
mathematics

Article

Stability Analysis of a Fractional-Order Linear
System Described by the Caputo–Fabrizio Derivative

Hong Li 1, Jun Cheng 2 , Hou-Biao Li 1,* and Shou-Ming Zhong 1

1 School of Mathematical Sciences, University of Electronic Science and Technology of China,
Chengdu 611731, China; sichuanhong@163.com (H.L.); zhongsm@uestc.edu.cn (S.-M.Z.)

2 College of Automation and Electronic Engineering, Qingdao Universtiy of Science and Technology,
Qingdao 266061, China; jcheng6819@126.com

* Correspondence: lihoubiao0189@163.com; Tel.: +86-131-9488-4912

Received: 31 December 2018; Accepted: 15 February 2019; Published: 20 February 2019
����������
�������

Abstract: In this paper, stability analysis of a fractional-order linear system described by the
Caputo–Fabrizio (CF) derivative is studied. In order to solve the problem, character equation
of the system is defined at first by using the Laplace transform. Then, some simple necessary and
sufficient stability conditions and sufficient stability conditions are given which will be the basis
of doing research of a fractional-order system with a CF derivative. In addition, the difference of
stability domain between two linear systems described by two different fractional derivatives is also
studied. Our results permit researchers to check the stability by judging the locations in the complex
plane of the dynamic matrix eigenvalues of the state space.
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1. Introduction

Recently, fractional-order systems have gained increasing interests. Research into fractional-order
systems has become a hot subject because of many advantages of fractional derivatives. The especially
important advantages of the dynamic systems with fractional derivatives are the following two facts.
First, researchers have more degrees of freedom in the model and memories of various materials and
processes are included in the model, see [1–4]. Second, fractional-order controllers have been designed
to enhance the robustness and the performance of the closed loop control system, such as CRONE
controller [5], TID controller [6] and fractional PID controller [7].

So far, powerful criteria of fractional-order systems have been proposed. The most well-known
one is Matignon’s stability theorem [8]. It permits us to check the stability by judging the locations in
the complex plane of the dynamic matrix eigenvalues of the state space. Matignon’s theorem is the
starting point of several useful and important results in the field. In addition, LMI approach [9–11]
and Lyapunov approach [12,13] are also used to investigate the stability of fractional order linear
time invariant systems. Analysis of equations generated by different fractional derivatives have been
done, see [14].

Recently, a new definition of the fractional derivative without a singular kernel has been proposed
by Caputo and Fabrizio in 2015 [15]. This new fractional derivative is less affected by past, compared
with the classical Caputo fractional derivative which shows a slow stabilization. This new derivative
has gained widely attention. Paper [16] not only justified that CF derivative are much more need to
describe the real problems and presented some good examples as well. In addition, ref. [17] studied the
kernel and no-index property of CF derivative separately, which help us to know more information of
the derivative and its links to other fractional derivative and real problems. But there is not a method
applicable to all linear systems described by this new derivative.
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In this paper, first, problem formulation and preliminaries are presented. Then, we mainly study
the stability of fractional-order linear system. By using the Laplace transform, characteristic equation
for the system is established, some simple necessary and sufficient stability conditions and sufficient
stability conditions are deserved. we also studied the Stable domains relations between two linear
systems described by two different derivative. Finally, an example is provided to demonstrate the
effectiveness of our results. The characteristic equation in this paper can be extended to all linear
fractional-order systems described by the CF derivative. Theorems in this paper can also be used to
analyse local stability of nonlinear system described by the CF derivative.

2. Problem Formulation and Preliminaries

The differ-integral operator, denoted by aDα
t , is a combined differentiation and integration

operator commonly used in fractional calculus which is defined by:

aDα
t =


dα

dtα , α > 0
1, α = 0∫ t
a (dτ)−α, α < 0.

There are different definitions for fractional derivatives. The most commonly used definition is
the classical Caputo. In the rest of the paper, CDα

t is used to denote the classical Caputo fractional
derivative of order α

CDα
t f (t) =

dα f (t)
dtα

=
1

Γ(α−m)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ, (1)

where m is an integer satisfying m− 1 < α ≤ m.
Caputo and Fabrizio proposed a new fractional derivative in 2015 [15]. In this paper, CFDα

t is used
to denote this new fractional derivative of order α

CFDα
t f (t) =

dα f (t)
dtα

=
1

1− α

∫ t

0
exp

(
− α

1− α
(t− τ)

)
ḟ (τ)dτ, (2)

where 0 < α ≤ 1. This new fractional derivative CFDα
t is less affected by the past, compared with the

CDα
t which shows a slow stabilization.

In this paper, we consider the following fractional-order linear system described by the
Caputo–Fabrizio derivative

CFDα
t x(t) =

dα f (t)
dtα

= Ax(t), (3)

where x(t) ∈ Rn, A ∈ Rn×n, 0 < α < 1.
Next, a character equation of this system will be established and some simple stability conditions

will be given.

3. Main Results

In this section, we studied the stability of a fractional-order linear system (3) described by the
Caputo–Fabrizio derivative, and compared the stability domains of the system described by two
different fractional derivative.

3.1. Stability of Fractional-Order Linear System (3) Described by the Caputo–Fabrizio Derivative

Definition 1 ([8]). The autonomous system (3), with x(t0) = x0, is said to be asymptotically stable if and only
if lim

t→+∞
||x(t)|| = 0.
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In order to solve system (3), using Laplace transform [18] for a given initial condition x(t0) = x0,
we note that

L (CFDα
t x(t)) = L (Ax(t))⇔ 1

1−α

(
1

s+β (sX(s)− x0)
)
= AX(s), (4)

where β = α
1−α . Simplify (4), we get

{s(I − (1− α)A)− αA}X(s) = x0. (5)

Set ∆(s) = s(I − (1− α)A)− αA, Equation (5) is written as

∆(s)X(s) = x(0). (6)

Since, the distribution of ∆(s)’s eigenvalues totally determines the stability of system (3), so the
following definition is obvious.

Definition 2. The character equation of system (3) is

det (s(I − (1− α)A)− αA) = 0.

Remark 1. If we consider the same system described by Caputo derivative, then its character equation is

det (sα I − A) = 0. (7)

It is difficult to solve it since this is a fractional order equation. In addition, without loss of generality, the

following figure shows the relations between real part of s and α. Let A =

(
−0.9 0.1
0.3 −0.7

)
. Figure 1 below

illustrates that det (∆(s)) = 0 is less affected by α, therefore the result described by the new derivative is better
than the one described by the Caputo derivative.

0.984 0.986 0.988 0.99 0.992 0.994 0.996 0.998 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

R
e(

S
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

R
e(

S
)

Figure 1. Relations between Re(s) and α (left is det (∆(s)) = 0, right is Equation (7)).

Theorem 1. If (I − (1− α)A) is invertible, then system (3) is asymptotically stable if and only if the real parts
of the roots to the character equation of the system (3) are negative.
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Proof. If (I − (1− α)A) is invertible, set N = (I − (1− α)A)−1, premultiply (5) by N, we obtain
{sI − αNA}X(s) = Nx0. That is

X(s) = (sI − αNA)−1 Nx0. (8)

After the inverse Laplace transformation of (8), solution of system (3) has the form

x(t) = eαNAtNx(0).

So, x(t) → 0, (t → +∞), if and only if the real parts of the eigenvalues of the matrix αNA are
negative. That is x(t)→ 0, (t→ +∞), if and only if the real parts of the roots of the equation

det (sI − NA) = det
(

sI − (I − (1− α)A)−1 A
)
= 0

are negative.
This proved this theorem.

Remark 2. Theorem 1 means all eigenvalues of matrix NA are negative. By this way, the LMI (NA)T P +

P(NA) < 0, where P = PT > 0, can be used to analysis the stability of system (3).

Theorem 2. The system (3) is asymptotically stable if and only if the eigenvalues λ(A) of the matrix A satisfy
cos(λ(A))
||λ(A)|| < 1− α.

Proof. Since cos(λ(A))
||λ(A)|| < 1− α, then (I − (1− α)A) is invertible. Employing the well-known relation

(I − (1− α)A)−1 = I + (1− α)(I − (1− α)A)−1 A, we can get

αNA = α(I − (1− α)A)−1 A = α
1−α (1− α)(I − (1− α)A)−1 A

= α
1−α

(
(I − (1− α)A)−1 − I

)
.

(9)

Set the eigenvalues of matrix A are λ(A) = a + ib, then the eigenvalues of matrix αNA are

λ(αNA) = α
1−α

(
λ((I − (1− α)(A))−1)− 1

)
= α

1−α

(
1

(1−(1−α)λ(A))
− 1
)

= α
1−α

(
1

(1−(1−α)(a+ib)) − 1
)
= α

(a−(1−α)(a2+b2))+i(b−(1−α)(a2+b2))
(1−(1−α)a)2+(1−α)2b2 .

(10)

If cos(λ)
||λ|| < 1 − α, that is (a − (1 − α)(a2 + b2)) < 0, According to Theorem 1, this theorem

is proved.

Corollary 1. The system (3) is asymptotically stable if eigenvalues λ(A) of the matrix A satisfy one of the
following conditions:

(1) ||λ(A)|| ≥ 1
1−α , λ 6= 1

1−α ;
(2) Re(A) > 1

1−α ;
(3) Re(A) < 0;
(4) |Im(A)| > 1

2(1−α)
.

(11)
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Proof. Modify the necessary and sufficient stability condition in Theorem 2, we obtain

cos(λ(A))
||λ(A)|| < 1− α ⇔ cos(λ(A)) < (1− α)||λ(A)||

⇔ a− (1− α)(a2 + b2) < 0
⇔ −(1− α)a2 + a− (1− α)b2 < 0

⇔ (1− α)
(
(a− 1

2(1−α)
)2 + b2

)
> 1

4(1−α)

⇔
(
(a− 1

2(1−α)
)2 + b2

)
> 1

4(1−α)2

So, the dividing line between stable domain and unstable domain is the circle(
(a− 1

2(1− α)
)2 + b2

)
=

(
1

2(1− α)

)2
. (12)

Thus, the conclusions can be easily obtained.

Remark 3. Nonlinear systems are usually needed to describe the real problems. Study of local stability of
equilibrium points is very important for nonlinear systems. As method of local stability of equilibrium points is
local linearization, all the theorems and Corollaries can be used to study the local stability of equilibrium points
of nonlinear systems.

3.2. Stable Domains Relations between Two Linear Systems Described by Two Different Derivative

In this section, we will discuss the stable domains relations between system (3) and the
following system

CDα
t x(t) =

dαx(t)
dtα

= Ax(t), (13)

where CDα
t x(t) is the classical Caputo derivative.

Theorem 3 ([8]). System (13) with x(t0) = x0 and 0 < α < 1 is asymptotically stable if and only if
|arg(spec(A))| > α π

2 , where spec(A) is the spectrum (set of all eigenvalues) of A.

Next, stable and unstable domain relations and the difference between system (3) and (13) are
shown by the following two figures (see Figures 2 and 3).

x

y

unstable areastable area

1/2(1−a)

1/(1−a)

0

Figure 2. Stability domain and unstability domain of system (3).
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x

y

unstable areastable area

a*PI/2
0

Figure 3. Stability domain and unstability domain of system (13).

According to Figure 2, the unstable domain of the system (3) is a bounded closed region which is
a circle with a radius of 1

2(1−α)
. The center of the circle is ( 1

2(1−α)
, 0). With the increase of fractional-order

α, the scope of the unstable region becomes larger and larger.
However, from Figure 3, the unstable domain of the system (13) is an unbound convex region.

With the increase of fractional-order α, the scope of the unstable region becomes larger and larger.
The unstable domains of these two systems have overlapping parts. The two systems have their

own advantages and disadvantages, but obviously, the scope of the unstable region of system (3) is
much smaller than that of system (13).

Remark 4. In this paper, the fractional-order α is within the interval (0, 1) for some theorems. If α is without
the interval (0, 1), theorems and corollaries can not be used. In addition, the condition that (I − (1− α)A) is
invertible is also needed.

4. Numerical Examples

Example 1. Consider the stability of the following fractional-order system

Dα
t f (t) =

dα f (t)
dtα

= Ax(t), (14)

described by the Caputo–Fabrizio derivative and the Caputo derivative separately. Let

A =

[
1 2
−3 4

]
.

Eigenvalues of matrix A are λ1 = 5+i
√

15
2 , λ2 = 5−i

√
15

2 .
First, we consider that the system is described by the Caputo–Fabrizio derivative.
Three cases of fractional-order α with three different values are discussed, see Figures 4–6.
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Figure 4. When α = 0.1, system (14) is stable.
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Figure 5. When α = 0.5, system (14) is stable.
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Figure 6. When α = 0.9, system (14) is unstable.

Actually,

cos λ1 = cos λ2 =
5

2
√

10
,

||λ1|| = ||λ2|| =
√

10,
cos λ

||λ|| =
1
4

.

According to Theorem 2, for all α < 3
4 , this system is asymptotically stable, which also shows that

our results are accurate.
Next, we consider the system described by the Caputo derivative with

|arg(spec(A))| = 0.6591.

According to Theorem 3, for all α < 0.3869, the system is asymptotically stable. The domain of α

that makes the system described by the Caputo derivative stable is obviously much narrower than the
system described by the Caputo–Fabrizio derivative.

5. Conclusions

By using Laplace transformation, this paper mainly presents some brief, necessary, and sufficient
conditions, and some sufficient conditions for the stability of fractional-order linear system described
by the CF derivative. The fractional-order systems with CF derivative are needed to describe the
real system, more so than the systems with other fractional derivatives. Theorems in this paper not
only permit researchers to check the stability of the system through the location in the complex plane
of the dynamic matrix eigenvalues of the state space, but also can help to study the other systems
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with CF derivatives, like prey–predator systems, HIV/AIDS systems, and fractional-order complex
networks, etc.
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