

  mathematics-07-00226




mathematics-07-00226







Mathematics 2019, 7(3), 226; doi:10.3390/math7030226




Article



A General Algorithm for the Split Common Fixed Point Problem with Its Applications to Signal Processing



Wachirapong Jirakitpuwapat 1,†[image: Orcid], Poom Kumam 2,3,*,†[image: Orcid], Yeol Je Cho 2,4,5,† and Kanokwan Sitthithakerngkiet 6,†[image: Orcid]





1



KMUTT-Fixed Point Research Laboratory, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand






2



KMUTT-Fixed Point Theory and Applications Research Group, Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand






3



Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan






4



Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea






5



School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China






6



Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok (KMUTNB), Wongsawang, Bangsue, Bangkok 10800, Thailand









*



Correspondence: poom.kum@kmutt.ac.th; Tel.: +66-(0)2470-8994






†



These authors contributed equally to this work.









Received: 24 December 2018 / Accepted: 20 February 2019 / Published: 28 February 2019



Abstract

:

In 2014, Cui and Wang constructed an algorithm for demicontractive operators and proved some weak convergence theorems of their proposed algorithm to show the existence of solutions for the split common fixed point problem without using the operator norm. By Cui and Wang’s motivation, in 2015, Boikanyo constructed also a new algorithm for demicontractive operators and obtained some strong convergence theorems for this problem without using the operator norm. In this paper, we consider a viscosity iterative algorithm in Boikanyo’s algorithm to approximate to a solution of this problem and prove some strong convergence theorems of our proposed algorithm to a solution of this problem. Finally, we apply our main results to some applications, signal processing and others and compare our algorithm with five algorithms such as Cui and Wang’s algorithm, Boikanyo’s algorithm, forward-backward splitting algorithm and the fast iterative shrinkage-thresholding algorithm (FISTA).
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1. Introduction


Assume that C and Q are nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively. Assume that A:H1→H2 is a bounded linear operator with the adjoint A∗.



In 1994, the split feasibility problem was proposed by Censor and Elfving [1] as follows:


Findapointx∗∈H1suchthatx∗∈CandAx∗∈Q.



(1)







It is interesting to note that, when taking C=H1 and Q={b}, the split feasibility problem reduces to the linear inverse problem:


Findapointx∗∈H1suchthatAx∗=b.



(2)







The most popular ways for solving the linear inverse problem is to reformulate it as a least squares problem. Similarly, the split feasibility problem was solved by equivalently reformulating it as the convex optimization problem:


minx∈C12‖Ax−PQ(Ax)‖2,



(3)




where PQ(·) is the projection operator on set Q defined by


PQ(v)=arg minz∈Q‖z−v‖.











In 2002, based on the reformulation (3), the so-called CQ algorithm was presented by Byrne. He solved this problem by using the algorithm: For an arbitrary x1∈H,


xn+1=A−1PQ(PA(C)(Axn)),∀n∈N,



(4)




which converges to a solution of the convex optimization problem. Since the algorithm (4) requires the inverse matrix of A, it is disadvantage to calculate this algorithm. We note that x∗∈H solves the problem (2) is equivalent to the fixed point problem, that is, x∗ is a fixed point of T, where T:=PC(I−ρA∗(I−PQ)A) for any ρ>0.



In 2002, Byrne [2] constructed the following algorithm (5), which does not compute the inverse matrix of A: For any x0, {xn} is generated by


xn+1=PC(I−ρA∗(I−PQ)A)xn,∀n∈N,



(5)




where ρ∈(0,2L) and L is the largest eigenvalue of A∗A.



Recently, the split feasibility problem has been apllied to approximation theory, signal processing, image recovery, control theory, biomedical engineering, geophysics and communications by many authors. Refer to the papers [3,4,5,6,7,8,9].



Especially, the split common fixed point problem is as follows:


Findapointx∗∈Hsuchthatx∗∈Fix(U)andAx∗∈Fix(T),



(6)




where U:H→H and T:K→K are operators, Fix(U) and Fix(T) denote the fixed point sets of U and T, respectively. In 2009, this problem was proposed by Censor and Segal [10] and they constructed the following algorithm for solving the problem: For any x0∈H, {xn} is generated by


xn+1=U(I−ρA∗(I−T)A)xn,∀n∈N.



(7)







This algorithm can be extended to many cases as follows:

	
Quasi-nonexpansive operators by Moudafi [11];



	
Finitely many directed operators by Wang and Xu [12];



	
Demicontractive operators by Moudafi [13]. In the case when U and T are directed operators, the step size ρ satisfies 0<ρ<2‖A‖2 and {xn} generated by the algorithm (7) converges weakly to a solution of the problem (6) when a solution exists.








The algorithm (7) needs to compute ‖A‖, which is not easily computed. In 2014, Cui and Wang [14] proposed the following Algorithm 1 without using the operator norm: For an initial x0∈H,


xn+1=Uλ(xn−ρnA∗(I−T)Axn),∀n≥0,



(8)




where


ρn=(1−τ)‖(I−T)Axn‖22‖A∗(I−T)Axn‖2,Axn≠T(xn),0otherwise,








where U and T are demicontractive operators with constants 0≤κ<1 and 0≤τ<1 such that I−U and I−T are demiclosed at zero, respectively, denote Uλ:=(1−λ)I+λU for any λ∈(0,1−κ) and A is a bounded linear operator, and they proved that the algorithm (8) converges weakly to a solution of the problem (6) when a solution exists.





	Algorithm 1: Cui and Wang’s algorithm



	  Input: Set λ∈(0,1−κ), where 0≤κ<1. Choose x0∈H.

1 for n=1,2,⋯do

2   Update xn+1 via (8),

3 end for






In 2015, Boikanyo [15] extended Cui and Wang’s results and proposed the following Algorithm 2 for demicontrative operators U and T with Uλ:=(1−λ)I+λU for any λ∈(0,1−κ), which converges strongly to a solution of the problem (6) when a solution exists: For any u∈H,


xn+1=αnu+(1−αn)Uλ(xn−ρnA∗(I−T)Axn),∀n≥0,



(9)




where


ρn=(1−τ)‖(I−T)Axn‖22‖A∗(I−T)Axn‖2,Axn≠T(xn),0otherwise,








and {αn} is a sequence in [0,1) such that


limn→∞αn=0,∑n=0∞αn=∞.













	Algorithm 2: Boikanyo’s algorithm



	  Input: Set λ∈(0,1−κ) where 0≤κ<1, and αn∈[0,1) such that limn→∞αn=0 and ∑n=0∞αn=∞. Choose u,x0∈H.

1 for n=1,2,⋯do

2   Update xn+1 via (9).

3 end for






In 2016, Huimin et al. [16] proposed the following Algorithm 3 for demicontrative operators U, T with Uλ:=(1−λ)I+λU for any λ∈(0,1−κ), where λ∈(0,1−κ), and f is a contraction operator on Fix(U) which converges strongly to a solution of the problem (6) when a solution exists:


xn+1=αnf(xn)+(1−αn)Uλ(xn−ρnA∗(I−T)Axn),∀n≥0,



(10)




where


ρn=(1−τ)‖(I−T)Axn‖22‖A∗(I−T)Axn‖2,Axn≠T(xn),0otherwise,








and {αn} is a sequence in [0,1) such that


limn→∞αn=0,∑n=0∞αn=∞.













	Algorithm 3: Algorithm of Huimin et al. [16]



	  Input: Set λ∈(0,1−κ), where λ∈(0,1−κ), and αn∈[0,1) such that limn→∞αn=0 and ∑n=0∞αn=∞. Choose u,x0∈H.

1 for n=1,2,⋯do

2   Update xn+1 via (10).

3 end for






In this paper, motivated by Boikanyo’s algorithm [15] and the algorithm of Huimin et al. [16], we will propose the following Algorithm 4 for demicontrative operators U and T with Uλn:=(1−λn)I+λnU for any λn∈(0,1−κ):


yn=αnf(xn)+(1−αn)Uλn(xn−ρnA∗(I−T)Axn),xn+1=(1−βn)yn+βnf(yn),∀n≥0,



(11)




where


ρn=(1−τ)‖(I−T)Axn‖22‖A∗(I−T)Axn‖2,Axn≠T(xn),0otherwise,








U and T are demicontrative operators such that I−U and I−T are demiclosed at zero, f is a contraction operator on Fix(U) and the sequences {αn},{βn} in [0,1) are such that


limn→∞αn=0,∑n=0∞αn=∞,∑n=0∞βn<∞








and we prove that our algorithm {xn} generated by (11) converges strongly to a solution of the problem (6) when a solution exists. However, {xn} and {yn} converge to the same point because from the condition 0≤βn<1 and ∑n=1∞βn<∞.





	Algorithm 4: Our algorithm



	  Input: Set λn∈(0,1−κ), where λ∈(0,1−κ),αn,βn∈[0,1) such that limn→∞αn=0, ∑n=0∞αn=∞ and ∑n=0∞βn<∞. Choose x0∈H;

1 for each n=1,2,⋯do;

2 Update yn and xn+1 via (11), respectively.

3 end for






Remark 1.

In fact, our algorithm was changed from the algorithm of Huimin et al. including the point u in Boikano’s algorithm to the viscosity term and linear convex combination. The algorithm of Huimin et al. is a special case of our algorithm when βn=0 and {λn} is a constant sequence. The algorithm of Huimin et al. and our algorithm are different because they were generated the distinct terms xn. However, they converge strongly to a same solution of the split common fixed point problem.



For example, let


y=1.57†,ϵ=0.51†,A=100123,










αn=0.1n,βn=1n2,λn=12,










f(x)=x−210†4+210†,t=10,








where † is transpose. If xOur,100=1.50241.46720.8540† is generated by our algorithm and xH,100=1.50341.07011.1177† is generated by the algorithm of Huimin et al., then two algorithms, the algorithm of Huimin et al. (10) and our algorithm (11) converge strongly to a same solution of the problem (15).






2. Preliminaries


Let H be a real Hilbert space. Let xn⇀x denote that {xn} converges weakly to x and xn→x denote that {xn} converges strongly to x.



The following inequality holds:


‖x+y‖2≤‖x‖2+2⟨y,x+y⟩,∀x,y∈H.











Definition 1.

Let T:H→H be an operator such that Fix(T)≠∅. Then T is said to be:

	1. 

	
Nonexpansive if


‖Tx−Ty‖≤‖x−y‖,∀x,y∈H;












	2. 

	
Contractive if there exists k∈[0,1) such that


‖Tx−Ty‖≤k‖x−y‖,∀x,y∈H;












	3. 

	
Quasi-nonexpansive if


‖Tx−x∗‖≤‖x−x∗‖,∀x,y∈H,x∗∈Fix(T);












	4. 

	
Directed if


‖x∗−Tx‖2+‖x−Tx‖2−‖x−x∗‖2≤0,∀x,y∈H,x∗∈Fix(T);












	5. 

	
τ-demicontractive with τ∈[0,1) if


‖Tx−x∗‖2≤‖x−x∗‖2+τ‖x−Tx‖2,∀x,y∈H,x∗∈Fix(T).



















Remark 2.

Easily, we obtain the following conclusions:

	1. 

	
Every contraction operator is nonexpansive;




	2. 

	
Every nonexpansive operator is quasi-nonexpansive;




	3. 

	
Every quasi-nonexpansive operator is 0-demicontractive operator;




	4. 

	
Every direct operator is −1-demicontractive operator.











Definition 2.

Assume that T:H→H is an operator. Then I−T is demiclosed at zero if, for any {xn} in H, xn⇀x∗ and (I−T)xn→0 imply Tx∗=x∗.





Remark 3.

Every nonexpansive operator is demiclosed at zero [17].





Definition 3.

Assume that C is a nonempty closed convex subset of H. The metric projection PC from H onto C is defined as follows: For all x∈H,


‖x−PCx‖=inf{‖x−y‖:y∈C}.











Note that the metric projection PC is nonexpansive [17].





Lemma 1

([18]). Assume that C is a nonempty closed convex subset of H and PC is a nonexpansive operator from H onto C. For any x∈H, it satisfies the inequality:


⟨PCx−x,PCx−y⟩≤0,∀y∈C.













Lemma 2

([19]). Assume that {αn} is a sequence of nonnegative numbers such that


αn+1≤(1−βn)αn+γn,∀n≥0,








where βn∈(0,1) and γn∈R such that

	1. 

	
∑n=1∞βn=∞;




	2. 

	
lim supn→∞γnβn≤0 or ∑n=1∞|γn|<∞.






Then limn→∞αn=0.





Lemma 3

([20]). Assume that A:H→H is a τ-demicontractive operator with τ<1. Define Uλ:=(1−λ)I+λU for any λ∈(0,1−τ). Then, for any x∈H and x∗∈Fix(U),


‖Uλx−x∗‖2≤‖x−x∗‖2−λ(1−τ−λ)‖x−Ux‖2.













Lemma 4

([14]). Assume that A:H→H is a bounded linear operator. Assume that T:H→H is a τ-demicontractive operator. If A−1(Fix(T))≠∅, then

	1. 

	
(I−T)Ax=0 if and only if A∗(I−T)Ax=0 for all x∈H;




	2. 

	
In particular, for all x∗∈A−1(Fix(T)),


‖x−ρA∗(I−T)Ax−x∗‖2≤‖x−x∗‖2−(1−τ)2‖(I−T)Ax‖44‖A∗(I−T)Ax‖2,








where x∈H, Ax≠T(Ax) and


ρ=(1−τ)‖(I−T)Ax‖22‖A∗(I−T)Ax‖2.




















3. Main Results


Theorem 1.

Assume that H1 and H2 are real Hilbert spaces. Assume that U:H1→H1 and T:H2→H2 are a κ-demicontractive operator and a τ-demicontractive operator with constants 0≤κ<1 and 0≤τ<1, respectively such that I−U and I−T are demiclosed at zero, respectively. Assume that A:H1→H2 is a bounded linear operator with the adjoint A∗ of A. Assume that f is a contraction operator with constant η. Assume that S is a set of all solution of the problem (6) such that S≠∅. If limn→∞αn=0, ∑n=0∞αn=∞ and ∑n=0∞βn<∞, then the sequence {xn} generated by algorithm (11) converges strongly to a point x∗∈S, which is a solution x∗=PSf(x∗) of the following variational inequality:


⟨x∗−f(x∗),x∗−z⟩≤0,∀z∈S.



(12)









Proof. 

Let an=xn−ρnA∗(I−T)Axn for each n≥0 and let z∈S. Since βn∈[0,1) and ∑n=0∞βn<∞, we have limn→∞βn=0. For the proof, we have the following four steps:



Step 1. Show that {xn} is bounded.



Case ρn=0: Thus an=xn. By Lemma 3, we get


‖Uλnan−z‖2=‖Uλnxn−z‖2≤‖xn−z‖2−λn(1−κ−λn)‖xn−Uxn‖2≤‖xn−z‖2.











Case ρn≠0: By Lemmas 3 and 4, we get


‖Uλnan−z‖2≤‖an−z‖2−λn(1−κ−λn)‖an−Uan‖2=‖xn−ρnA∗(I−T)Axn‖2−λn(1−κ−λn)‖an−Uan‖2≤‖xn−z‖2−(1−τ)2‖(I−T)Axn‖44‖A∗(I−T)Axn‖2−λn(1−κ−λn)‖an−Uan‖2≤‖xn−z‖2.











Thus ‖Uλan−z‖≤‖xn−z‖. Observe that


‖xn+1−z‖=‖(1−βn)yn+βnf(yn)−z‖≤(1−βn)‖yn−z‖+βn‖f(yn)−z‖≤(1−βn)‖yn−z‖+βn‖f(yn)−f(z)‖+βn‖f(z)−z‖≤‖yn−z‖+βn‖f(z)−z‖=‖αnf(xn)+(1−αn)Uλnan−z‖+βn‖f(z)−z‖≤αn‖f(xn)−z‖+(1−αn)‖Uλnan−z‖+βn‖f(z)−z‖≤αn‖f(xn)−f(z)‖+αn‖f(z)−z‖+(1−αn)‖Uλnan−z‖+βn‖f(z)−z‖≤ηαn‖xn−z‖+αn‖f(z)−z‖+(1−αn)‖Uλnan−z‖+βn‖f(z)−z‖≤ηαn‖xn−z‖+αn‖f(z)−z‖+(1−αn)‖xn−z‖+βn‖f(z)−z‖=(1−(1−η)αn)‖xn−z‖+αn‖f(z)−z‖+βn‖f(z)−z‖≤max{‖xn−z‖,11−η‖f(z)−z‖}+βn‖f(z)−z‖≤max{‖x0−z‖,11−η‖f(z)−z‖}+‖f(z)−z‖∑n=0∞βn.











Thus {xn} is bounded. Moreover, {f(xn)}, {yn} and {f(yn)} are also bounded.



Step 2. Show that, if the subsequence {xnk+1} of {xn} weakly converges to q∈Fix(f), then the subsequence {ynk} of {yn} weakly converges to q. Now, we consider


⟨xnk+1−ynk,q⟩=βnk⟨ynk−f(ynk),q⟩=βnk‖ynk−f(ynk)+q‖2+‖ynk−f(ynk)−q‖24.











Since {yn} and {f(yn)} are bounded, {ynk} weakly converges to q.



Step 3. Show that the inequality holds:


‖xn+1−x∗‖2≤(1−αn)‖xn−x∗‖2+2αn⟨f(xn)−x∗,yn−x∗⟩+2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2.











Case ρn=0: By Lemma 3, we get


‖xn+1−x∗‖2=‖(1−βn)yn+βnf(yn)−x∗‖2≤((1−βn)‖yn−x∗‖+βn‖f(yn)−x∗‖)2≤((1−βn)‖yn−x∗‖+βn‖f(yn)−f(x∗)‖+βn‖f(x∗)−x∗‖)2≤(‖yn−x∗‖+βn‖f(x∗)−x∗‖)2=‖yn−x∗‖2+2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2=‖αnf(xn)+(1−αn)Uλnxn−x∗‖2+2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2=‖αn(f(xn)−x∗)+(1−αn)(Uλnxn−x∗)‖2+2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2≤(1−αn)2‖Uλnxn−x∗‖2+2αn⟨f(xn)−x∗,yn−x∗⟩+2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2≤(1−αn)2(‖xn−x∗‖2−λn(1−κ−λn)‖xn−Uxn‖2)+2αn⟨f(xn)−x∗,yn−x∗⟩+βn2‖f(x∗)−x∗‖2+2βn‖yn−x∗‖‖f(x∗)−x∗‖.











Case ρn≠0: By Lemmas 3 and 4, we get


‖xn+1−x∗‖2=‖(1−βn)yn+βnf(yn)−x∗‖2≤((1−βn)‖yn−x∗‖+βn‖f(yn)−x∗‖)2≤((1−βn)‖yn−x∗‖+βn‖f(yn)−f(x∗)‖+βn‖f(x∗)−x∗‖)2≤‖yn−x∗‖2+2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2=‖αnf(xn)+(1−αn)Uλnan−x∗‖2+2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2=‖αn(f(xn)−x∗)+(1−αn)(Uλnan−x∗)‖2+2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2≤(1−αn)2‖Uλnan−x∗‖2+2αn⟨f(xn)−x∗,yn−x∗⟩+2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2≤(1−α)2(‖an−x∗‖2−λn(1−κ−λn)‖an−Uan‖2)+2αn⟨f(xn)−x∗,yn−x∗⟩+βn2‖f(x∗)−x∗‖2+2βn‖yn−x∗‖‖f(x∗)−x∗‖≤(1−α)2(‖xn−x∗‖2−(1−τ)2‖(I−T)Axn‖44‖A∗(I−T)Axn‖2−λn(1−κ−λn)‖an−Uan‖2)+2αn⟨f(xn)−x∗,yn−x∗⟩+βn2‖f(x∗)−x∗‖2+2βn‖yn−x∗‖‖f(x∗)−x∗‖.











Therefore, we have


‖xn+1−x∗‖2≤(1−αn)‖xn−x∗‖2+2αn⟨f(xn)−x∗,yn−x∗⟩  +2βn‖yn−x∗‖‖f(x∗)−x∗‖+βn2‖f(x∗)−x∗‖2.











Step 4. Show that xn→x∗ for each n≥0. Let sn=‖xn−x∗‖. In this step, we consider two cases.



Case 1. Assume that there is n0∈N such that {sn} is decreasing for all n≥n0. Since {sn} is monotonic and bounded, {sn} is convergent. First, we show that


lim supn→∞⟨f(x∗)−x∗,yn−x∗⟩≤0.











There are two parts to show this.



Part 1. Let ρn=0. Since {f(xn)} and {yn} are bounded and Step 3, we get


λn(1−κ−λn)‖xn−Uxn‖2≤sn−sn+1+αnM+βnN,








where


M=supn∈N{2⟨f(xn)−x∗,yn−x∗⟩}








and


N=supn∈N{2‖yn−x∗‖‖f(x∗)−x∗‖+βn‖f(x∗)−x∗‖2}.











Since {sn} is convergent and limn→∞αn=0, we have limn→∞‖xn−Uxn‖=0. By since ρn=0, we have


limn→∞‖(I−T)Axn‖=0.











By the boundedness of {xn}, there is a subsequence {xnk} of {xn} such that xnk⇀q and


lim supn→∞⟨f(x∗)−x∗,xn−x∗⟩=limk→∞⟨f(x∗)−x∗,xnk−x∗⟩=⟨f(x∗)−x∗,q−x∗⟩.











Since limn→∞‖xn−Uxn‖=0 and the demiclosedness of I−U at zero, we have q∈Fix(U). Since A is a bounded linear operator, A is continuous. Therefore, xnk⇀q imply Axnk⇀Aq. Form limn→∞‖(I−T)Axn‖=0 and the demiclosedness of I−T at zero, it follows that Aq∈Fix(T) and so q∈S. By Step 2, it follows that


0≥⟨f(x∗)−x∗,q−x∗⟩=limk→∞⟨f(x∗)−x∗,xnk−x∗⟩=lim supn→∞⟨f(x∗)−x∗,xn−x∗⟩=lim supn→∞⟨f(x∗)−x∗,yn−1−x∗⟩.











Part 2. Let ρn≠0. Since {f(xn)} and {yn} are bounded, by Step 3, we get


λn(1−κ−λn)‖an−Uan‖2+(1−τ)2‖(I−T)Axn‖44‖A∗(I−T)Axn‖2≤sn−sn+1+αnM+βnN,








where


M=supn∈N{2⟨f(xn)−x∗,yn−x∗⟩}








and


N=supn∈N{2‖yn−x∗‖‖f(x∗)−x∗‖+βn‖f(x∗)−x∗‖2}.











Thus we obtain


0≤λn(1−κ−λn)‖an−Uan‖2≤sn−sn+1+αnM+βnN








and


0≤(1−τ)2‖(I−T)Axn‖44‖A∗(I−T)Axn‖2≤sn−sn+1+αnM+βnN.











Since {sn} is convergent and limn→∞αn=0, we obtain


limn→∞‖an−Uan‖=limn→∞‖(I−T)Axn‖4‖A∗(I−T)Axn‖2=0.











Moreover, we get limn→∞‖(I−T)Axn‖=0. However, it follows that


‖(I−T)Axn‖=‖A‖‖(I−T)Axn‖21‖A‖‖(I−T)Axn‖≤‖A‖‖(I−T)Axn‖2‖A∗(I−T)Axn‖.











Thus we have


limn→∞‖xn−an‖=limn→∞(1−τ)‖(I−T)Axn‖22‖A∗(I−T)Axn‖=0.











By the boundedness of {xn}, there is a subsequence {xnk} of {xn} such that xnk⇀q. Since limn→∞‖xn−an‖=0 and xnk⇀q, there is a subsequence {ank} of {an} such that ank⇀q and


lim supn→∞⟨f(x∗)−x∗,xn−x∗⟩=limk→∞⟨f(x∗)−x∗,xnk−x∗⟩=⟨f(x∗)−x∗,q−x∗⟩.











Since limn→∞‖an−Uan‖=0, by the demiclosedness of I−U at zero, we have q∈Fix(U). Since A is a bounded linear operator, A is continuous. Therefore, xnk⇀q imply Axnk⇀Aq. Form limn→∞‖(I−T)Axn‖=0 and the demiclosedness of I−T at zero, we have Aq∈Fix(T) and q∈S. By Step 2, it follow that


0≥⟨f(x∗)−x∗,q−x∗⟩=limk→∞⟨f(x∗)−x∗,xnk−x∗⟩=lim supn→∞⟨f(x∗)−x∗,xn−x∗⟩=lim supn→∞⟨f(x∗)−x∗,yn−1−x∗⟩.











Second, we show that limn→∞‖xn+1−xn‖=0. There are two parts.



Part 1. If ρn=0, then we get


‖xn+1−xn‖=‖(1−βn)yn+βnf(yn)−xn‖≤(1−βn)‖yn−xn‖+βn‖f(yn)−xn‖=(1−βn)‖αnf(xn)+(1−αn)Uλnxn−xn‖+βn‖f(yn)−xn‖≤αn‖f(xn)−xn‖+(1−αn)‖xn−Uλnxn‖+βn‖f(yn)−xn‖=αn‖f(xn)−xn‖+λn‖xn−Uxn‖+βn‖f(yn)−xn‖.











Part 2. If ρn≠0, then we get


‖xn+1−xn‖≤‖(1−βn)yn+βnf(yn)−xn‖≤(1−βn)‖yn−xn‖+βn‖f(yn)−xn‖=(1−βn)‖αnf(xn)+(1−αn)Uλnan−xn‖+βn‖f(yn)−xn‖≤αn‖f(xn)−xn‖+(1−αn)‖xn−Uλnan‖+βn‖f(yn)−xn‖≤αn‖f(xn)−xn‖+‖xn−an‖+‖an−Uλnan‖+βn‖f(yn)−xn‖=αn‖f(xn)−xn‖+‖xn−an‖+λn‖an−Uan‖+βn‖f(yn)−xn‖.











Therefore, we have limn→∞‖xn+1−xn‖=0.



Third, we show that xn→x∗. We get the inequality:


lim supn→∞⟨f(x∗)−x∗,yn−x∗⟩≤0.











Now, we have


‖xn+1−x∗‖2≤(1−αn)‖xn−x∗‖2+2αnlim supk→∞⟨f(xk)−x∗,yk−x∗⟩ +βnsupk∈N{2‖yk−x∗‖‖f(x∗)−x∗‖+βk‖f(x∗)−x∗‖2}.











By Lemma 2, we have limn⟶∞sn=limn⟶∞‖xn−x∗‖=0 and so xn→x∗.



Case 2. Assume that there is not n0∈N such that {sn} is decreasing for all n≥n0. Thus there is a subsequence {sni+1} of {sn} such that sni+1<sni+1+1 for all i∈N.



First, we show that


lim supni→∞⟨f(x∗)−x∗,yni−x∗⟩≤0.











There are two parts.



Part 1. Let ρni=0. Since {f(xni)} and {yni} are bounded, by Step 3, we get


λni(1−κ−λni)‖xni−Uxni‖2≤sni−sni+1+αniM+βniN≤αniM+βniN,








where


M∈R=supni∈N{2⟨f(xni)−x∗,yni−x∗⟩}








and


N=supn∈N{2‖yni−x∗‖‖f(x∗)−x∗‖+βni‖f(x∗)−x∗‖2}.











Since limi→∞αni=0, we have


limi→∞‖xni−Uxni‖=0.











Since ρni=0, we have


limi→∞‖(I−TA)xni‖=0.











By the boundedness of {xni}, there is a subsequence {xnij} of {xni} such that xnij⇀q and


lim supi→∞⟨f(x∗)−x∗,xni−x∗⟩=limj→∞⟨f(x∗)−x∗,xnij−x∗⟩=⟨f(x∗)−x∗,q−x∗⟩.











Since limj→∞‖xnij−Uxnij‖=0 and the demiclosedness of I−U at zero, we have q∈Fix(U). Since A is a bounded linear operator, A is continuous. Therefore, xnij⇀q imply Axnij⇀Aq. Form limj→∞‖(I−T)Axnij‖=0 and the demiclosedness of I−T at zero, we have Aq∈Fix(T) and so q∈S. By Step 2, it follows that


0≥⟨f(x∗)−x∗,q−x∗⟩=limj→∞⟨f(x∗)−x∗,xnij−x∗⟩=lim supi→∞⟨f(x∗)−x∗,xni−x∗⟩=lim supi→∞⟨f(x∗)−x∗,yni−1−x∗⟩.











Part 2. Let ρni≠0. Since {f(xni)} and {yni} are bounded, by Step 3, we get


λni(1−κ−λni)‖ani−Uani‖2+(1−τ)2‖(I−T)Axni‖44‖A∗(I−T)Axni‖2≤sni−sni+1+αniM+βniN≤αniM+βniN,








where


M=supni∈N{2⟨f(xni)−x∗,yni−x∗⟩}








and


N=supn∈N{2‖yni−x∗‖‖f(x∗)−x∗‖+βni‖f(x∗)−x∗‖2}.











Then we obtain


0≤λni(1−κ−λni)‖ani−Uani‖2≤αniM+βniN








and


0≤(1−τ)2‖(I−T)Axni‖44‖A∗(I−T)Axni‖2≤αniM+βniN.











Since limi→∞αni=0, we obtain


limi→∞‖ani−Uani‖=limi→∞‖(I−T)Axni‖4‖A∗(I−T)Axni‖2=0.











Moreover, we get limn→∞‖(I−T)Axni‖=0. However, we have


‖(I−T)Axni‖=‖A‖‖(I−T)Axni‖21‖A‖‖(I−T)Axni‖≤‖A‖‖(I−T)Axni‖2‖A∗(I−T)Axni‖.











Thus we have


limi→∞‖xni+1−ani‖=limi→∞(1−τ)‖(I−T)Axni‖22‖A∗(I−T)Axni‖=0.











By the boundedness of {xni}, there is a subsequence {xnij} of {xni} and xnij⇀q. Since limi→∞‖xni−ani‖=0 and xnij⇀q, we have anij⇀q such that


lim supi→∞⟨f(x∗)−x∗,xni−x∗⟩=limj→∞⟨f(x∗)−x∗,xnij−x∗⟩=⟨f(x∗)−x∗,q−x∗⟩.











Since limi→∞‖ani−Uani‖=0, by the demiclosedness of I−U at zero, we have q∈Fix(U). Since A is a bounded linear operator, A is continuous. Therefore, xnij⇀q imply Axnij⇀Aq. Form limi→∞‖(I−T)Axni‖=0 and the demiclosedness of I−T at zero, we have Aq∈Fix(T) and so q∈S. By Step 2, it follows that


0≥⟨f(x∗)−x∗,q−x∗⟩=limj→∞⟨f(x∗)−x∗,xnij−x∗⟩=lim supi→∞⟨f(x∗)−x∗,xni−x∗⟩=lim supi→∞⟨f(x∗)−x∗,yni−1−x∗⟩.











Second, we show that


limi→∞‖xni+1−xni‖=0.











There are two parts.



Part 1. If ρni=0, then we compute


‖xni+1−xni‖≤‖(1−βni)yni+βnif(yni)−xni‖≤(1−βni)‖yni−xni‖+βni‖f(yni)−xni‖=(1−βni)‖αnif(xni)+(1−αni)Uλnixni−xni‖+βni‖f(yni)−xni‖≤αni‖f(xni)−xni‖+(1−αni)‖xni−Uλnixni‖+βni‖f(yni)−xni‖=αni‖f(xni)−xni‖+λni‖xni−Uxni‖+βni‖f(yni)−xni‖.











Part 2. If ρni≠0, then we compute


‖xni+1−xni‖≤‖(1−βni)yni+βnif(yni)−xni‖≤(1−βni)‖yni−xni‖+βni‖f(yni)−xni‖=(1−βni)‖αnif(xni)+(1−αni)Uλniani−xni‖+βni‖f(yni)−xni‖≤αni‖f(xni)−xni‖+(1−αni)‖xni−Uλniani‖+βni‖f(yni)−xni‖≤αni‖f(xni)−xni‖+‖xni−ani‖+‖ani−Uλnani‖+βni‖f(yni)−xni‖=αni‖f(xni)−xni‖+‖xni−ani‖+λni‖ani−Uani‖+βni‖f(yni)−xni‖.











Therefore, we have


limi→∞‖xni+1−xni‖=0.











Third, we show that xn→x∗. From the inequality sni+1≤sni+1+1, we get


lim supi→∞⟨f(x∗)−x∗,yni−x∗⟩≤0.











Observe that


αnisni+1+(1−αni)(sni+1−sni)≤2αnilim supi→∞⟨f(x∗)−x∗,yni−x∗⟩+βnisupk∈N{2‖yk−x∗‖‖f(x∗)−x∗‖+βk‖f(x∗)−x∗‖2}.











Then we have


0≤sni+1≤2lim supi→∞⟨f(x∗)−x∗,yni−x∗⟩+βnisupk∈N{2‖yk−x∗‖‖f(x∗)−x∗‖+βk‖f(x∗)−x∗‖2}.











Therefore, since {yn} is bounded and limn→∞βn=0, from limn→∞sn=limn→∞‖xn−x∗‖=0, it follows that xn→x∗. This completes the proof. ☐






4. Special Cases


We consider some special cases of Theorem 1 based on some relations of directed operators, τ-demicontractive operators and quasi-nonexpansive operators. See Figure 1. For some details, see Remark 2. Therefore, the following results follows easily from Theorem 1:



Case 1. Assume that U:H→H is a quasi-nonexpansive operator such that I−U is demiclosed at zero and T:K→K is a quasi-nonexpansive operator such that I−T is demiclosed at zero, respectively.



Corollary 1.

Assume that S is a set of all solutions of the problem (6) such that S≠∅. Suppose that


∑n=0∞βn<∞,limn→∞αn=0,∑n=0∞αn=∞.











Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗∈S and, also, x∗=PSf(x∗) is a solution of the variational inequality (12).





Case 2. Assume that U:H→H is a quasi-nonexpansive operator such that I−U is demiclosed at zero and T:K→K is a directed operator such that I−T is demiclosed at zero, respectively.



Corollary 2.

Assume that S is a set of all solutions of the problem (6) such that S≠∅. Suppose that


∑n=0∞βn<∞,limn→∞αn=0,∑n=0∞αn=∞











Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗∈S and, also, x∗=PSf(x∗) is a solution of the variational inequality (12).





Case 3. Assume that U:H→H is a directed operator such that I−U is demiclosed at zero and T:K→K is a quasi-nonexpansive operator such that I−T is demiclosed at zero, respectively.



Corollary 3.

Assume that S is a set of all solutions of the problem (6) such that S≠∅. Suppose that


∑n=0∞βn<∞,limn→∞αn=0,∑n=0∞αn=∞.











Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗∈S and, also, x∗=PSf(x∗) is a solution of the variational inequality (12).





Case 4. Assume that U:H→H is a quasi-nonexpansive operator such that I−U is demiclosed at zero and T:K→K is a τ-demicontractive operator such that I−T is demiclosed at zero, respectively.



Corollary 4.

Assume that S is a set of all solutions of the problem (6) such that S≠∅. Suppose that


∑n=0∞βn<∞,limn→∞αn=0,∑n=0∞αn=∞.











Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗∈S and, also, x∗=PSf(x∗) is a solution of the variational inequality (12).





Case 5. Assume that U:H→H is a τ-demicontractive operator such that I−U is demiclosed at zero and T:K→K is a quasi-nonexpansive operator such that I−T is demiclosed at zero, respectively.



Corollary 5.

Assume that S is a set of all solutions of the problem (6) such that S≠∅. Suppose that


∑n=0∞βn<∞,limn→∞αn=0,∑n=0∞αn=∞.











Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗∈S and, also, x∗=PSf(x∗) is a solution of the variational inequality (12).





Case 6. Assume that U:H→H is a directed operator such that I−U is demiclosed at zero and T:K→K is a directed operator such that I−T is demiclosed at zero, respectively.



Corollary 6.

Assume that S is a set of all solutions of the problem (6) such that S≠∅. Suppose that


∑n=0∞βn<∞,limn→∞αn=0,∑n=0∞αn=∞.











Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗∈S and, also, x∗=PSf(x∗) is a solution of the variational inequality (12).





Case 7. Assume that U:H→H is a directed operator such that I−U is demiclosed at zero and T:K→K is a τ-demicontractive operator such that I−T is demiclosed at zero, respectively.



Corollary 7.

Assume that S is a set of all solutions of the problem (6) such that S≠∅. Suppose that


∑n=0∞βn<∞,limn→∞αn=0,∑n=0∞αn=∞.











Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗∈S and, also, x∗=PSf(x∗) is a solution the variational inequality (12).





Case 8. Assume that U:H→H is a τ-demicontractive operator such that I−U is demiclosed at zero and T:K→K is a directed operator such that I−T is demiclosed at zero, respectively.



Corollary 8.

Assume that S is a set of all solutions of the problem (6) such that S≠∅. Suppose that


∑n=0∞βn<∞,limn→∞αn=0,∑n=0∞αn=∞.











Then the sequence {xn} generated by the algorithm (11) converges strongly to x∗∈S and, also, x∗=PSf(x∗) is a solution of the variational inequality (12).






5. Application to Signal Processing


For most of the contents in this section, we follow those of Cui and Ceng [21]. We consider some applications of our algorithm to inverse problems occurring from signal processing. For example, we consider the following equation:


y=Ax+ϵ,



(13)




where x∈RN is recovered, y∈Rk is noisy observations, A:RN→Rk is a bounded linear observation operator. It determines a process with loss of information. For finding solutions of the linear inverse problems (13), a successful one of some models is the convex unconstrained minimization problem:


minx∈RN12‖y−Ax‖2+υ‖x‖1,



(14)




where υ>0 and ‖·‖1 is the ℓ1 norm. It is well know that the problem (14) is equivalent to the constrained least squares problem:


minx∈RN12‖y−Ax‖2subjecttox∈C,



(15)




where C={x∈RN:‖x‖1≤t}. The problem (15) is a particular case of the problem (1), where Q={y}. Therefore, we can solve the problem by the proposed algorithm. In this case, U=PC is the projection onto the closed ℓ1-ball in RN and T=PQ, see [22,23]. Denoted PCλn:=(1−λn)I+λnPC for each n≥1, where λn∈(0,1). Then we have the following algorithm:


yn=αnf(xn)+(1−αn)PCλn(xn−ρnA∗(I−PQ)Axn),xn+1=(1−βn)yn+βnf(yn),∀n≥0,



(16)




where


ρn=(1−τ)‖(Axn−y)‖22‖A∗(Axn−y)‖2,Axn≠y,0otherwise,








f is a contraction operator on C and the sequences {αn},{βn} in [0,1) are such that


limn→∞αn=0,∑n=0∞αn=∞,∑n=0∞βn<∞.











Theorem 2.

Then the sequence {xn} generated by the algorithm (16) converges strongly to a solution x∗ of the problem (15).





Example 1.

Let A be the random matrix (k×N) such that each entire is in [0,1]. Let y=Ax∗ be such that ‖x∗‖1≤t. Set up the problem (15). We choose λ=12, α=1n, β=1n2, u=1⋯1†, f(x)=(x−p)/4+p and initial x1 randomly be such that ‖p‖1,‖x1‖1≤t. Thus C={x∈RN:‖x‖1≤t}. See Figure 2 and Figure 3.





Remark 4.

Figure 2, Figure 3, Figure 4 and Figure 5 show that the sequence {βn} improves the convergence profile of [14,15]. Our algorithm (Algorithm 5) converges faster than Cui and Wang’s algorithm and Boikanyo’s algorithm. Moreover, we compared our algorithm with the forward-backward splitting algorithm [24] and the fast iterative shrinkage-thresholding algorithm (FISTA) [25]. Sometimes, our algorithm converges faster than other algorithms, Figure 4 and Figure 5, but, sometimes, our algorithm converges slower than other algorithms, Figure 2 and Figure 3 . It depends on the control condition. This experiment is an example for the convergence of some algorithms.







	Algorithm 5: A General Viscosity Algorithms (Our Algorithm)



	  Input: Set λn∈(0,1),αn,βn∈[0,1) such that limn→∞αn=0,∑n=0∞αn=∞,∑n=0∞βn<∞. Choose x0∈H.

1 for n=1,2,⋯do

2  if Axn≠y, then

3    ρn=(1−τ)‖(Axn−y)‖22‖A∗(Axn−y)‖2

4  else

5    ρn=0

6  end

7  yn=αnf(xn)+(1−αn)PCλn(xn−ρnA∗(Axn−y))

8  xn+1=(1−βn)yn+βnf(yn)

9 end for







6. Conclusions


First, we proposed a new algorithm for demicontractive operators and improved that the sequence generated by our algorithm strongly converges to a solution of the problem (6). Moreover, our algorithm does not compute the norm of the bounded linear operator. Next, we obtained some results for many cases of operators such as a directed operator, a quasi-nonexpansive operator, a nonexpansive operator and a contraction operator.
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Figure 1. Diagram relations operator. 
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Figure 2. Case N=t=10 and k=9. 
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Figure 3. Case N=t=10 and k=10. 
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Figure 4. Case N=t=100 and k=90. 
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Figure 5. Case N=t=100 and k=100. 
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