Extended Local Convergence for the Combined Newton-Kurchatov Method Under the Generalized Lipschitz Conditions
Abstract
:1. Introduction
2. Local Convergence of Newton-Kurchatov Method (7)
3. Uniqueness Ball of the Solution
4. Corollaries
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Argyros, I.K. Convergence and Applications of Newton-Type Iterations; Springer: New York, NY, USA, 2008. [Google Scholar]
- Hernandez, M.A.; Rubio, M.J. The Secant method and divided differences Hölder continuous. Appl. Math. Comput. 2001, 124, 139–149. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Rubio, M.J. The Secant method for nondifferentiable operators. Appl. Math. Lett. 2002, 15, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Shakhno, S.M. Application of nonlinear majorants for intestigation of the secant method for solving nonlinear equations. Matematychni Studii 2004, 22, 79–86. [Google Scholar]
- Ezquerro, J.A.; Grau-Sánchez, M.; Hernández, M.A. Solving non-differentiable equations by a new one-point iterative method with memory. J. Complex. 2012, 28, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Shakhno, S.M. On a Kurchatov’s method of linear interpolation for solving nonlinear equations. Proc. Appl. Math. Mech. 2004, 4, 650–651. [Google Scholar] [CrossRef]
- Shakhno, S.M. About the difference method with quadratic convergence for solving nonlinear operator equations. Matematychni Studii 2006, 26, 105–110. (In Ukrainian) [Google Scholar]
- Argyros, I.K. A Kantorovich-type analysis for a fast iterative method for solving nonlinear equations. J. Math. Anal. Appl. 2007, 332, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Kurchatov, V.A. On a method of linear interpolation for the solution of functional equations. Dokl. Akad. Nauk SSSR 1971, 198, 524–526. (In Russian); translation in Soviet Math. Dokl. 1971, 12, 835–838 [Google Scholar]
- Ezquerro, J.A.; Hernández, M. Generalized differentiability conditions for Newton’s method. IMA J. Numer. Anal. 2002, 22, 187–205. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Hernández, M.A. Newton’s method under weak Kantorovich conditions. IMA J. Numer. Anal. 2000, 20, 521–532. [Google Scholar] [CrossRef]
- Wang, X.H. Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. Anal. 2000, 20, 123–134. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, C. Local and global behavior for algorithms of solving equations. Chin. Sci. Bull. 2001, 46, 444–451. [Google Scholar] [CrossRef]
- Shakhno, S.M. On the secant method under generalized Lipschitz conditions for the divided difference operator. Proc. Appl. Math. Mech. 2007, 7, 2060083–2060084. [Google Scholar] [CrossRef]
- Shakhno, S.M. Method of linear interpolation of Kurchatov under generalized Lipschitz conditions for divided differences of first and second order. Visnyk Lviv. Univ. Ser. Mech. Math. 2012, 77, 235–242. (In Ukrainian) [Google Scholar]
- Amat, S. On the local convergence of Secant-type methods. Intern. J. Comput. Math. 2004, 81, 1153–1161. [Google Scholar] [CrossRef]
- Amat, S.; Busquier, S. On a higher order Secant method. Appl. Math. Comput. 2003, 141, 321–329. [Google Scholar] [CrossRef]
- Argyros, I.K.; Ezquerro, J.A.; Gutiérrez, J.M.; Hernández, M.A.; Hilout, S. Chebyshev-Secant type methods for non-differentiable operator. Milan J. Math. 2013, 81, 25–35. [Google Scholar] [CrossRef]
- Ren, H. New sufficient convergence conditions of the Secant method nondifferentiable operators. Appl. Math. Comput. 2006, 182, 1255–1259. [Google Scholar] [CrossRef]
- Ren, H.; Argyros, I.K. A new semilocal convergence theorem with nondifferentiable operators. J. Appl. Math. Comput. 2010, 34, 39–46. [Google Scholar] [CrossRef]
- Donchev, T.; Farkhi, E.; Reich, S. Fixed set iterations for relaxed Lipschitz multimaps. Nonlinear Anal. 2003, 53, 997–1015. [Google Scholar] [CrossRef]
- Shakhno, S.M.; Yarmola, H.P. Two-point method for solving nonlinear equation with nondifferentiable operator. Matematychni Studii. 2011, 36, 213–220. (In Ukrainian) [Google Scholar]
- Shakhno, S.M. Combined Newton-Kurchatov method under the generalized Lipschitz conditions for the derivatives and divided differences. J. Numer. Appl. Math. 2015, 2, 78–89. [Google Scholar]
- Catinas, E. On some iterative methods for solving nonlinear equations. Revue d’Analyse Numérique et de Théorie de l’Approximation 1994, 23, 47–53. [Google Scholar]
- Shakhno, S. Convergence of combined Newton-Secant method and uniqueness of the solution of nonlinear equations. Visnyk Ternopil Nat. Tech. Univ. 2013, 69, 242–252. (In Ukrainian) [Google Scholar]
- Shakhno, S.M.; Mel’nyk, I.V.; Yarmola, H.P. Analysis of convergence of a combined method for the solution of nonlinear equations. J. Math. Sci. 2014, 201, 32–43. [Google Scholar] [CrossRef]
- Argyros, I.K. On the secant method. Publ. Math. Debr. 1993, 43, 233–238. [Google Scholar]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Shakhno, S.M. Convergence of the two-step combined method and uniqueness of the solution of nonlinear operator equations. J. Comput. Appl. Math. 2014, 261, 378–386. [Google Scholar] [CrossRef]
- Potra, F.A. On an iterative algorithm of order 1.839... for solving nonlinear operator equations. Numer. Funct. Anal. Optim. 1985, 7, 75–106. [Google Scholar] [CrossRef]
- Traub, J.F.; Woźniakowski, H. Convergence and complexity of Newton iteration for operator equations. J. Assoc. Comput. Mach. 1979, 26, 250–258. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Rubio, M.J. A uniparametric family of iterative processes for solving nondifferentiable equations. J. Math. Anal. Appl. 2002, 275, 821–834. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, I.K.; Shakhno, S. Extended Local Convergence for the Combined Newton-Kurchatov Method Under the Generalized Lipschitz Conditions. Mathematics 2019, 7, 207. https://doi.org/10.3390/math7020207
Argyros IK, Shakhno S. Extended Local Convergence for the Combined Newton-Kurchatov Method Under the Generalized Lipschitz Conditions. Mathematics. 2019; 7(2):207. https://doi.org/10.3390/math7020207
Chicago/Turabian StyleArgyros, Ioannis K., and Stepan Shakhno. 2019. "Extended Local Convergence for the Combined Newton-Kurchatov Method Under the Generalized Lipschitz Conditions" Mathematics 7, no. 2: 207. https://doi.org/10.3390/math7020207
APA StyleArgyros, I. K., & Shakhno, S. (2019). Extended Local Convergence for the Combined Newton-Kurchatov Method Under the Generalized Lipschitz Conditions. Mathematics, 7(2), 207. https://doi.org/10.3390/math7020207