Sharpe’s Ratio for Oriented Fuzzy Discount Factor
Abstract
:1. Introduction
2. Ordered Fuzzy Numbers—Basic Facts
2.1. Definition of Ordered Fuzzy Numbers
2.2. Relation “Greater Than or Equal to” for Ordered Fuzzy Numbers
- If , then
- If , then
3. Imprecision Assessment
4. Oriented Fuzzy Present Value
- is the market price.
- is an interval of all possible PV values.
- is an interval of all prices that do not perceptibly differ from the market price .
- a block of shares in Assecopol (ACP);
- a block of shares in ENERGA (ENG);
- a block of shares in JSW (JSW);
- a block of shares in KGHM (KGH);
- a block of shares in LOTOS (LTS);
- a block of shares in ORANGEPL (OPL); and
- a block of shares in PKOBP (PKO).
- The companies KGH, JWS, OPL and PKO are evaluated by positively oriented PVs, predicting a rise in market price.
- The companies ACP, CPS, ENG, LTS and PGE are evaluated by negatively oriented PV, predicting a fall in market price.
5. Oriented Fuzzy Discount Factor
6. Investment Recommendations
- Buy—suggesting that evaluated security is significantly undervalued;
- Accumulate—suggesting that evaluated security is undervalued;
- Hold—suggesting that evaluated security is fairly valued;
- Reduce—suggesting that evaluated security is overvalued; and
- Sell—suggesting that evaluated security is significantly overvalued.
- denotes the advice buy;
- denotes the advice accumulate;
- denotes the advice hold;
- denotes the advice reduce; and
- denotes the advice sell.
6.1. Adviser’s Counsel Dependent on Expected Return Rate
6.2. Adviser’s Counsel Dependent on Expected Discount Factor
6.3. Adviser’s Counsel Dependent on Fuzzy Expected Discount Factor
6.4. Recommendation Risk
7. Sharpe’s Ratio
8. Case Study
- The most advisable is the investment decision “Reduce”.
- The investment decision “Sell” is not much worse.
- The investment decisions “Hold” or “Accumulate” cannot be excluded.
- The investment decision “Buy” should be rejected.
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–629. [Google Scholar] [CrossRef]
- Kosiński, W.; Słysz, P. Fuzzy numbers and their quotient space with algebraic operations. Bull. Pol. Acad. Sci. 1993, 41, 285–295. [Google Scholar]
- Kosiński, W.; Prokopowicz, P.; Ślęzak, D. Fuzzy Numbers with Algebraic Operations: Algorithmic Approach; Klopotek, M., Wierzchoń, S.T., Michalewicz, M., Eds.; Physica Verlag: Heidelberg, Germany, 2002; pp. 311–320. [Google Scholar]
- Kosiński, W.; Prokopowicz, P.; Ślęzak, D. Ordered fuzzy numbers. Bull. Pol. Acad. Sci. 2003, 51, 327–339. [Google Scholar]
- Kosiński, W. On fuzzy number calculus. Int. J. Appl. Math. Comput. Sci. 2006, 16, 51–57. [Google Scholar]
- Prokopowicz, P.; Prokopowicz, P.; Czerniak, J.; Mikołajewski, D.; Apiecionek, Ł.; Slezak, D. (Eds.) Theory and Applications of Ordered Fuzzy Number. Tribute to Professor Witold Kosiński; Studies in Fuzziness and Soft Computing, 356; Springer Verlag: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Piasecki, K. Revision of the Kosiński’s Theory of Ordered Fuzzy Numbers. Axioms 2018, 7. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Grundbegriffe der Wahrscheinlichkeitsrechnung; Julius Springer: Berlin, Germany, 1933. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Foundations of the Theory of Probability; Chelsea Publishing Company: New York, NY, USA, 1956. [Google Scholar]
- Piasecki, K. Basis of financial arithmetic from the viewpoint of the utility theory. Oper. Res. Dec. 2012, 22, 37–53. [Google Scholar] [CrossRef]
- Ward, T.L. Discounted fuzzy cash flow analysis. Fall Ind. Eng. Conf. Proc. 1985, 476–481. [Google Scholar] [CrossRef]
- Buckley, J.J. The Fuzzy Mathematics of Finance. Fuzzy Sets Syst. 1987, 21, 257–273. [Google Scholar] [CrossRef]
- Greenhut, J.G.; Norman, G.; Temponi, C.T. Towards a fuzzy theory of oligopolistic competition. IEEE Proc. Isuma-Nafips 1995, 286–291. [Google Scholar] [CrossRef]
- Sheen, J.N. Fuzzy financial profitability analyses of demand side management alternatives from participant perspective. Inf. Sci. 2005, 169, 329–364. [Google Scholar] [CrossRef]
- Gutierez, I. Fuzzy numbers and Net Present Value. Scand. J. Mgmt. 1989, 5, 149–159. [Google Scholar] [CrossRef]
- Kuchta, D. Fuzzy capital budgeting. Fuzzy Sets Syst. 2000, 111, 367–385. [Google Scholar] [CrossRef]
- Lesage, C. Discounted cash-flows analysis. An interactive fuzzy arithmetic approach. Eur. J. Econ. Soc. Syst. 2001, 15, 49–68. [Google Scholar] [CrossRef]
- Huang, X. Two new models for portfolio selection with stochastic returns taking fuzzy information. Eur. J. Oper. Res. 2007, 180, 396–405. [Google Scholar] [CrossRef]
- Tsao, C.T. Assessing the probabilistic fuzzy Net Present Value for a capital, Investment choice using fuzzy arithmetic. J. Chin. Ins. Ind. Eng. 2005, 22, 106–118. [Google Scholar] [CrossRef]
- Calzi, M.L. Towards a general setting for the fuzzy mathematics of finance. Fuzzy Sets Syst. 1990, 35, 265–280. [Google Scholar] [CrossRef]
- Piasecki, K. Behavioural present value. Ssrn Electron. J. 2011, 1, 1–17. [Google Scholar] [CrossRef]
- Baerecke, T.; Bouchon-Meunier, B.; Detyniecki, M. Fuzzy present value. In Proceedings of the 2011 IEEE Symposium Computational Intelligence for Financial Engineering and Economics, Paris, France, 11–15 April 2011; pp. 1–6. [Google Scholar]
- Biswas, P.; Pramanik, S. Fuzzy approach to replacement problem with value of money changes with time. Int. J. Comput. Appl. 2011, 30, 28–33. [Google Scholar] [CrossRef]
- Nosratpour, M.; Nazeri, A.; Meftahi, H. Fuzzy net present value for engineering analysis. Manag. Sci. Lett. 2012, 2, 2153–2158. [Google Scholar] [CrossRef]
- Piasecki, K. Effectiveness of securities with fuzzy probabilistic return. Oper. Res. Decis. 2011, 21, 65–78. [Google Scholar]
- Li, X.; Quin, Z.; Kar, S. Mean-Variance-Skewness model for portfolio selection with fuzzy returns. Eur. J. Oper. Res. 2010, 202, 239–247. [Google Scholar] [CrossRef]
- Quin, Z.; Wen, M.; Gu, C. Mean-absolute deviation portfolio selection model with fuzzy returns. Iran. J. Fuzzy Syst. 2011, 8, 61–75. [Google Scholar]
- Tsaur, R. Fuzzy portfolio model with different investor risk attitudes. Eur. J. Oper. Res. 2013, 227, 385–390. [Google Scholar] [CrossRef]
- Tanaka, H.; Guo, P.; Turksen, B. Portfolio selection based on fuzzy probabilities and possibility distributions. Fuzzy Sets Syst. 2000, 111, 387–397. [Google Scholar] [CrossRef]
- Duan, L.; Stahlecker, P. A portfolio selection model using fuzzy returns. Fuzzy Opt. Dec. Mak. 2011, 10, 167–191. [Google Scholar] [CrossRef]
- Guo, H.; Sun, B.; Karimi, H.R.; Ge, Y.; Jin, W. Fuzzy investment portfolio selection models based on interval analysis approach. Math. Probl. Eng. 2012. [Google Scholar] [CrossRef]
- Gupta, P.; Mittal, G.; Mehlawat, M.K. Multiobjective expected value model for portfolio selection in fuzzy environment. Optim. Lett. 2013, 7, 1765–1791. [Google Scholar] [CrossRef]
- Gupta, P.; Mittal, G.; Saxena, A. Asset portfolio optimization using fuzzy mathematical programming. Inf. Sci. 2008, 178, 1734–1755. [Google Scholar] [CrossRef]
- Huang, X.; Shen, W. Multi-period mean-variance model with transaction cost for fuzzy portfolio selection. In Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, Shandong, China, 10–12 August 2010. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, L. Comparative Research of Portfolio Model Using Fuzzy Theory. In Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China, 24–27 August 2007. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhang, W.G. Fuzzy portfolio optimization model under real constraints. Insur. Math. Econ. 2013, 53, 704–711. [Google Scholar] [CrossRef]
- Wu, X.L.; Liu, Y.K. Optimizing fuzzy portfolio selection problems by parametric quadratic programming. Fuzzy Optim. Decis. Mak. 2012, 11, 411–449. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, S. On fuzzy portfolio selection problems. Fuzzy Optim. Decis. Mak. 2002, 1, 361–377. [Google Scholar] [CrossRef]
- Mehlawat, M.K. Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Inf. Sci. 2016, 345, 9–26. [Google Scholar] [CrossRef]
- Kahraman, C.; Ruan, D.; Tolga, E. Capital budgeting techniques using discounted fuzzy versus probabilistic cash flows. Inf. Sci. 2002, 142, 57–76. [Google Scholar] [CrossRef]
- Fang, Y.; Lai, K.K.; Wang, S. Fuzzy Portfolio Optimization: Theory and Methods; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin, Germany, 2008; Volume 609. [Google Scholar]
- Gupta, P.; Mehlawat, M.K.; Inuiguchi, M.; Chandra, S. Fuzzy Portfolio Optimization: Advances in Hybrid Multi-criteria Methodologies; Studies in Fuzziness and Soft Computing; Springer: Berlin, Germany, 2014; Volume 316. [Google Scholar] [CrossRef]
- Kosko, B. Fuzziness vs probability. Int. J. Gen. Syst. 1990, 17, 211–240. [Google Scholar] [CrossRef]
- Hiroto, K. Concepts of probabilistic sets. Fuzzy Sets Syst. 1981, 5, 31–46. [Google Scholar] [CrossRef]
- Hao, F.F.; Liu, Y.K. Portfolio Selection Problem in Fuzzy Random Decision Systems. In Proceedings of the 3rd International Conference on Innovative Computing Information and Control, Dalian, Liaoning, China, 11–14 July 2008. [Google Scholar] [CrossRef]
- Hasuike, T.; Katagiri, H.; Ishii, H. Portfolio selection problems with random fuzzy variable returns. In Proceedings of the 2007 IEEE International Fuzzy Systems Conference, London, UK, 23–26 July 2007. [Google Scholar] [CrossRef]
- Piasecki, K.; Siwek, J. Two-Asset Portfolio with Triangular Fuzzy Present Values—An Alternative Approach; Contemporary Trends in Accounting, Finance and Financial Institutions. Proceedings from the International Conference on Accounting, Finance and Financial Institutions (ICAFFI), Poznan 2016; Choudhry, T., Mizerka, J., Eds.; Springer International Publishing: Berlin, Germany, 2018; pp. 11–26. [Google Scholar] [CrossRef]
- Siwek, J. Multiple asset portfolio with present value given as a discrete fuzzy number. MME 2017, 2017, 661–666. [Google Scholar]
- Piasecki, K. On Imprecise Investment Recommendations. Stud. Logic Gramm. Rhetor. 2014, 37, 179–194. [Google Scholar] [CrossRef]
- Sharpe, W.F. Mutual fund performance. J. Bus. 1966, 19, 119–138. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fuzzy real algebra: Some results. Fuzzy Set. Syst. 1979, 2, 327–348. [Google Scholar] [CrossRef]
- Klir, G.J. Developments in uncertainty-based information. Adv. Comput. 1993, 36, 255–332. [Google Scholar]
- De Luca, A.; Termini, S. A definition of a non-probabilistic entropy in the settings of fuzzy set theory. Inf. Control 1972, 20, 301–312. [Google Scholar] [CrossRef]
- De Luca, A.; Termini, S. Entropy and energy measures of fuzzy sets. In Advances in Fuzzy Set Theory and Applications; Gupta, M.M., Ragade, R.K., Yager, R.R., Eds.; North-Holland: Amsterdam, The Netherlands, 1979; pp. 321–338. [Google Scholar]
- Kosko, B. Fuzzy entropy and conditioning. Inf. Sci. 1986, 40, 165–174. [Google Scholar] [CrossRef]
- Łyczkowska-Hanćkowiak, A.; Piasecki, K. On representation of Japanese candlesticks by ordered fuzzy numbers. In 9th International Scientific Conference “Analysis of International Relations 2018. Methods and Models of Regional Development. Winter Edition”; Szkutnik, W., Ed.; University of Economics in Katowice Publishing: Katowice, Poland, 2018; pp. 61–68. [Google Scholar]
- Nison, S. Japanese Candlestick Charting Techniques; New York Institute of Finance: New York, NY, USA, 1991. [Google Scholar]
- Von Mises, L. The Ultimate Foundation of Economic Science; An Essay on Method; Liberty Fund: Carmel, IN, USA, 1962. [Google Scholar]
- Kaplan, S.; Barish, N.N. Decision-Making Allowing Uncertainty of Future Investment Opportunities. Manag. Sci. 1967, 13, 569–577. [Google Scholar] [CrossRef]
- Von Mises, L. Probability, Statistics and Truth; Dover Publications: Mineola, NY, USA, 1957; Available online: https://www.maa.org/press/maa-reviews/probability-statistics-and-truth (accessed on 24 February 2019).
- Von Lambalgen, M. Randomness and foundations of probability: Von Mises’ axiomatization of random sequences. Inst. Math. Stat. Lect. Notes Monogr. Ser. 1996, 30, 347–367. [Google Scholar]
- Sadowski, W. Forecasting and Decision Making. Quantitative Wirtschafts-und Unternehmensforschung; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Czerwiński, Z. Enumerative induction and the theory of games. Studia Log. 1960, 10, 29–38. [Google Scholar] [CrossRef]
- Caplan, B. Probability, common sense, and realism: A reply to Hulsmann and Block. Q. J. Austrian Econ. 2001, 4, 69–86. [Google Scholar]
- Knight, F.H. Risk, Uncertainty, and Profit. Hart, Schaffner & Marx; Houghton Mifflin Company: Boston, MA, USA, 1921. [Google Scholar]
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91. [Google Scholar] [CrossRef]
Stock Company | ||||
---|---|---|---|---|
ACP | ||||
CPS | ||||
ENG | ||||
JSW | ||||
KGH | ||||
LTS | ||||
OPL | ||||
PGE | ||||
PKO |
Stock Company | |||
---|---|---|---|
ACP | |||
CPS | |||
ENG | |||
JSW | |||
KGH | |||
LTS | |||
OPL | |||
PGE | |||
PKO |
Recommendation Choice Function | Risk Evaluation | |||||||
---|---|---|---|---|---|---|---|---|
Stock Company | Variance | Energy Measure | Entropy Measure | |||||
ACP | 0 | 1 | 1 | 1 | 0 | 3 | 0 | |
CPS | 1 | 1 | 0 | 0 | 0 | 2 | 0 | |
ENG | 0.8965 | 1 | 0.1035 | 0.1035 | 0 | 2.1035 | 0.0662 | |
JSW | 1 | 1 | 0 | 0 | 0 | 2 | 0 | |
KGH | 1 | 1 | 0 | 0 | 0 | 2 | 0 | |
LTS | 1 | 1 | 0 | 0 | 0 | 2 | 0 | |
OPL | 0.3125 | 1 | 0.6875 | 0.6875 | 0 | 2.6875 | 0.2308 | |
PGE | 1 | 1 | 0 | 0 | 0 | 2 | 0 | |
PKO | 1 | 1 | 0 | 0 | 0 | 2 | 0 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łyczkowska-Hanćkowiak, A. Sharpe’s Ratio for Oriented Fuzzy Discount Factor. Mathematics 2019, 7, 272. https://doi.org/10.3390/math7030272
Łyczkowska-Hanćkowiak A. Sharpe’s Ratio for Oriented Fuzzy Discount Factor. Mathematics. 2019; 7(3):272. https://doi.org/10.3390/math7030272
Chicago/Turabian StyleŁyczkowska-Hanćkowiak, Anna. 2019. "Sharpe’s Ratio for Oriented Fuzzy Discount Factor" Mathematics 7, no. 3: 272. https://doi.org/10.3390/math7030272
APA StyleŁyczkowska-Hanćkowiak, A. (2019). Sharpe’s Ratio for Oriented Fuzzy Discount Factor. Mathematics, 7(3), 272. https://doi.org/10.3390/math7030272