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1. Introduction

In the past several decades, there has been a significant development in the theory and applications
for fractional evolution equations and inclusions; for example, see the monographs by Miller and
Ross [1], Podlubny [2], Kilbas et al. [3], Zhou [4], and the recent papers [5,6]. More recently,
time-fractional diffusion and wave equations have been attracting the widespread attention of many
fields of science and engineering [7,8]. The interest in the study of these topics arises from the fact
that fractional diffusion equations α ∈ (0, 1) or fractional wave equations α ∈ (1, 2) can capture some
nonlocal aspects of phenomena or systems. Examples of these phenomena include porous media,
memory effects, anomalous diffusion, viscoelastic media, and so on. The papers [9–11] cover many of
these applications.

By virtue of semigroup theory and the operator theoretical method, some fractional diffusion
and wave equations can be abstracted as fractional evolution equations. Bajlekova [12] exploited the
concept of the fractional resolvent solution operator to investigate the associated fractional abstract
Cauchy problem. A number of papers [13–17] and the references therein were inspired by this concept,
and the topic of the existence of mild solutions to fractional abstract equations of order α ∈ (1, 2)
was also studied. For further discussion in [18], the authors considered the controllability results
for fractional evolution equations of order α ∈ (1, 2) by applying the concepts of Mainardi’s Wright
function (a probability density function) and strongly continuous cosine families.

The study of fractional evolution inclusions of order α ∈ (0, 1) also gained significant importance
(see, e.g., [19,20]). However, the study of fractional evolution inclusions of order α ∈ (1, 2)
supplemented with nonlocal conditions is yet to be initiated. We need to point out that the work
spaces are of finite dimension if the strongly continuous cosine families are compact (see, e.g., [21,22]).
Motivated by this fact and the above-mentioned works and relying on the known material, we
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aim to develop a suitable definition for mild solutions of fractional evolution equations in terms of
Mainardi’s Wright function. For this purpose, we consider the following nonlocal problem of fractional
evolution inclusions without further assumptions regarding the compactness of the cosine families or
the associated sine families.{

CDα
t x(t) ∈ Ax(t) + F(t, x(t)), t ∈ J = [0, a], a > 0,

x(0) + g(x) = x0, x′(0) = x1,
(1)

where CDα
t is a Caputo fractional derivative of order 1 < α < 2; A is the infinitesimal generator of

a strongly continuous cosine family {C(t)}t≥0 of uniformly bounded linear operators in a Banach
space X; F : [0, a]× X → X is a multivalued map; g is a given appropriate function; and x0, x1 are
elements of space X.

Here, we emphasize that the present work is also motivated by an inclusion of the following
partial differential model:

∂α
t u(t, z) ∈ ∂2

zu(t, z) + F(t, z, u(t, z)), z ∈ [0, π], t ∈ [0, a],

u(t, 0) = u(t, π) = 0, t ∈ [0, a],

u(0, z) + g(u) = u0(z), u′(0, z) = u1(z), z ∈ [0, π],

where ∂α
t is a Caputo fractional partial derivative. This model includes a class of fractional wave

equations that have a memory effect and are not observed in integer-order differential equations;
further, this class of equations indicates the coexistence of finite wave speed and absence of a wavefront
(see, e.g., [9]). It is interesting that for the case of α = 2, the above fractional partial differential
inclusion reduces to a second-order differential inclusion involving one-dimensional wave equations
with nonlocal initial-boundary conditions. For the case of α = 1 or α ∈ (0, 1) with the initial value
u1(z) vanished, the model contains the classical diffusion equations or fractional diffusion equations.
In addition, these types of equations can be handled by the method of semigroup theory (see, e.g., [20])
but not cosine families.

The rest of this paper is organized as follows. In Section 2, we recall some preliminary concepts
related to our study. In Section 3, we establish an existence result for mild solutions of Equation (1) and
discuss the compactness of the set of mild solutions. In Section 4, we show the utility of the obtained
work by applying it to a control problem.

2. Preliminaries

Let X be a Banach space with the norm ‖ · ‖. Denote by L(X) the space of all bounded linear
operators from X to X equipped with the norm ‖ · ‖L(X). Let C(J, X) denote the space of all continuous
functions from J into X equipped with the usual sup-norm ‖x‖C = supt∈J ‖x(t)‖, where J = [0, a], a >

0. A measurable function f : J → X is Bochner integrable if ‖ f ‖ is Lebesgue integrable. Let Lp(J, X)

(p ≥ 1) be the Banach space of measurable functions (defined in the sense of Bochner integral)
endowed with the norm

‖ f ‖p =

(∫
J
‖ f (t)‖pdt

) 1
p

.

Definition 1. The fractional integral with the lower limit zero for a function u : [0, ∞)→ X is given by

Iα
0+u(t) =

1
Γ(α)

∫ t

0
(t− s)α−1u(s)ds, t > 0, α ∈ R+,

provided the right side is point-wise defined on [0, ∞), where Γ(·) is the gamma function.
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Definition 2. The Riemann–Liouville derivative with the lower limit zero for a function u : [0, ∞) → X is
defined by

LDα
0+u(t) =

1
Γ(n− α)

dn

dtn

∫ t

0
(t− s)n−α−1u(s)ds, t > 0, n− 1 < α < n, α ∈ R+.

Definition 3. The Caputo derivative with the lower limit zero for a function u is defined by

CDα
0+u(t) = LDα

0+

(
u(t)−

n−1

∑
k=0

u(k)(0)
k!

tk
)

, t > 0, n− 1 < α < n, α ∈ R+.

Definition 4. [23] A family of bounded linear operators {C(t)}t∈R mapping the Banach space X into itself is
called a strongly continuous cosine family if and only if C(0) = I, C(s + t) + C(s− t) = 2C(s)C(t) for all
s, t ∈ R, and the map t 7→ C(t)x is strongly continuous for each x ∈ X.

Let {S(t)}t∈R denote the strongly continuous sine families associated with the strongly continuous
cosine families {C(t)}t∈R, where

S(t)x =
∫ t

0
C(s)xds, x ∈ X, t ∈ R. (2)

In addition, an operator A is said to be an infinitesimal generator of cosine families {C(t)}t∈R if

Ax =
d2

dt2 C(t)x
∣∣∣
t=0

, for all x ∈ D(A),

where the domain of A is given by D(A) = {x ∈ X : C(t)x ∈ C2(R, X)}.
A multivalued map G is called upper semicontinuous (u.s.c.) on X if, for each x∗ ∈ X, the set

G(x∗) is a nonempty subset of X, and for every open set B ⊆ X such that G(x∗) ⊂ B, there exists
a neighborhood V of x∗ with the property that G(V(x∗)) ⊂ B. G is convex-valued if G(x) is convex
for all x ∈ X. G is closed if its graph ΓG = {(x, y) ∈ X× X : y ∈ G(x)} is a closed subset of the space
X× X. The map G is bounded if G(B) is bounded in X for every bounded set B ⊆ X. We say that G is
completely continuous if G(B) is relatively compact for every bounded subset B of X. Furthermore,
if G is completely continuous with nonempty values, then G is u.s.c. if and only if G has a closed
graph. If there exists an element x ∈ X such that x ∈ G(x), then G has a fixed point.

Let B be a subset of X. Then, we define

P(X) = {B ⊆ X : B is nonempty}, Pcv(X) = {B ∈ P(X) : B is convex},
Pcl(X) = {B ∈ P(X) : B is closed}, Pbd(X) = {B ∈ P(X) : B is bounded},
Pcp(X) = {B ∈ P(X) : B is compact}, Pcl,cv(X) = Pcl(X) ∩ Pcv(X).

In addition, let co(B) be the convex hull of a subset B, and let co(B) be the closed convex hull in X.
A multivalued map G : J → Pcl(X) is said to be measurable if, for each x ∈ X, the function Z : J → X
defined by Z(t) = d(x, G(t)) = inf{‖x− z‖ : z ∈ G(t)} is Lebesgue measurable. Let G : J → P(X).
A single-valued map f : J → X is called a selection of G if f (t) ∈ G(t) for every t ∈ J.

Definition 5. A multivalued map F : J × X → P(X) is called L1-Carathéodory if

(i) the map t 7→ F(t, x) is measurable for each x ∈ X;
(ii) the map u 7→ F(t, x) is upper semicontinuous on X for almost all t ∈ J;
(iii) for each positive real number r, there exists hr ∈ L1(J,R+) such that

‖F(t, x)‖P(X) = sup{‖v‖ : v(t) ∈ F(t, x)} ≤ hr(t), f or ‖x‖ ≤ r, f or a.e. t ∈ J.
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For every Ω ∈ P(X), the Hausdorff measure of noncompactness (MNC) is defined by

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net},

and the Kuratowski MNC is defined by

τ(Ω) = inf{d > 0 : Ω ⊂
n⋃

j=1

Mj and diam(Mj) ≤ d},

where the diameter of Mj is given by diam(Mj) = sup{‖x − y‖ : x, y ∈ Mj}, j = 1, . . . , n.
The Hausdorff and Kuratowski MNCs are connected by the relations:

χ(Ω) ≤ τ(Ω) ≤ 2χ(Ω).

A measure of noncompactness χ (or τ) is called: monotone if Ω1, Ω2 ∈ P(X) with Ω1 ⊆ Ω2

implies χ(Ω1) ≤ χ(Ω2); nonsingular if χ({c} ∪Ω) = χ(Ω) for every c ∈ X, Ω ∈ P(X); regular if
χ(Ω) = 0 is equivalent to the relative compactness of Ω.

We now introduce the MNC ν as follows: for a bounded set D ⊂ C(J, X), we define

ν(D) = max
D∈Θ(D)

(
sup
t∈J

χ(D(t)), modC(D)

)
,

where Θ(D) is the collection of all denumerable subsets of D and modC(D) is the modulus of
equicontinuity of the set of functions D that have the following form

modC(D) = lim
δ→0

sup
x∈D

max
|t2−t1|<δ

‖x(t2)− x(t1)‖.

It is known that the MNC ν is monotone, nonsingular, and regular. For more details on the MNC,
we refer to [24,25].

Lemma 1. ([24]). Let W ⊂ X be bounded. Then, for each ε > 0, there exists a sequence {xn}∞
n=1 ⊂ W such

that
χ(W) ≤ 2χ ({xn}∞

n=1) + ε.

Lemma 2. ([26]). Let χC be the Hausdorff MNC on C(J, X), and let W(t) = {x(t) : x ∈W}. If W ⊂ C(J, X)

is bounded, then for every t ∈ J,
χ(W(t)) ≤ χC(W).

Furthermore, if W is equicontinuous, then the map t 7→ χ(W(t)) is continuous on J and

χC(W) = sup
t∈J

χ(W(t)).

Lemma 3. ([26]). Let {xn}∞
n=1 be a sequence of Bochner integrable functions from J into X. If there exists

a function ρ(·) ∈ L1(J,R+) satisfying ‖xn(t)‖ ≤ ρ(t) for almost all t ∈ J and for every n ≥ 1, then the
function ψ(t) = χ({xn(t)}∞

n=1) ∈ L1(J,R+) satisfies

χ

({∫ t

0
xn(s)ds : n ≥ 1

})
≤ 2

∫ t

0
ψ(s)ds.

Lemma 4. ([27, Lemma 4]). Let { fn}∞
n=1 ⊂ Lp(J, X) (p ≥ 1) be an integrable bounded sequence satisfying

χ({ fn}∞
n=1) ≤ γ(t), a.e., t ∈ J,
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where γ(·) ∈ L1(J,R+). Then, for each ε > 0, there exists a compact Kε ⊆ X, a measurable set Jε ⊂ J
with measure less than ε, and a sequence of functions {gε

n}∞
n=1 ⊂ Lp(J, X) such that {gε

n(t)}∞
n=1 ⊆ Kε,

for t ∈ J, and

‖ fn(t)− gε
n(t)‖ < 2γ(t) + ε, f or each n ≥ 1 and f or every t ∈ J − Jε.

Lemma 5. ([28]) Let χ be the Hausdorff MNC on X. If {Wn}∞
n=1 ⊂ X is a nonempty decreasing closed

sequence and limn→∞ χ(Wn) = 0, then
⋂∞

n=1 Wn is nonempty and compact.

Definition 6. Let D be a subset of a Banach space X. A multivalued function F : D → P(X) is said to be
ν-condensing if ν(F(Ω)) � ν(Ω) for every bounded and not relatively compact set Ω ⊆ D.

Lemma 6. ([25, Corollary 3.3.1]). Let Ω be a convex closed subset of a Banach space X and ν be a nonsingular
MNC defined on subsets of Ω. If F : Ω → Pcv,cp(Ω) is a closed ν-condensing multivalued map, then F has
a fixed point.

Lemma 7. ([25, Proposition 3.5.1]). Let Ω be a closed subset of a Banach space X and F : Ω → Pcp(X) be
a closed multivalued function that is ν-condensing on every bounded subset of Ω, where ν is a monotone MNC
in X. If the set of fixed points of F is bounded, then it is compact.

Throughout this paper, we suppose that A is the infinitesimal generator of a strongly continuous
cosine family of uniformly bounded linear operators {C(t)}t≥0 in a Banach space X: that is, there
exists M ≥ 1 such that ‖C(t)‖L(X) ≤ M for t ≥ 0. In the sequel, we always set q = α

2 for α ∈ (1, 2).
As argued in [18], we define a mild solution of Equation (1) as follows.

Definition 7. A function x ∈ C(J, X) is said to be a mild solution of Equation (1) if x(0) + g(x) = x0,
x′(0) = x1 and there exists f ∈ L1(J, X) such that f (t) ∈ F(t, x(t)) on a.e. t ∈ J and

x(t) = Cq(t)(x0 − g(x)) + Kq(t)x1 +
∫ t

0
(t− s)q−1Pq(t− s) f (s)ds,

where

Cq(t) =
∫ ∞

0
Mq(θ)C(tqθ)dθ, Kq(t) =

∫ t

0
Cq(s)ds, Pq(t) =

∫ ∞

0
qθMq(θ)S(tqθ)dθ,

Mq(θ) =
1
q

θ
−1− 1

q ξq(θ
− 1

q ), ξq(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−nq−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ (0, ∞),

and Mq(·) is the Mainardi’s Wright-type function defined on (0, ∞) such that

Mq(θ) ≥ 0 f or θ ∈ (0, ∞) and
∫ ∞

0
Mq(θ)dθ = 1.

Remark 1. In considering the case of α ∈ (0, 1), we know from the references that there is a similar
representation of mild solutions if the initial value x1 = 0 for the case of α ∈ (1, 2). However, the biggest
difference is that the operator A (typically the Laplacian operator) generates a C0-semigroup, and one can use the
method of semigroup theory to obtain some well-known results for the case of α ∈ (0, 1) instead of cosine families.
Further, if α tends to 1, the method of semigroup theory can be also used to deal with first-order evolution
problems; if α tends to 2, we can directly solve an evolution problem by using the concept of cosine families. Thus,
the studied evolution problem in Equation (1) is more different from the case of α ∈ (0, 1], and it is valuable to
consider the existence of Equation (1).
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Remark 2. The setting q = α/2 for α ∈ (1, 2) is derived from the constraint of the Laplace transform of
Mainardi’s Wright-type function and the resolvent of cosine families (see [18]). This reflects the fact that the
probability density function is closely related to the mild solutions of the corresponding evolution problems.

Lemma 8. ([18]) The operators Cq(t), Kq(t), and Pq(t) (appearing in Definition 7) have the following
properties:

(i) For any t ≥ 0, the operators Cq(t), Kq(t), and Pq(t) are linear operators;
(ii) For any fixed t ≥ 0 and for any x ∈ X, the following estimates hold:

‖Cq(t)x‖ ≤ M‖x‖, ‖Kq(t)x‖ ≤ M‖x‖t, ‖Pq(t)x‖ ≤ M
Γ(2q)

‖x‖tq;

(iii) {Cq(t), t ≥ 0}, {Kq(t), t ≥ 0}, and {tq−1Pq(t), t ≥ 0} are strongly continuous.

Lemma 9. ([29]) Let X be a separable metric space and let G : Ω → Pcl(X) be a multivalued map with
nonempty closed images. Then, G is measurable if and only if there exist measurable single-valued maps
gn : Ω→ X such that

G(ω) =
⋃
{gn(ω), n ≥ 1}, f or every ω ∈ Ω.

Lemma 10. ([30, Theorem 8.2.10]) Let (Ω,A, µ) be a complete σ-finite measurable space, and let X, Y be
two complete separable metric spaces. If F : Ω → P(X) is a measurable multivalued map with nonempty
closed images and G : Ω× X 7→ Y is a Carathéodory map (that is, for every x ∈ X, the multivalued map
ω 7→ G(ω, x) is measurable, and for every ω ∈ Ω, the multivalued map x 7→ G(ω, x) is continuous), then
for every measurable map h : Ω 7→ Y satisfying h(ω) ∈ G(ω, F(ω)) f or almost all ω ∈ Ω, there exists
a measurable selection f (ω) ∈ F(ω) such that h(ω) = G(ω, f (ω)) for almost all ω ∈ Ω.

3. Main Results

We need to state the following hypotheses for the forthcoming analysis.

Hypothesis 1. The operator A is the infinitesimal generator of a uniformly bounded cosine family
{C(t)}t≥0 in X.

Hypothesis 2. The multivalued map F : J×X → Pcl,cv(X) is an L1-Carathéodory multivalued map satisfying
the following conditions:

(i) For every t ∈ J, the map F(t, ·) : X → Pcl,cv(X) is u.s.c.;
(ii) For each x ∈ X, the map F(·, x) : J → Pcl,cv(X) is measurable and the set

SF,x = { f ∈ L1(J, X) : f (t) ∈ F(t, x(t)) for a.e. t ∈ J}

is nonempty.

Hypothesis 3. There exists a function k f (·) ∈ L1(J,R+) such that

‖F(t, x)‖ = sup{‖ f ‖ : f ∈ F(t, x)} ≤ k f (t)(1 + ‖x‖), for a.a. t ∈ J and all x ∈ X.

Hypothesis 4. There exists a function β(·) ∈ L1(J,R+) such that χ(F(t, D)) ≤ β(t)χ(D) for every bounded
subset D ⊂ C(J, X).

Hypothesis 5. g : C(J, X) → X is a continuous and compact function, and there exist constants Ng1, Ng2

such that ‖g(x)‖ ≤ Ng1‖x‖C + Ng2 for x ∈ C(J, X).
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Remark 3. If X is a finite dimension Banach space, then for each x ∈ C(J, X), SF,x 6= ∅ (see, e.g., Lasota
and Opial [31]). If X is an infinite dimension Banach space and x ∈ C(J, X), it follows from Hu and
Papageorgiou [32] that SF,x 6= ∅ if and only if the function ς : J → R+ given by ς(t) := inf{‖ν‖ : ν ∈
F(t, x)} belongs to L1(J,R+).

Lemma 11. ([31]). Let X be a Banach space, let F : J × X → Pcp,cv(X) be a L1-Carathéodory multivalued
map with SF,x 6= ∅ (see (H2)), and let Ψ be a linear continuous operator from L1(J, X) to C(J, X). Then,

Ψ ◦ SF : C(J, X)→ Pcp,cv(C(J, X)), x 7→ (Ψ ◦ SF)(x) := Ψ(SF,x),

is a closed graph operator in C(J, X)× C(J, X).

Theorem 1. Assume that (H1)–(H5) are satisfied. Then, Equation (1) has at least one mild solution provided
that ‖k f ‖1 < (1−MNg1)M−1a1−2qΓ(2q) and ‖β‖1 < (8M)−1a1−2qΓ(2q).

Proof. By (H2), we can define a multivalued map P : C(J, X) → P(C(J, X)) as follows: for x ∈
C(J, X), P(x) is the set of all functions y ∈P(x) satisfying

y(t) = Cq(t)(x0 − g(x)) + Kq(t)x1 +
∫ t

0
(t− s)q−1Pq(t− s) f (s)ds, t ∈ J,

where f ∈ SF,x. It will be verified in several steps, claims and parts that the operator P has fixed
points that correspond to mild solutions of Equation (1).

Step 1. P maps a bounded closed convex set into a bounded closed convex set.
By the hypothesis of function k f (·) in (H3), there exists r > 0 such that

M‖x0‖+ MNg1r + MNg2 + Ma‖x1‖+
Ma2q−1

Γ(2q)
‖k f ‖1 +

Ma2q−1

Γ(2q)
‖k f ‖1r ≤ r. (3)

Furthermore, we introduce W0 = {x ∈ C(J, X) : ‖x‖C ≤ r} and observe that W0 is a nonempty
bounded closed and convex subset of C(J, X). Let x ∈ W0 and y ∈ P(x), then, there exists f ∈ SF,x
such that for each t ∈ J and for any x ∈W0, we have

y(t) = Cq(t)(x0 − g(x)) + Kq(t)x1 +
∫ t

0
(t− s)q−1Pq(t− s) f (s)ds.

By (H3) and (H4), we have

‖y(t)‖ ≤‖Cq(t)‖L(X)‖x0 − g(x)‖+ ‖Kq(t)‖L(X)‖x1‖+
∫ t

0
(t− s)q−1‖Pq(t− s) f (s)‖ds

≤M‖x0‖+ M‖g(x)‖+ Mt‖x1‖+
M

Γ(2q)

∫ t

0
(t− s)2q−1k f (s)(1 + |x(s)|)ds

≤M‖x0‖+ MNg1‖x‖C + MNg2 + Mt‖x1‖+
Mt2q−1

Γ(2q)
‖k f ‖1 +

Mt2q−1

Γ(2q)
‖k f ‖1‖x‖C

≤M‖x0‖+ MNg1r + MNg2 + Ma‖x1‖+
Ma2q−1

Γ(2q)
‖k f ‖1 +

Ma2q−1

Γ(2q)
‖k f ‖1r

≤r.

Therefore, ‖y‖C ≤ r, which implies that P(W0) ⊆W0.
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Define W1 = coP(W0). Clearly, W1 ⊂ C(J, X) is a nonempty bounded closed and convex set.
Repeating the arguments employed in the previous step, for any x ∈ W1, y ∈ P(x), it follows that
there exists f ∈ SF,x such that for each t ∈ J and for any x ∈W1,

y(t) = Cq(t)(x0 − g(x)) + Kq(t)x1 +
∫ t

0
(t− s)q−1Pq(t− s) f (s)ds.

By (H3) and (H4), together with Lemma 8 (ii), we have

‖y(t)‖ ≤‖Cq(t)(x0 − g(x))‖+ ‖Kq(t)x1‖+
∫ t

0
(t− s)q−1‖Pq(t− s) f (s)‖ds

≤M‖x0‖+ MNg1r + MNg2 + Ma‖x1‖+
Ma2q−1

Γ(2q)
‖k f ‖1 +

Ma2q−1

Γ(2q)
‖k f ‖1r ≤ r,

which implies that P(W1) ⊆W1 and W1 ⊂W0.
Next, for every n ≥ 1, we define Wn+1 = coP(Wn). From the above proof, it is easy to see that

Wn is a nonempty bounded closed and convex subset of C(J, X). Furthermore, W2 = coP(W1) ⊂W1.
By induction, we know that the sequence {Wn}∞

n=1 is a decreasing sequence of nonempty bounded
closed and convex subsets of C(J, X). Furthermore, we set W =

⋂∞
n=1 Wn and note that W is bounded

closed and convex since Wn is bounded closed and convex for every n ≥ 1.
Now, we establish that P(W) ⊆ W. Indeed, P(W) ⊆ P(Wn) ⊆ coP(Wn) = Wn+1 for every

n ≥ 1. Therefore, P(W) ⊆ ⋂∞
n=2 Wn. On the other hand, Wn ⊂W1 for every n ≥ 1. Hence,

P(W) ⊆
∞⋂

n=2
Wn =

∞⋂
n=1

Wn = W.

Step 2. The multivalued map P is ν-condensing.
Let B ⊆W be such that

ν(B) ≤ ν(P(B)). (4)

We show below that B is a relatively compact set; that is, ν(B) = 0.
Let σ(B) = supt∈J χ(B(t)), and let ν(P(B)) be achieved on a sequence {yn}∞

n=1 ⊂P(B); that is,

ν({yn}∞
n=1) = max

(
σ({yn}∞

n=1), modC({yn}∞
n=1)

)
.

Then,

yn(t) = Cq(t)(x0 − g(xn)) + Kq(t)x1 +
∫ t

0
(t− s)q−1Pq(t− s) fn(s)ds, t ∈ J,

where {xn}∞
n=1 ⊂ B and fn ∈ SelF,xn for every n ≥ 1.

Since g is compact, the set {g(xn) : n ≥ 1} is relatively compact and Cq(t), Kq(t) are strongly
continuous for t ≥ 0. Hence, for every t ∈ J, we have

ν
(
{Cq(t)(x0 − g(xn)) + Kq(t)x1, n ≥ 1}

)
= 0.

Therefore, it is enough to estimate that

ν

({∫ t

0
(t− s)q−1Pq(t− s) fn(s)ds, n ≥ 1

})
= 0.

Claim I. σ({yn}∞
n=1) = 0.
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For any t ∈ J, using (H4), Lemma 3, and Lemma 8 (ii), we have

σ({yn}∞
n=1) = sup

t∈J
χ({yn(t)}∞

n=1) ≤ 2 sup
t∈J

∫ t

0
(t− s)q−1χ

({
Pq(t− s) fn(s)

}∞
n=1

)
ds

≤ sup
t∈J

2M
Γ(2q)

∫ t

0
(t− s)2q−1β(s)χ

(
{xn(s)}∞

n=1
)

ds

≤ sup
t∈J

2M
Γ(2q)

∫ t

0
(t− s)2q−1β(s)dsσ({xn}∞

n=1)

≤2Ma2q−1

Γ(2q)

∫ a

0
β(s)dsσ({xn}∞

n=1) <
1
4

σ({xn}∞
n=1).

On the other hand, Equation (4) implies that σ({yn}∞
n=1) ≥ σ({xn}∞

n=1). In consequence, we have
σ({yn}∞

n=1) = 0.
Claim II. modC({yn}∞

n=1) = 0; that is, the set B is equicontinuous.
Let

ỹn(·) =
∫ ·

0
(· − s)q−1Pq(t− s) fn(s)ds.

Therefore, it remains to be verified that modC({ỹn}∞
n=1) = 0. Then, for any t1, t2 ∈ J with t1 < t2, we

have

‖ỹn(t2)− ỹn(t1)‖ ≤
∫ t2

t1

‖(t2 − s)q−1Pq(t2 − s) fn(s)‖ds

+
∫ t1

0
‖((t2 − s)q−1Pq(t2 − s)− (t1 − s)q−1Pq(t2 − s)) fn(s)‖ds

=I1 + I2.

According to Lemma 8 (ii), we get

I1 ≤
M

Γ(2q)

∫ t2

t1

(t2 − s)2q−1k f (s)(1 + ‖xn(s)‖)ds

≤ M
Γ(2q)

(t2 − t1)
2q−1

∫ t2

t1

k f (s)ds(1 + ‖xn‖C)→ 0, as t2 → t1.

Let Tq(t) = tq−1Pq(t) for t ∈ J. Then, we know from Lemma 8 (iii) that Tq(t) is a strongly continuous
operator. For I2, taking ε > 0 to be small enough, we obtain

I2 ≤
∫ t1−ε

0
‖(Tq(t2 − s)− Tq(t1 − s)) fn(s)‖ds +

∫ t1

t1−ε
‖(Tq(t2 − s)− Tq(t1 − s)) fn(s)‖ds

≤
∫ t1

0
k f (s)(1 + ‖xn(s)‖)ds sup

s∈[0,t1−ε]

‖Tq(t2 − s)− Tq(t1 − s)‖L(X)

+
(Mε2q−1

Γ(2q)
+

M(t2 − t1 + ε)2q−1

Γ(2q)

) ∫ t1

t1−ε
k f (s)(1 + ‖xn(s)‖)ds

≤‖k f ‖1(1 + ‖xn‖C) sup
s∈[0,t1−ε]

‖Tq(t2 − s)− Tq(t1 − s)‖L(X)

+
(Mε2q−1

Γ(2q)
+

M(t2 − t1 + ε)2q−1

Γ(2q)

)
(1 + ‖xn‖C)

∫ t1

t1−ε
k f (s)ds

→0, as t2 → t1, ε→ 0.
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Consequently, we have

modC

({∫ t

0
(t− s)q−1Pq(t− s) fn(s)ds, n ≥ 1

})
= 0.

As a conclusion, it follows that modC({yn}∞
n=1) = 0. Hence, the multivalued map P is ν-condensing.

Step 3. The multimap P(x) is convex and compact for each x ∈W.
Part I. P(x) has convex values for each x ∈W.
In fact, if y1, y2 belong to P(x) for each x ∈ W, then there exist f1, f2 ∈ SF,x such that for each

t ∈ J, we have

yi(t) = Cq(t)(x0 − g(x)) + Kq(t)x1 +
∫ t

0
(t− s)q−1Pq(t− s) fi(s)ds, i = 1, 2.

Let θ ∈ [0, 1]. Then, for each t ∈ J, we get

(θy1 + (1− θ)y2)(t) =Cq(t)(x0 − g(x)) + Kq(t)x1

+
∫ t

0
(t− s)q−1Pq(t− s)(θ f1 + (1− θ) f2)(s)ds.

As F has convex values by the definition of SF,x, we deduce that θ f1(s) + (1− θ) f2(s) ∈ SF,x. Thus,
θy1 + (1− θ)y2 ∈P(x).

Part II. P has compact values. In view of the foregoing facts, it is enough to show that W is
nonempty and compact in C(J, X): that is, by Lemma 5, we need to show that

lim
n→∞

ν(Wn) = 0. (5)

As in Step 2, we can show that modC(Wn) = 0; that is, Wn is equicontinuous. Hence, it remains to
be shown that σ(Wn) = 0. By Lemma 1, for each ε > 0, there exists a sequence {yk}∞

k=1 in P(Wn−1)

such that
σ(Wn) = σ(P(Wn)) ≤ 2σ({yk}∞

k=1) + ε.

Therefore, by Lemma 2 and the nonsingularity of σ, it follows that

σ(Wn) ≤ 2σ({yk}∞
k=1) + ε = 2 sup

t∈J
χ({yk(t)}∞

k=1) + ε. (6)

Since yk ∈ P(Wn−1) (k ≥ 1), there exists xk ∈ Wn−1 such that yk ∈ P(xk). Hence, from the
compactness of g and the strong continuity of Cq(t) and Kq(t) for t ∈ J, there exists fk ∈ SF,xk such
that for every t ∈ J,

χ({yk(t)}∞
k=1) ≤χ({Cq(t)(x0 − g({xk}∞

k=1)) + Kq(t)x1})

+ χ

({∫ t

0
(t− s)q−1Pq(t− s) fk(s)ds : k ≥ 1

})
=χ

({∫ t

0
(t− s)q−1Pq(t− s) fk(s)ds : k ≥ 1

})
.

By (H5) and Lemma 1, for a.e. t ∈ J, we have

χ({ fk(t)}∞
k=1) ≤ χ(F(t, {xk(t)}∞

k=1)) ≤ β(t)χ({xk(t)}∞
k=1) ≤ β(t)σ(Wn−1) := γ(t).

On the other hand, by (H3), for almost all t ∈ J, ‖ fk(t)‖ ≤ k f (t)(1 + r) for every k ≥ 1. Hence,
fk ∈ L1(J, X), k ≥ 1. Note that γ(·) ∈ L1(J,R+) from (H4). It follows from Lemma 4 that there exists
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a compact Kε ⊂ X, a measurable set Jε ⊂ J with measure less than ε, and a sequence of functions
{gε

k} ⊂ L1(J, X) such that {gε
k(s)}

∞
k=1 ⊆ Kε for all s ∈ J, and

‖ fk(s)− gε
k(s)‖ < 2γ(s) + ε, for every k ≥ 1 and every s ∈ J′ε = J − Jε.

Then, using Minkowski’s inequality and the property of the MNC, we obtain

χ

({∫
J′ε
(t− s)q−1Pq(t− s)( fk(s)− gε

k(s))ds : k ≥ 1
})

≤ 2M
Γ(2q)

∫
J′ε
(t− s)2q−1χ({( fk(s)− gε

k(s)) : k ≥ 1})ds

≤ 2M
Γ(2q)

∫
J′ε
(t− s)2q−1 sup

k≥1
‖ fk(s)− gε

k(s)‖ds

≤2Ma2q−1

Γ(2q)

∫
J′ε
(2γ(s) + ε)ds

≤4Ma2q−1

Γ(2q)
‖γ‖1 +

2Ma2q−1

Γ(2q)
ε

≤4Ma2q−1

Γ(2q)
σ(Wn−1)‖β‖1 +

2Ma2q−1

Γ(2q)
ε, (7)

and

χ

({∫
Jε

(t− s)q−1Pq(t− s) fk(s)ds : k ≥ 1
})
≤ 2M

Γ(2q)

∫
Jε

(t− s)2q−1χ ({ fk(s)}∞
k=1) ds

≤ 2M
Γ(2q)

∫
Jε

(t− s)2q−1 sup
k≥1
‖ fk(s)‖ds

≤Ma2q−1

Γ(2q)
(1 + r)

∫
Jε

k f (s)ds. (8)

Using Equations (7) and (8), we have

χ

({∫ t

0
(t− s)q−1Pq(t− s) fk(s)ds : k ≥ 1

})
≤ χ

({∫
J′ε
(t− s)q−1Pq(t− s) fk(s)ds : k ≥ 1

})
+ χ

({∫
Jε

(t− s)q−1Pq(t− s) fk(s)ds : k ≥ 1
})

≤χ

({∫
J′ε
(t− s)q−1Pq(t− s)( fk(s)− gε

k(s))ds : k ≥ 1
})

+ χ

({∫
J′ε
(t− s)q−1Pq(t− s)gε

k(s)ds : k ≥ 1
})

+ χ

({∫
Jε

(t− s)q−1Pq(t− s) fk(s)ds : k ≥ 1
})

≤4Ma2q−1

Γ(2q)
σ(Wn−1)‖β‖1 +

2Ma2q−1

Γ(2q)
ε +

Ma2q−1

Γ(2q)
(1 + r)

∫
Jε

k f (s)ds.

As ε is arbitrary, for all t ∈ J, we get

χ

({∫ t

0
(t− s)q−1Pq(t− s) fk(s)ds

})
≤ 4Ma2q−1

Γ(2q)
‖β‖1σ(Wn−1).
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Therefore, for each t ∈ J, we have

χ({yk(t)}∞
k=1) ≤

4Ma2q−1

Γ(2q)
‖β‖1σ(Wn−1).

By the above inequality, together with Equation (6) and the arbitrary nature of ε, we can deduce that

σ(Wn) ≤
8Ma2q−1

Γ(2q)
‖β‖1σ(Wn−1).

Then, by induction, we find that

0 ≤ σ(Wn) ≤
(

8Ma2q−1

Γ(2q)
‖β‖1

)n

σ(W0), for all n ≥ 1.

Since this inequality is true for every n ≥ 1, passing on to the limit n → ∞ and by (H4), we obtain
Equation (5). Hence, W =

⋂∞
n=1 Wn is a nonempty compact set of X, and P has compact values in W.

Step 4. The values of P are closed.
Let xn, x∗ ∈ W with xn → x∗ as n → ∞, yn ∈ P(xn), and yn → y∗ as n → ∞. We show that

y∗ ∈P(x∗). Indeed, yn ∈P(xn) means that there exists fn ∈ SF,xn such that

yn(t) = Cq(t)(x0 − g(x)) + Kq(t)x1 +
∫ t

0
(t− s)q−1Pq(t− s) fn(s)ds.

Next, we must show that there exists f∗ ∈ SF,x∗ such that

y∗(t) = Cq(t)(x0 − g(x)) + Kq(t)x1 +
∫ t

0
(t− s)q−1Pq(t− s) f∗(s)ds.

Since xn → x∗ and yn ∈P(xn), we deduce that

‖(yn(t)− Cq(t)x0 + Cq(t)g(xn)− Kq(t)x1)− (y∗(t)− Cq(t)x0 + Cq(t)g(x∗)− Kq(t)x1)‖ → 0,

as n→ ∞.
Now, we consider the linear continuous operator

F : L1(J, X)→ C(J, X), f 7→ (F f )(t) =
∫ t

0
(t− s)q−1Pq(t− s) f (s)ds.

From Step 3 and Lemma 11, it follows that F ◦ SF is a closed graph operator. Furthermore, in view of
the definition of F , we have

(yn(t)− Cq(t)x0 + Cq(t)g(xn)− Kq(t)x1) ∈ F (SF,xn).

In view of the fact that xn → x∗ as n→ ∞, the repeated application of Lemma 11 yields

y∗(t)− Cq(t)x0 + Cq(t)g(x∗)− Kq(t)x1 =
∫ t

0
(t− s)q−1Pq(t− s) f (s)ds

for some f ∈ SF,x∗ . Thus, P is a closed multivalued map.
Therefore, as an implication of Steps 1–5, we deduce that P : W → P(W) is closed and

ν-condensing with nonempty convex compact values. Thus, all the hypotheses of Lemma 6 are
satisfied. Hence, there exists at least one fixed point x ∈W such that x ∈P(x), which corresponds to
a mild solution of Equation (1).
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Theorem 2. Suppose that all the assumptions of Theorem 1 are satisfied. Then, the set of mild solutions of
Equation (1) is compact in C(J, X).

Proof. Note that the set of mild solutions is nonempty by Theorem 1. Indeed, letting r > 0, defined
by Equation (3), we can get a mild solution in W0. Now, we show that an arbitrary number of mild
solutions of Equation (1) belongs to W0. Let x be a mild solution of Equation (1). Then,

x(t) = Cq(t)(x0 − g(x)) + Kq(t)x1 +
∫ t

0
(t− s)q−1Pq(t− s) f (s)ds,

where f ∈ SF,x = { f ∈ L1(J, X) : f (t) ∈ F(t, x(t)), for a.e. t ∈ J}. Using an argument similar to the
one used in Step 1 of the proof of Theorem 1, we have

‖x‖C = sup
t∈J
‖x(t)‖

≤ sup
t∈J
‖Cq(t)(x0 − g(x))‖+ sup

t∈J
‖Kq(t)x1‖+ sup

t∈J

∫ t

0
(t− s)q−1‖Pq(t− s) f (s)‖ds

≤M‖x0‖+ MNg1r + MNg2 + Ma‖x1‖+
Ma2q−1

Γ(2q)
‖k f ‖1 +

Ma2q−1

Γ(2q)
‖k f ‖1r ≤ r.

This shows that the mild solutions of Equation (1) are bounded. Thus, the conclusion follows from
Lemma 7. The proof is completed.

4. An Application

Let Ω ⊂ RN (N = 1, 2, 3) be an open bounded set and X = U = L2(Ω). Let us consider the
following fractional partial differential equations with the constrained control u and a finite multi-point
discrete mean condition:

∂α
t y(t, z) = ∆y(t, z) + G(t, z, y(t, z), u(t, z)), t ∈ [0, 1], z ∈ Ω, u ∈ U,

y(t, z) = 0, t ∈ [0, 1], z ∈ ∂Ω

y(0, z)−
n

∑
i=0

∫
Ω

m(ξ, z)y(ti, ξ)dξ = 0, y′(0, z) = 0, z ∈ Ω,

(9)

where ∂α
t is the Caputo fractional partial derivative of order α ∈ (1, 2), 0 ≤ t0 < t1 < · · · < tn ≤ 1,

m(ξ, z) : Ω × Ω → X is an L2-Lebesgue integrable function, and G : [0, 1] × Ω × X × U → X is
a single-valued continuous measurable function.

We define x(t) = y(t, ·), that is, x(t)(z) = y(t, z), t ∈ J, z ∈ Ω, here J = [0, 1]. The set of the
constraint functions U : J → Pcl,cv(X) is a measurable multivalued map. If u ∈ U, then it means
that u(t) ∈ U(t, x(t)), for a.e. t ∈ J. The function f : J × X × U is given by f (t, x(t), u(t))(z) =

G(t, z, y(t, z), u(t, z)). Equation (9) is solved if we show that there exists a control function u such that
Equation (9) admits a mild solution. Let the multivalued map be given by

F(t, x(t)) = { f (t, x(t), u(t)), u ∈ U}. (10)

Then, the set of mild solutions of the control problem in Equation (9), with the right-hand side given
by Equation (10), coincides with the set of mild solutions of Equation (1).

Let A be the Laplace operator with Dirichlet boundary conditions defined by A = ∆ with

D(A) = {v ∈ L2(Ω) : v ∈ H1
0(Ω) ∩ H2(Ω)}.



Mathematics 2019, 7, 209 14 of 17

Let {−λk, φk}∞
k=1 be the eigensystem of the operator A. Then, 0 < λ1 ≤ λ2 ≤ · · · , λk → ∞ as

k→ ∞, and {φk}∞
k=1 forms an orthonormal basis of X. Furthermore,

Ax = −
∞

∑
k=1

λk(x, φk)φk, x ∈ D(A),

where (·, ·) is the inner product in X. It is known that the operator A generates a strongly continuous
uniformly bounded cosine family (see, e.g., [9]), which, in this case, is defined by

C(t)x =
∞

∑
k=1

cos(
√

λkt)(x, φk)φk, x ∈ X,

and then ‖C(t)‖L(X) ≤ 1 for every t ≥ 0. Hence, (H1) holds.
Taking α = 3

2 , we have q = 3
4 . Let g : C(J, X) → X be given by g(x)(z) = ∑n

i=0 Kgx(ti)(z) with
Kgv(z) =

∫
Ω m(ξ, z)v(ξ)dξ for v ∈ X, z ∈ Ω (noting that Kg : X → X is completely continuous). Thus,

the assumption in (H5) holds true. With the choice of operator A, Equation (9) can be reformulated in
X as the following nonlocal control problem:{

CDα
t x(t) = Ax(t) + f (t, x(t), u(t)), t ∈ J, u ∈ U,

x(0) = g(x), x′(0) = 0.
(11)

Next, the results obtained in Section 4 apply to the following problem of fractional evolution inclusions:{
CDα

t x(t) ∈ Ax(t) + F(t, x(t)), t ∈ J,

x(0) = g(x), x′(0) = 0.
(12)

Theorem 3. Assume that the following conditions hold:

Hypothesis 6. U : J → Pcl,cv(X) is a measurable multivalued map.

Hypothesis 7. The function f : J × X × X → X is L1-Carathéodory, linear in the third argument, and
there exists a function k f (·) ∈ L1(J,R+) satisfying ‖k f ‖1 <

√
π(1− n‖m‖)/2 such that ‖ f (t, x, y)‖ ≤

k f (t)(1 + ‖x‖) f or almost all t ∈ J and all x ∈ X.

Hypothesis 8. There exists a function β(·) ∈ L1(J,R+) satisfying ‖β‖1 <
√

π/16 such that

χ( f (t, D, U(t, D))) ≤ β(t)χ(D),

for every bounded subset D ⊂ C(J, X).

Then, the control problem in Equation (9) has at least one mild solution. In addition, the set of mild
solutions is compact.

Proof. From (H6) and (H7), the map t 7→ F(t, ·) is obviously a measurable multivalued map, and then
F(·, ·) ∈ Pcv,cl(X). Now, we show that the selection set of F is not empty. Since U is a measurable
multivalued map, it follows by Lemma 9 that there exists a sequence of measurable selections
{un}∞

n=1 ⊂ U such that

U(t) =
⋃
{un(t), n ≥ 1} for every t ∈ J.

Let vn(t) = f (t, x(t), un(t)) for n ≥ 1 and t ∈ J. In view of the continuity of f , vn is thus measurable.
Hence, {vn(t), n ≥ 1} ⊆ F(t, x(t)). Conversely, if f (t, x(t), u(t)) ∈ F(t, x(t)) for any u ∈ U, then there
exists a subsequence in U which will be still defined by {un}∞

n=1 such that un → u as n→ ∞. It follows
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from the continuity of f that f (t, x(t), un(t)) → f (t, x(t), u(t)) as n → ∞. Hence, f (t, x(t), u(t)) ∈
{vn(t), n ≥ 1}. This means that

F(t, x(t)) =
⋃
{vn(t), n ≥ 1},

Consequently, from Lemma 9, F(·, x) is measurable.
Next, we show that the map x 7→ F(·, x) is an u.s.c. multivalued map by means of contradiction.

Firstly, we suppose that F is not u.s.c. at some point x0 ∈ Ω. Then, there exists an open neighborhood
W ⊆ X such that F(t, x0) ⊂ W, and for every open neighborhood V ⊆ Ω of x0, there exists x1 ∈ V
such that F(t, x1) 6⊂W. Let

Vn =

{
x ∈ Ω, ‖x− x0‖ <

1
n

, n = 1, 2, . . .
}

.

Clearly, Vn is a open neighborhood of x0. Then, for each n ≥ 1, there exist xn ∈ Vn, vn ∈ F(t, xn),
and un ∈ U such that vn = f (t, xn, un) and vn /∈ W. Moreover, as {un}∞

n=1 ⊂ U, we set un → u as
n → ∞ for some u ∈ U. By the continuity of f , owing to xn → x0 as n → ∞, we have vn → v as
n → ∞, where v = f (t, x0, u), which implies that v ∈ F(t, x0) ⊂ W. This contradicts that vn /∈ W for
each n ≥ 1. Thus, our supposition is false.

In addition, according to the condition in (H7), we find that F is an L1-Carathéodory multivalued
map. Hence, (H2) and (H3) are satisfied. On the other hand, the hypothesis (H8) corresponds to (H4).
Thus, all of the hypotheses of Theorem 1 are satisfied. Hence, Equation (12) has at least one mild
solution. Furthermore, the set of mild solutions of Equation (12) is compact by Theorem 2.

Finally, we show that the mild solutions of Equation (12) do coincide with the mild solutions
of the control problem in Equation (11). Let x be a solution of Equation (12). Then, there exists
a single-valued selection

φ ∈ SF,x = {φ ∈ L1(J, X), φ(t) ∈ F(t, x(t)), a.e. t ∈ J}, (13)

such that
CDα

t x(t) = Ax(t) + φ(t), a.e. t ∈ J, and x(0) = g(x), x′(0) = 0.

Now, we introduce a map Ψ(t, u) = f (t, x(t), u(t)) and note that it is Carathéodory. Moreover, let the
equality in Equation (10) be satisfied. Then, for a.a. t ∈ J and for every φ(t) ∈ { f (t, x(t), u(t)), u ∈
U} := Ψ(t, U(t)), we deduce by Lemma 10 that there exists a measurable selection u(t) ∈ U(t) such that
φ(t) = Ψ(t, u(t)) = f (t, x(t), u(t)) for a.a. t ∈ J. Thus, the mild solution satisfies the control problem in
Equation (11).

On the other hand, let x satisfy the control problem in Equation (11). Then, x is obviously a mild
solution of Equation (12), and the proof is completed.

5. Conclusions

In the current paper, we study a class of fractional evolution inclusions with nonlocal initial
conditions. We obtain the sufficient conditions for ensuring the existence of mild solutions and the
compactness for set of mild solutions. We can see that the probability density function is closely
related to the mild solutions of the corresponding evolution inclusion problems, which enrich the
knowledge of the fractional calculus. Moreover, an illustrative example is provided to demonstrate the
applicability of the proposed problem.

On the other hand, many evolution inclusion problems are focused on a finite interval. This is
because the solutions of some physical models may blow up, or we can gain a clearer understanding
of the state of a physical system in finite time. If the time goes to infinity, it urges us to extend the
concept of mild solutions such as Equation (1) in [0, ∞) and, furthermore, to find the existence of global
mild solutions. However, the technique for an infinite interval is more complex, and this topic may
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be a future work. In addition, our future works also include the topological properties of solution
sets (including Rδ, acyclicity, connectedness, compactness, and contractibility) for fractional evolution
inclusions of order α ∈ (1, 2).
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