsler and Riemannian manifolds. Therefore, all harmonic
functions in Finsler manifolds cannot construct a vector space, while in the Riemannian situation, the
kernel of the Laplacian is not the same.
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3. Some Important Counterexamples

We know that, in Euclidean spaces, a function is harmonic if and only if it satisfies the mean value
formula. In the following, we will show that this is not true in a Minkowski space. The proofs are
simple and straightforward by giving some counterexamples.

Example 1. Let (Rn, F) be a Minkowski space, where F =
√

∑n
i=1(yi)2 + 1

2 y1. Suppose that f (x) =

∑n
i=1 aixi + b. Then, f (x) is a harmonic function and f (0) = b. Notice that in a Minkowski space, the ball

centered at x0 of radius r is Br(x0) = {x ∈ Rn|F(x− x0) ≤ r}. A direct computation yields:∫
F(x)≤1

f (x)dx1 · · · dxn

=
∫

3
4 (x1+ 2

3 )
2+∑n

i=2(xi)2≤ 4
3

f (x)dx1 · · · dxn

=
∫

3
4 (x1+ 2

3 )
2+∑n

i=2(xi)2≤ 4
3

(a1x1 + b)dx1 · · · dxn

=
∫

3
4 (x̃1)2+∑n

i=2(xi)2≤ 4
3

(a1 x̃1 − 2
3

a1 + b)dx̃1 · · · dxn (by x̃1 = x1 +
2
3
)

=
∫

3
4 (x̃1)2+∑n

i=2(xi)2≤ 4
3

(−2
3

a1 + b)dx̃1 · · · dxn

=(−2
3

a1 + b)
∫

3
4 (x1+ 2

3 )
2+∑n

i=2(xi)2≤ 4
3

dx1 · · · dxn

=(−2
3

a1 + b)vol(F(x) ≤ 1).

Clearly, when a1 6= 0, one obtains:

f (0) 6= 1
vol(F(x) ≤ 1)

∫
F(x)≤1

f (x)dx1 · · · dxn.

From the discussion above, we have:

Theorem 1. In a Minkowski space, a harmonic function does not necessarily satisfy the mean value property.

In what follows, we will consider the functions satisfying the mean value formula.

Theorem 2. In a Minkowski space, a function satisfying the mean value formula is not necessarily a
harmonic function.

Proof. Let (Rn, F) be a Minkowski space where F is defined as Example 1. Let u(x̄) = u(x2, · · · , xn)

be a harmonic function in a domain of the Euclidean space (Rn−1, ᾱ) where ᾱ =
√

∑n
i=2(yi)2. In this

case, one can easily check:

∆(Rn−1,ᾱ)u =
n

∑
i=2

∂2u
∂(xi)2 = 0.

Thus, u(x̄) satisfies the mean value formula in (Rn−1, ᾱ). Set:

f (x1, x2, · · · , xn) = u(x2, · · · , xn).
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Then f (0) = u(0), and by the mean value formula in Euclid spaces, we have:∫
F(x)≤1

f (x)dx1 · · · dxn

=
∫

3
4 (x1+ 2

3 )
2+∑n

i=2(xi)2≤ 4
3

f (x)dx1 · · · dxn

=
∫

3
4 (x1+ 2

3 )
2+∑n

i=2(xi)2≤ 4
3

u(x2, · · · , xn)dx1 · · · dxn

=
∫ 2

3

−2
dx1

∫
∑n

i=2(xi)2≤ 4
3−

3
4 (x1+ 2

3 )
2

u(x2, · · · , xn)dx2 · · · dxn

=u(0, · · · , 0)
∫ 2

3

−2
dx1

∫
∑n

i=2(xi)2≤ 4
3−

3
4 (x1+ 2

3 )
2

dx2 · · · dxn

= f (0)
∫ 2

3

−2
dx1

∫
∑n

i=2(xi)2≤ 4
3−

3
4 (x1+ 2

3 )
2

dx2 · · · dxn

= f (0)
∫

3
4 (x1+ 2

3 )
2+∑n

i=2(xi)2≤ 4
3

dx1 · · · dxn

= f (0)vol(F(x) ≤ 1).

Therefore, the function f (x) satisfies the mean value formula in (Rn, F). However, by a direct
calculation, we see that:

∆ f (x) =
n

∑
i,j=1

gij(∇ f )
∂2 f

∂xi∂xj ,

is not necessarily equal to zero everywhere. Indeed, one can take f (x) = (x2 + 1) + x2x3 in (Rn, F) to
check. This completes the proof.

4. Further Discussion and Conclusions

To give a cleaner path to the question, we list some examples above that are special cases of
a Randers–Minkowski space. From the discussions, we can conclude that in a Minkowski space, a
harmonic function has no relationship with the mean value formula, and vice versa. One can see that
the method of the proof on the mean value formula in Euclidean spaces does not work here. Indeed,
if ∆ f = 0, then we have:

0 =
∫

F(x)≤1
∆ f dx1 · · · dxn =

∫
F(x)=1

gn(n,∇ f )dν 6=
∫

F(x)=1

∂ f
∂n

dν,

where n is the normal vector that points outwards {F(x) = 1}, and dν denotes the induced
volume form.

By the definition of harmonic functions, we see that it depends on both the metric and the volume
form. Maybe a Minkowski metric is not so “good” as the Euclidean one, and some properties of
harmonic functions cannot hold. In the following, we show that the mean value property has its own
unique feature of harmonic function in Euclidean spaces. In fact, we prove the following two theorems.

Theorem 3. If all harmonic functions defined on a Minkowski space satisfy the mean value property, then the
Minkowski space is Euclidean.

Proof. Let f be a harmonic function in a Minkowski space (M, F). That is ∆ f = 0, and thus:

0 =
∫

F(x−x0)≤C
∆ f dx1 · · · dxn =

∫
F(x−x0)=C

g ∂
∂r
(

∂

∂r
,∇ f )dν, (2)
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where ∂
∂r = x−x0

F(x−x0)
is the normal vector that points outwards {F(x− x0) = C}. This is because, for

any curve x = x(t) with w = x′(t) on {F(x− x0) = C}, one has:

0 =
n

∑
i=1

Fxi
dxi

dt
=

gx−x0(x− x0, w)

C
.

Since f satisfies the mean value formula, we also have:

0 =
∂

∂r

∫
F(x−x0)=C

f dν =
∫

F(x−x0)=C

∂ f
∂r

dν, ∀C. (3)

Combining (2) and (3), we obtain that, for any harmonic function f , any x0, and any constant C,

∫
F(x−x0)=C

(
g ∂

∂r
(

∂

∂r
,∇ f )− ∂ f

∂r

)
dν = 0.

The arbitrary choice of f , x0, and C gives that:

g ∂
∂r
(

∂

∂r
,∇ f )− ∂ f

∂r
= 0.

Given x0 = 0, a direct computation yields:

n

∑
i,j,k=1

gij(x)xigjk(∇ f )
∂ f
∂xk =

n

∑
k=1

xk ∂ f
∂xk .

Let the harmonic function f = xp. Then:

n

∑
i,j=1

gij(x)xigjp(∇xp) = xp.

Notice that ∇xp is a constant vector. Taking the derivation by xq in both sides above, we reach:

2
n

∑
i,j=1

Cijq(x)xigjp(∇xp) +
n

∑
j=1

gqj(x)gjp(∇xp) = δ
p
q .

Since ∑n
i=1 Cijq(x)xi = 0, it follows that:

n

∑
j=1

gqj(x)gjp(∇xp) = δ
p
q .

Taking the derivation by xs again, we deduce:

n

∑
j=1

Cqjs(x)gjp(∇xp) = 0.

Now that the matrix (gjp(∇xp)) is positive, the Cartan tensor Cqjs(x) = 0 for all q, j and s, which
implies that F is Euclidean. This finishes the proof.

From the proof above, we can also obtain the following.
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Theorem 4. If any function defined on a Minkowski space admitting the mean value property is harmonic,
then the Minkowski space is Euclidean.

In Section 2, we have shown that using the BH volume form, any linear function is harmonic, and
also, any positive or negative harmonic function in a Minkowski space is constant. At the end of this
section, we again give a property of the harmonic function in Minkowski spaces.

Proposition 1. Let Ω be a bounded domain in a Minkowski space. Assume that f is a harmonic function in Ω
and f |∂Ω = C. Then, f is constant in Ω.

Remark 1. If the Minkowski space is Euclidean, the result is obvious from the maximum principle. However,
there is no such maximum principle in Finsler manifolds since ∆ f has no definition at extreme points.

Proof. We may as well suppose that f |∂Ω = 0. Otherwise, we replace it by f̃ = f − C. Since ∆ f = 0,
we have:

1
2

∆∇ f f 2 = f ∆ f + F(∇ f )2 = F(∇ f )2.

By the divergence theorem, it follows that:∫
Ω

1
2

∆∇ f f 2dx1 · · · dxn =
∫

Ω
div( f∇ f )dx1 · · · dxn

=
∫

∂Ω
gn(n, f∇ f )dν = 0,

where n is the normal vector that points outwards ∂Ω. This gives that:∫
Ω

F(∇ f )2dx1 · · · dxn = 0,

which yields ∇ f = 0, and thus, f is constant.
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