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Abstract

:

The present paper attempts to investigate the problem of robust H∞ control for a class of uncertain singular neutral time-delay systems. First, a linear matrix inequality (LMI) is proposed to give a generalized asymptotically stability condition and an H∞ norm condition for singular neutral time-delay systems. Second, the LMI is utilized to solve the robust H∞ problem for singular neutral time-delay systems, and a state feedback control law verifies the solution. Finally, four theorems are formulated in terms of a matrix equation and linear matrix inequalities.
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1. Introduction


Singular systems are more convenient than regular ones for describing many practical systems because a singular system involves both differential equations and algebraic equations. Applications of singular systems can be found in circuit systems, chemical systems, biological systems, robot systems, and power systems [1]. Therefore, many scholars have paid attention to the study of singular systems, and a number of important results have been reported (see, e.g., [2,3,4]).



As is known to all, a time delay frequently arises in practical systems and is often the cause of instability and poor performance. Hence, the stability problem for a singular system with a time delay has attracted many researchers’ attention in the past several decades (see, e.g., [5,6,7,8,9,10]).



In some real physical systems and industrial systems, disturbances that are attributable to external signals may cause instability and degrade the system’s performance. Hence, the effect of disturbances on the considered systems should be taken into account. Since H∞ control is used to keep systems less sensitive to disturbances, problems of H∞ control for time-delay systems have been widely explored, and findings related to these problems have been reported many times in the literature [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] as a result of their frequent applications in power systems, large-scale systems, and circuit systems. Recently, scholars (such as [11,12,13,14,15]) have started to study the H∞ problem for singular time-delay systems by using a linear matrix inequality (LMI) approach, which yields not only the existence conditions valid for singular systems’ regular problems but also characterizations of H∞ controllers, leading to a convex optimization problem [16,17,18,19,20,21,22,23,24,25,26,27,28,29].



The robust H∞ control problem for uncertain singular time-delay systems was investigated by Ji et al. in [24], where the LMI condition was obtained by constructing a degenerate Lyapunov function on the basis of [23]. However, the condition does not satisfy ∥A˜d22∥<1, which renders the design procedure of the LMI law comparatively untenable. Moreover, the problem for singular neutral time-delay systems was not investigated in [24], and some information about the condition itself cannot be revealed even if the method can be applied to a singular neural time-delay system. Also, because of the continuity of the function, it is more difficult to study the neural time-delay system than it is to study singular time-delay systems. Consequently, it is of more theoretical and practical significance to study singular neutral time-delay systems as compared with time-delay systems.



The present paper derives a sufficient condition for the existence of the H∞ controller on the basis of the LMI approach combined with a class of novel augmented Lyapunov functions, which thus facilitate the attainment of the H∞ controller using the Matlab LMI toolbox combined with a matrix equation.




2. Problem Statement and Preliminaries


Consider the following uncertain singular neutral time-delay system:


Ex˙−(C+ΔC)x˙(t−τ)=(A+ΔA)x(t)+(Aτ+ΔAτ)x(t−τ)+(B+ΔB)u(t)+Bωω(t),z(t)=Dx(t),x(t)=Φ(t),t∈[−τ,0],x˙(t)=Φ˙(t),t∈[−τ,0],



(1)




where x(t)∈Rn is the state vector; u(t)∈Rm is the control input vector; ω(t)∈Rp is the disturbance input vector belonging to L2[0,+∞); z(t)∈Rq is the control output vector; τ>0 is a constant time delay; Φ(t) is a vector-valued initial function belonging to C1([−τ,0],Rn);E,C,A,Aτ,B,Bω,D are constant matrices with appropriate dimensions, where E may be singular and is assumed to be rankE=r<n; and ΔA,ΔAτ,ΔB,Bω are unknown matrices representing time-varying parameter uncertainties and can be described as


[ΔA,ΔAτ,ΔB,ΔC]=GF(t)[Na,Nτ,Nb,Nc],



(2)




where G and Na,Nτ,Nb,Nc are known constant matrices and F:R+→Rm×n is a known matrix with Lebesgue measurable elements and satisfies


σ(F(t))≤1.



(3)







It is assumed in the present paper that ∥Γx˙(t)∥≤∥Γx(t)∥ for the arbitrary positive-definite matrix Γ.



The parametric uncertainties ΔA,ΔAτ,ΔB,ΔC are said to be admissible if Equations (2) and (3) both hold.



Next is a discussion of the system in Equation (1) with no force counterpart item. First, the system is described as Equation (4),


Ex˙−Cx˙(t−τ)=Ax(t)+Aτx(t−τ)z(t)=Dx(t),x(t)=Φ(t),t∈[−τ,0],x˙(t)=Φ˙(t),t∈[−τ,0].



(4)







The following definitions and lemmas are very useful for deriving the main results of this paper.



Definition 1

([1]). (1):The pair (E, A) is known as regular if det(sE−A) is not identically zero. (2): The pair (E,A) is known as impulse free if det(sE−A)=rank(E).





Definition 2

([24]). The singular neutral time-delay system (Equation (4)) is known as regular and impulse free if the pair (E,A) is regular and impulse free.





Remark 1.

The regularity and impulses of the pair (E,A) ensure the system (Equation (4)) with τ≠0 to be regular and impulse free, and they further ensure the existence of a unique solution to the system in Equation (4) on [−τ,+∞).





Since (E,A) is regular and impulse free, there exist two nonsingular matrices Q and P such that the system in Equation (4) is equivalent to


x˙1(t)=A1x1(t)+Aτ11x1(t−τ)+Aτ12x2(t−τ)+C11x˙1(t−τ)+C12x˙2(t−τ),0=x2(t)+Aτ21x1(t−τ)+Aτ22x2(t−τ)+C21x˙1(t−τ)+C22x˙2(t−τ),



(5)




with the coordinate transformation


x1x2=P−1x,x1∈Rn1,x2∈Rn2








and


QEP=diag(In1,0),QAP=diag(A1,In2)










QAτP=Aτ11Aτ12Aτ21Aτ22,QCP=C11C12C21C22,








where n1+n2=n. Obviously, the system in Equation (5) has a unique solution on [−τ,+∞).



Definition 3

([29]). If a matrix X satisfies the Penrose condition AXA=A, then there exists a solution to the generalized inverse for AXA=A or {1} inverse of A, and thus, the matrix X is denoted by X = A(1) or X ∈A{1}, where A{1} denotes the set of all {1} inverse of A.





Lemma 1

([24]). For a given symmetry matrix A=A11A12A21A22, where A11,A12,A21,A22 have appropriate dimensions, A21=A12T. Then, the following two conditions are equivalent.


C1:A<0C2:A22<0,A11−A12A22−1A21<0.













Lemma 2

([18]). For any x,y∈Rn,ε>0, the inequality 2xTy≤εxTx+1εyTy holds.





Therefore, Lemma 3 can be obtained by using a method similar to that in J. Lee (1994).



Lemma 3.

For given matrices Q=QT,H,E, and F of appropriate dimensions,


Q+HFE+ETFTHT+Ψ1FΨ2+Ψ2TFTΨ1T+Φ1FΦ2+Φ2TFTΦ1T<0,








for all F satisfies FTF≤I if there exist positive numbers ε1>0,ε2>0,ε3>0 such that


Q+ε1HHT+ε1−1ETE+ε2Ψ1Ψ1T+ε2−1Ψ2TΨ2+ε3Φ1Φ1T+ε3−1Φ2TΦ2<0.













Proof. 

By Lemma 2, for ∀z∈Rn\{0}, there exists an ε1>0 such that


zTHFEz=12×2zTHFEz≤12ε1zTHFFTHTz+12ε1−1zTETEz≤12ε1zTHHTz+12ε1−1zTETEz,










zTETFTHTz=12×2zTETFTHTz≤12ε1−1zTETFTFEz+12ε1zTHHTz≤12ε1−1zTETEz+12ε1zTHHTz,








hold simultaneously. Thus,


HFE+ETFTHT≤ε1HHT+ε1−1ETE,








can be obtained. Similarly, there exist positive numbers ε2,ε3 such that the following inequalities also hold


Ψ1FΨ2+Ψ2TFTΨ1T≤ε2Ψ1Ψ1T+ε2−1Ψ2TΨ2,










Φ1FΦ2+Φ2TFTΦ1T≤ε3Φ1Φ1T+ε3−1Φ2TΦ2.








□





Lemma 4

([29]). Let A∈ Cm×n, B∈ Cp×q, D∈ C m×q. Then, the matrix equation AXB=D is consistent if and only if, for some A(1) and B(1), AA(1)DB(1)B=D is satisfied, in which case the general solution is X=A(1)DB(1)+Y−A(1)AYBB(1) for arbitrary Y ∈ C n×p.





RobustH∞control problem. The present paper attempts to address the robust H∞ control problem by considering the linear state feedback control law as


u(t)=Kx(t)








to construct K such that u(t) in Equation (6) will



(a) stabilize the resultant closed-loop system and



(b) guarantee the H∞ performance J=∫0∞(zT(t)z(t)−γ2ωT(t)ω(t))dt<0 under the zero-initial condition of x(t) and x˙(t) for any nonzero ω(t)∈L2[0,∞) and for all admissible parameter uncertainties satisfying Equations (2) and (3).




3. Results


In the following, the problem of robust H∞ control is considered for the singular neutral system in Equation (1) with F(t)=0 and u(t)=0.



Theorem 1.

Consider the system in Equation (1) with F(t)=0 and u(t)=0. For a given scalar γ>0, the system in Equation (1) is regular, impulse free, and stable, and the H∞ norm from ω(t) to z(t) is less than γ, if there exist symmetric positive-definite matrices P,Q,R,L and matrices S,Sτ,Sω such that the following linear matrix inequality holds:


Σ=Σ11Σ12Σ13Σ14LTDTATR∗Σ22Σ23Σ2400AτTR∗∗Σ33Σ3400CTR∗∗∗Σ4400BωTR∗∗∗∗−I00∗∗∗∗∗−I0∗∗∗∗∗∗−R<0,



(6)




where

	
Σ11=ETPA+ATPE+ATVST+SVTA+Q,



	
Σ12=ETPAτ+SVTAτ+ATVSτT,Σ13=ETPC+SVTC,



	
Σ14=ETPBω+SVTBω+ATVSωT,Σ22=−Q+SτVTAτ+AτTVSτT,



	
Σ23=SτVTC,Σ24=Sτ,VTBω+AτTVSωT,Σ33=−ETRE−LTL,



	
Σ34=CTVSωT,Σ44=−γ2I+SωVTBω+BωTVSωT,





and V∈Rn×(n−r) is any matrix that has full column rank and satisfies ETV=0.





Proof. 

The nonlinear singular system (Equation (1)) is proved below to be regular and impulse free. Since rank(E) = r ≤n, there exist two nonsingular matrices F and G ∈Rn×n such that


E¯=GEF=Ir000











Then, V can be parameterized as



V=GT0Φ¯, where Φ¯∈R(n−r)×(n−r) is any nonsingular matrix. Next, A¯=GAF=A¯11A¯12A¯21A¯22,P¯=G−TPG−1=P¯11P¯12P¯21P¯22,S¯=FTS=S¯11S¯21,V¯=G−TV=0Φ¯ can be defined. Since Σ11<0 and Q>0, the following inequality can be formulated easily:


Ω=ETPA+ATPE+ATVST+SVTA<0








.



Pre- and post-multiplying Ω<0 by FT and F, respectively, yields


FTΩF=E¯TPA¯+A¯TPE¯+A¯TVS¯T+SV¯TA¯=Ω¯11Ω¯12Ω¯21A¯22TΦ¯S¯21T+S¯21Φ¯TA¯22<0



(7)







From [17], the following matrix inequalities can be formulated easily:


A¯22TΦ¯S¯21T+S¯21Φ¯TA¯22<0,



(8)




and thus, A¯22 is nonsingular.



Then, it can be proved that


det(sE−A)=det(G−1)det(sE¯−A¯)det(F−1)=det(G−1)det(−A¯22)det(sIr−(A¯11−A¯12A¯22−1A¯21))det(F−1),








which implies that det(sE−A) is not identically zero and deg(det(sE−A))=r=rank(E). Then, the pair (E,A) is regular and impulse free, which implies that the system in Equation (1) is regular and impulse free.



In the following, the system in Equation (1) with u(t)=0 and F(t)=0 is proved to be asymptotical with the condition of ω(t)=0 and an H∞ performance under the zero-initial condition of x(t) and x˙(t) for any nonzero ω(t)∈L2[0,∞). Construct a Lyapunov–Krasovskii function candidate as follows:


V0(xt)=xT(t)ETPEx(t)+∫t−τtxT(s)Qx(s)ds+∫t−τtx˙T(s)(ETRE+LTL)x˙(s)ds,



(9)




where P >0, Q >0, R >0, and L >0. From this follows the derivation of V0(t,xt) with respect to t along the trajectory of the system in Equation (1) with the condition of F(t)=0 and u(t)=0 that


V˙0(xt)=2(Ex(t))TP(Ex˙(t))+xT(t)Qx(t)−xT(t−τ)Qx(t−τ)+(Ex˙(t))TR(Ex˙(t))−x˙T(t−τ)ETREx˙(t−τ)+x˙T(t)LTLx˙(t)−x˙T(t−τ)LTLx˙(t−τ)=2xT(t)ETP(Ax(t)+Aτx(t−τ)+Bωω(t)+Cx˙(t−τ))+xT(t)Qx(t)−xT(t−τ)Qx(t−τ)+(Ex˙(t))TR(Ex˙(t))−x˙T(t−τ)ETREx˙(t−τ)+x˙T(t)LTLx˙(t)−x˙T(t−τ)LTLx˙(t−τ)=xT(t)(ETPA+ATPE+Q)x(t)+2xT(t)ETPAτx(t−τ)+2xT(t)ETPBωω(t)+2xT(t)ETPCx˙(t−τ)−xT(t−τ)Qx(t−τ)+(Ex˙(t))TR(Ex˙(t))−x˙T(t−τ)(ETRE+LTL)x˙(t−τ)+x˙T(t)LTLx˙(t)=xT(t)(ETPA+ATPE+Q)x(t)+2xT(t)ETPAτx(t−τ)+2xT(t)ETPBωω(t)+2xT(t)ETPCx˙(t−τ)−xT(t−τ)Qx(t−τ)+(Ex˙(t))TR(Ex˙(t))−x˙T(t−τ)(ETRE+LTL)x˙(t−τ)+xT(t)LTLx(t).



(10)







For the system in Equation (1), the following holds


(Ex˙(t))TR(Ex˙(t))=(Ax(t)+Aτx(t−τ)+Bωω(t)+Cx˙(t−τ))TR(Ax(t)+Aτx(t−τ)+Bωω(t)+Cx˙(t−τ))










=xT(t)xT(t−τ)x˙T(t−τ)ωT(t)Ux(t)x(t−τ)x˙(t−τ)ω(t)



(11)




where


U=ATRAATRAτATRCATRBω∗AτTRAτAτTRCAτTBω∗∗CTRCCTRBω∗∗∗BωTRBω.











For ETV=0, it can be deduced that


0=2(xT(t)S+xT(t−τ)Sτ+ωT(t)Sω)VTEx˙(t)=2xT(t)SVT(Ax(t)+Aτx(t−τ)+Bωω(t)+Cx˙(t−τ))+2xT(t−τ)SτVT(Ax(t)+Aτx(t−τ)+Bωω(t)+Cx˙(t−τ))+2ωT(t)SωVT(Ax(t)+Aτx(t−τ)+Bωω(t)+Cx˙(t−τ)),



(12)




where S is any matrix with appropriate dimensions.



Noting the zero-initial condition of x(t), V(x0)=0, and V(x∞)>0, then


J=∫0∞(zT(t)z(t)−γ2ωT(t)ω(t))dt≤∫0∞(zT(t)z(t)−γ2ωT(t)ω(t))+V˙0(t,xt)dt=∫0∞x(t)TDTDx(t)−γ2ωT(t)ω(t)+V˙0(t,xt)dt.



(13)







By substituting Equations (10),(11), and (12) into (13), the following can be obtained:


J≤xT(t)xT(t−τ)x˙T(t−τ)ωT(t)Θx(t)x(t−τ)x˙(t−τ)ω(t),








where Θ=Θ11Θ12Θ13Θ14∗Θ22Θ23Θ24∗∗Θ33Θ34∗∗∗Θ44, with

	
Θ11=ETPA+ATPE+ATVST+SVTA+Q+LTL+DTD+ATRA,



	
Θ12=ETPAτ+SVTAτ+ATVSτT+ATRAτ,



	
Θ13=ETPC+SVTC+ATRC,



	
Θ14=ETPBω+SVTBω+ATVSωT+ATRBω,



	
Θ22=−Q+SτVTAτ+AτTVSτT+AτTRAτ,



	
Θ23=SτVTC+AτTRC,



	
Θ24=SτVTBω+AτTVSωT+AτTRBω,



	
Θ33=−ETRE−LTL+CTRC,



	
Θ34=CTVSωT+CTRBω,



	
Θ44=−γ2I+Sω,



	
VTBω+BωTVSωT+BωTRBω.








If Θ<0, there exists a scalar λ>0 such that J≤−λ∥x(t)∥2; thus, according to [3], the system in Equation (1) with u(t)=0 and F(t)=0 is asymptotically stable. By Lemma 1, Θ<0 is equivalent to Σ<0.



It is easy to obtain from the result of Theorem 1 the following conclusion about the H∞ performance analysis. □





Theorem 2.

Consider the system in Equation (1) with u(t)=0. For a given scalar γ>0, the system is regular, impulse free, and stable, and the H∞ norm from ω(t) to z(t) is less than γ if there exist symmetric positive-definite matrices P, Q, R, L and matrices S,Sτ,Sω, and ε>0 such that the following linear matrix inequality holds:


Σ¯=Σ11Σ12Σ13Σ14LTDTATR(ETP+SVT)GεNaT∗Σ22Σ23Σ2400AτTRSτVTGεNτT∗∗Σ33Σ3400CTR0εNcT∗∗∗Σ4400BωTRSωVTG0∗∗∗∗−I0000∗∗∗∗∗−I000∗∗∗∗∗∗−RRTG0∗∗∗∗∗∗∗−εI0∗∗∗∗∗∗∗∗−εI<0,



(14)




where Σij is as defined in Theorem 1.





Proof. 

It follows from Equation (14) by Lemma 1 that


Σ+ε−1ΨΨT+εΦTΦ<0



(15)




where Σ is as defined in Theorem 1, and


Ψ=[GTPE+GTVST,GTVSτT,0,GTVSωT,0,0,GTR]T,Φ=[Na,Nτ,Nc,0,0,0,0]








.



It follows from Equation (15) by Lemma 3 that


Ω11Ω12Ω13Ω14LTDTΩ17∗Ω22Ω23Ω2400Ω27∗∗Ω33Ω3400Ω37∗∗∗Ω4400Ω47∗∗∗∗−I00∗∗∗∗∗−I0∗∗∗∗∗∗−R<0,



(16)




where

	
Ω11=ETP(A+ΔA)+(A+ΔA)TPE+(A+ΔA)TVST+SVT(A+ΔA)+Q,



	
Ω12=ETP(Aτ+ΔAτ)+SVT(Aτ+ΔAτ)+(A+ΔA)TVSτT,



	
Ω13=ETP(C+ΔC)+SVT(C+ΔC),



	
Ω14=ETPBω+SVTBω+(A+ΔA)TVSωT,



	
Ω17=(A+ΔA)TR,



	
Ω22=−Q+SτVT(Aτ+ΔAτ)+(Aτ+ΔAτ)TVSτT,



	
Ω23=SτVT(C+ΔC),



	
Ω24=SτVTBω+(Aτ+ΔAτ)TVSωT,



	
Ω27=(Aτ+ΔAτ)TR,



	
Ω33=−ETRE−LTL,



	
Ω34=(C+ΔC)TVSωT,



	
Ω37=(C+ΔC)TR,



	
Ω44=−γ2I+SωVTBω+BωTVSωT,



	
Ω47=BωTR,





and V∈Rn×(n−r) is any matrix that has full column rank and satisfies ETV=0.



In the following, the robust H∞ synthesis problem of the system in Equation (1) is to be considered for the system in Equation (1) with F(t)=0. □





Theorem 3.

Consider the system in Equation (1) with F(t)=0. For a given scalar γ>0, if there exist symmetric positive-definite the matrices P,Q,R,L and matrices S,Y1,Y2 such that the matrix equation and the linear matrix inequality in the following hold simultaneously,


[Y1,Y2][PET+VST,R](1)[PET+VST,R]=[Y1,Y2]



(17)






Ξ=Ξ11Ξ12Ξ13Ξ14LTBωAR+BY2∗−Q0000AτR∗∗−ETRE−LTL000CR∗∗∗−γ2I00DR∗∗∗∗−I00∗∗∗∗∗−I0∗∗∗∗∗∗−R<0,



(18)




then, the control law


u(t)=(Y1,Y2)(PET+VST,R)(1)+Y(I−(PET+VST,R)(PET+VST,R)(1))x(t)








(where Y is an arbitrary matrix of appropriate dimension, I is a unit matrix, V∈Rn×(n−r) is any matrix with full column rank and satisfies ETV=0, and Ξ11=EPAT+APET+AVST+SVTAT+Q+BY1+Y1TBT,Ξ12=EPAτT+SVTAτT,Ξ13=EPCT+SVTCT,Ξ14=EPDT+SVTDT) stabilizes the singular neutral system and guarantees the H∞ norm bound within γ in the closed-loop system.





Proof. 

Substituting the state feedback control law u(t)=Kx(t) into the system in Equation (1) with F(t)=0, the closed-loop system


Ex˙(t)=(A+BK)x(t)+Aτx(t−τ)+Bωω(t)+Cx˙(t−τ),z(t)=Dx(t),



(19)




can be obtained. Since det(sE−(A+BK))=det(sET−(A+BK)T), the pair (E,(A+BK)) is the same as the pair (ET,(A+BK)T) in that they are both regular and impulse free. Therefore, the solutions of det(sE−(A+BK)−Aτe−sτ−Cse−sτ)=0 are equivalent to the solutions of det(sET−(A+BK)T−AτTe−sτ−CTse−sτ)=0. According to the definition the H∞ norm, the H∞ norm of the system in Equation (20) can be given as


∥G∥∞=supν∈Rσ¯[D(jνE−(A+BK)−Aτe−jντ−Cjνe−jντ)−1Bω],








which is equal to


∥J∥∞=supν∈Rσ¯[BωT(jνET−(A+BK)T−AτTe−jντ−CTjνe−jντ)−1DT]











Hence, it can be shown that the regularity, impulse-free state, asymptotic stability, and H∞ performance of the system in Equation (19) are equivalent to the following system regularity, impulse-free state, asymptotic stability, and H∞ performance; that is,


ETy˙(t)=(A+BK)Ty(t)+AτTy(t−τ)+DTω(t)+CTx˙(t−τ),z(t)=BωTx(t).











Then, by replacing A by (A+BK)T,Aτ by AτT, D by BωT, E by ET, C by CT in Equation (7) and setting Sτ=0,Sω=0,Y1=K(PET+VST),Y2=KR, Matrix Equation (17) and Linear Matrix Inequality (18) can be directly obtained.



Now, the result for the problem of robust H∞ control for the system in Equation (1) is given. According to Theorem 3, the robust H∞ performance of the system (Equation (1)) will be stated as follows. □





Theorem 4.

Consider the uncertain singular neutral time-delay system (Equation (1)). For a given scalar γ>0, if there exist symmetric positive-definite matrices P,Q,R,L and matrices S,Y1,Y2 and ε1>0,ε2>0,ε3>0 such that the matrix equation and the linear matrix inequality in the following hold simultaneously,


[Y1,Y2][PET+VST,R](1)[PET+VST,R]=[Y1,Y2]



(20)






Π=Π11Π12Π13Π14LTΠ15Π16Π17Π18Π19∗Π220000AτR000∗∗Π33000CR000∗∗∗−γ2I00DR000∗∗∗∗−I00000∗∗∗∗∗−I0000∗∗∗∗∗∗−Rσ1σ2σ3∗∗∗∗∗∗∗−ε1I00∗∗∗∗∗∗∗∗−ε2I0∗∗∗∗∗∗∗∗∗−ε3I<0,



(21)




where σ1=RTNaT+Y2TNbT,σ2=RTNτT,σ3=RTNcT, then the control law


u(t)=(Y1,Y2)(PET+VST,R)(1)+Y(I−(PET+VST,R)(PET+VST,R)(1))x(t),








where Y is an arbitrary matrix of appropriate dimension, I is a unit matrix, V∈Rn×(n−r) is any matrix with full column rank and satisfies

	
ETV=0, and



	
Π11=EPAT+APET+AVST+SVTAT+Q+BY1+Y1TBT+ε1GGT,



	
Π12=EPAτT+SVTAτT,



	
Π13=EPCT+SVTCT,



	
Π14=EPDT+SVTDT,



	
Π15=Bω,



	
Π16=AR+BY2,



	
Π17=EPNaT+SVTNaT+Y1TNbT,



	
Π18=EPNτT+SVTNτT,



	
Π19=EPNcT+SVTNcT,



	
Π22=−Q+ε2GGT,



	
Π33=−ETRE−LTL+ε3GGT,





stabilizes the uncertain singular neutral system and guarantees the H∞ norm bound within γ in the closed-loop system.





Proof. 

By replacing A by A+GF(t)Na, Aτ by Aτ+GF(t)Nτ, B by B+GF(t)Nb, and C by C+GF(t)Nc in Theorem 3, the following matrix inequality can be obtained.


Ξ+Ψ1F(t)Ψ2+Ψ2TFT(t)Ψ1T+Φ1F(t)Φ2+Φ2TFT(t)Φ1T+Λ1F(t)Λ2+Λ2TFT(t)Λ1T<0,








where Ξ is as defined in Equation (18), and


Ψ1=[GT,0,0,0,0,0,0]T,Ψ2=[NaPET+NaVST+NbY1,0,0,0,0,0,NaR+NbY2],Φ1=[0,GT,0,0,0,0,0]T,Φ2=[NτPET+NτVST,0,0,0,0,0,NτR],Λ1=[0,0,GT,0,0,0,0]T,Λ2=[NcPET+NcVST,0,0,0,0,0,NcR].











By Lemma 3, it can be proved that the inequality above is satisfied if there exist scalars ε1>0,ε2>0, and ε3>0 such that


Ξ+ε1Ψ1Ψ1T+ε1−1Ψ2TΨ2+ε2Φ1Φ1T+ε2−1Φ2TΦ2+ε3Λ1Λ1T+ε3−1Λ2TΛ2<0,








which is equal to Equation (21) under the condition of Equation (20). □






4. Numerical Illustration


The following numerical example is presented to illustrate the usefulness of the proposed theoretical results.



Example 1.

Consider the system in Equation (1) with the parameter matrices as follows: E=1000,C=0.5000,A=−3.450.821.351.94,Aτ=0.350.120.130.15,B=0.6−0.5,Bω=11,D=10.4,ΔB=00,ΔC=0.4cos(2t)000,ΔA=0.3sin(3t)000.3sin(3t),ΔAτ=0.3cos(t)000.3cos(t), ω(t)=0.3sin(t). ε1=0.16, ε2=0.25, ε1=0.47.



Let γ=0.45. By using Theorem 4 and the Matlab LMI Toolbox, the gain matrices P,Q,R,L can be designed as P=13.2741−0.4528−0.452811.0398,Q=16.0723−0.2634−0.263414.9513,R=9.4157−0.1823−0.18236.0351,L=15.1369−0.3027−3.02712.1039.





With the zero-initial condition and the parameters given above, Figure 1 gives the simulations for the trajectory z(t) of the system in Equation (1) under the control law in Theorem 4. Figure 1 demonstrates the effectiveness of the proposed control method.




5. Conclusions


The problem of robust H∞ control for an uncertain singular neutral system is investigated. A new approach is introduced in order to ensure the singular system (Equation (1)) is regular and impulse free. On that basis, the matrix equation and an LMI ensure that the system, which is asymptotic and guarantees the H∞ norm bound within γ in the closed-loop system for all admissible parameter uncertainties, can be obtained. The needed controller can be constructed by solving the matrix equation and the LMI. It should be emphasized that the controller has a generalized inverse form, which is different from the result of [17]. Also, this method can be applied to some practical systems.
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Figure 1. The trajectory of z(t) of the system in Equation (1). 
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