Adaptive Makeup Transfer via Bat Algorithm
Abstract
:1. Introduction
2. Related Work
3. Makeup Transfer
3.1. Face Alignment
3.2. Layer Decomposition
3.3. Makeup Transfer on Skin Detail Layer
3.4. Makeup Transfer on Color Layer
3.5. Makeup Transfer on Face Structure Layer
4. Adaptive Makeup Transfer
4.1. Standard Bat Algorithm
Algorithm 1. Standard bat algorithm |
Begin For each bat, initialize the position, velocity, and parameters; While (stop criterion is met) Randomly generate the frequency for each bat with Equation (14) Update the velocity for each bat with Equation (13); If Update the temp position for the corresponding bat with Equation (15); Else Update the temp position for the corresponding bat with Equation (16); End Evaluate its quality/fitness; Re-update the position for the corresponding bat with Equation (18); If the position is updated Update the loudness and emission rate with Equations (19) and (20), respectively; End Rank the bats and save the best position; End Output the best position; End |
4.2. Evaluation Standard of Makeup
4.3. Adaptive Algorithm
5. Experiments and Results
5.1. The Contrast Experiment with Guo’s
5.2. The Application of Adaptive Algorithm on Different Makeup Styles
5.3. The Application of Adaptive Algorithm on Different Non-Makeup Images
5.4. Quantitative Comparisons
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, D.; Sim, T. Digital face makeup by example. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 18 August 2009; Volume 30, pp. 73–79. [Google Scholar]
- Tong, W.; Tang, C.; Brown, M.S.; Xu, Y. Example-based cosmetic transfer. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications, Maui, HI, USA, 4 December 2007; Volume 20, pp. 211–218. [Google Scholar]
- Li, C.; Zhou, K.; Lin, S. Simulating makeup through physics-based manipulation of intrinsic image layers. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 15 October 2015; pp. 4621–4629. [Google Scholar]
- Scherbaum, K.; Ritschel, T.; Hullin, M.; Thormählen, T.; Blanz, V.; Seidel, H.P. Computer-suggested facial makeup. Comput. Graph. Forum 2011, 30, 485–492. [Google Scholar] [CrossRef]
- Liu, L.; Xing, J.; Liu, S.; Xu, H.; Zhou, X.; Yan, S. Wow! you are so beautiful today! In Proceedings of the 21st ACM International Conference on Multimedia, New York, NY, USA, 21–5 October, 2013; Volume 11, pp. 3–12. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. A neural algorithm of artistic style. arXiv, 2015; arXiv:1508.06576. [Google Scholar] [CrossRef]
- Liu, S.; Ou, X.; Qian, R.; Wang, W.; Cao, X. Makeup like a superstar: Deep localized makeup transfer network. In Proceedings of the IJCAI’16 Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016. [Google Scholar]
- Li, T.; Qian, R.; Dong, C.; Liu, S.; Yan, Q.; Zhu, W.; Lin, L. Beautygan: Instance-level facial makeup transfer with deep generative adversarial network. In Proceedings of the MM 18 Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Korea, 22–26 October 2018; pp. 645–653. [Google Scholar]
- Cai, X.; Gao, X.; Xue, Y. Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int. J. Bio-Inspir. Comput. 2016, 8, 205–214. [Google Scholar] [CrossRef]
- Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.; Chen, J. Detection of malicious code variants based on deep learning. IEEE Trans. Ind. Inform. 2018, 14, 3187–3196. [Google Scholar] [CrossRef]
- Ni, J.; Xu, X.; Ding, S.; Sun, T. An adaptive extreme learning machine algorithm and its application on face recognition. Int. J. Comput. Math. 2015, 6, 611–619. [Google Scholar] [CrossRef]
- Yadav, N.; Srivastava, T. Convolution backprojection algorithm for tomographic image reconstruction with contourlet transform. Int. J. Comput. Math. 2016, 7, 156–165. [Google Scholar] [CrossRef]
- Abbasnejad, H.; Jafarian, A. A new method based on artificial neural networks for solving general nonlinear systems. Int. J. Comput. Math. 2018, 9, 207–218. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Cui, Z.; Zhou, X.; Zhao, J.; Li, Y. A new dynamic firefly algorithm for demand estimation of water resources. Inf. Sci. 2018, 438, 95–106. [Google Scholar] [CrossRef]
- Wang, G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High Performance Computing for Cyber Physical Social Systems by Using Evolutionary Multi-Objective Optimization Algorithm. IEEE Trans. Emerg. Top. Comput. 2018. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Cui, L.; Sun, H.; Zhao, J.; Wang, Y.; Xue, Y. A hybrid multi-objective firefly algorithm for big data optimization. Appl. Soft Comput. 2018, 69, 806–815. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Zhang, J.; Cui, Z.; Cai, X.; Zhang, W.; Chen, J. A Novel Bat Algorithm with Multiple Strategies Coupling for Numerical Optimization. Mathematics 2019, 7, 135. [Google Scholar] [CrossRef]
- Hui, W.; Wang, W.; Hui, S.; Rahnamayan, S. Firefly algorithm with random attraction. Int. J. Bio-Inspir. Comput. 2016, 8, 33–41. [Google Scholar]
- Yu, W.; Wang, J. A new method to solve optimisation problems via fixed point of firefly algorithm. Int. J. Bio-Inspir. Comput. 2018, 11, 249–256. [Google Scholar] [CrossRef]
- Mohammadi, R.; Javidan, R.; Keshtgari, M. An intelligent traffic engineering method for video surveillance systems over software defined networks using ant colony optimisation. Int. J. Bio-Inspir. Comout. 2018, 12, 173–185. [Google Scholar] [CrossRef]
- Parpinelli, R.S.; Plichoski, G.F.; Silva, R.S.D.; Narloch, P.H. A review of techniques for online control of parameters in swarm intelligence and evolutionary computation algorithms. Int. J. Bio-Inspir. Comput. 2019, 13, 1–20. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Shen, H.; Huang, M. A novel artificial bee colony optimiser with dynamic population size for multi-level threshold image segmentation. Int. J. Bio-Inspir. Comput. 2019, 13, 32–44. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Cui, Z.; Chen, J. Hybrid multi-objective cuckoo search with dynamical local search. Memet. Comput. 2018, 10, 199–208. [Google Scholar] [CrossRef]
- Wang, P.; Xue, F.; Li, H.; Cui, Z.; Xie, L.; Chen, J. A Multi-Objective DV-Hop Localization Algorithm Based on NSGA-II in Internet of Things. Mathematics 2019, 7, 184. [Google Scholar] [CrossRef]
- Cao, Y.; Ding, Z.; Xue, F.; Rong, X. An improved twin support vector machine based on multi-objective cuckoo search for software defect prediction. Int. J. Bio-Inspir. Comput. 2018, 11, 282–291. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, S.; Liu, H.; Xu, L. Artificial bee colony-based extraction of non-taxonomic relation between symptom and syndrome in TCM records. Int. J. Comput. Math. 2015, 6, 600–610. [Google Scholar] [CrossRef]
- Tang, H.; Sun, D. A multi-factor prediction algorithm in big data computing environments. Int. J. Comput. Math. 2016, 7, 312–322. [Google Scholar] [CrossRef]
- Pan, X.; Zhou, W.; Lu, Y.; Li, R. User collaborative filtering recommendation algorithm based on adaptive parametric optimisation SSPSO. Int. J. Comput. Math. 2017, 8, 580–592. [Google Scholar] [CrossRef]
- Bookstein, F.L. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern. Anal. Mach. Intell. 1989, 11, 567–585. [Google Scholar] [CrossRef]
- Milborrow, S.; Nicolls, F. Locating facial features with an extended active shape model. In Proceedings of the Computer Vision—ECCV 2008; Springer: Berlin/Heidelberg, Germany, October 2008; Volume 5305, pp. 504–513. [Google Scholar]
- Woodland, A.; Labrosse, F. On the separation of luminance from colour in images. In Proceedings of the Institute of Mathematics and its Applications—Vision, Video and Graphics, Edinburgh, UK, January 2005; pp. 29–36. [Google Scholar]
- Lukac, R.; Plataniotis, K.N. Color Image Processing: Methods and Applications, 1st ed.; CRC Press: Toronto, ON, Canada, 2006; pp. 155–198. [Google Scholar]
- Farbman, Z.; Fattal, R.; Lischinski, D.; Szeliski, R. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 2008, 27, 67:1–67:10. [Google Scholar] [CrossRef]
- Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Proceedings of the Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, April 2010; Volume 284, pp. 65–74. [Google Scholar]
- Cai, X.; Wang, H.; Cui, Z.; Cai, J.; Xue, Y.; Wang, L. Bat algorithm with triangle-flipping strategy for numerical optimization. Int. J. Mach. Learn. Cybern. 2018, 9, 199–215. [Google Scholar] [CrossRef]
- Cui, Z.; Li, F.; Zhang, W. Bat algorithm with principal component analysis. Int. J. Mach. Learn. Cybern. 2019, 10, 603–622. [Google Scholar] [CrossRef]
- Cui, Z.; Cao, Y.; Cai, X.; Cai, J.; Chen, J. Optimal LEACH protocol with modified bat algorithm for big data sensing systems in Internet of Things. J. Parallel. Distrb. Comput. 2018. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y.; Cai, X. A pigeon-inspired optimization algorithm for many-objective optimization problems. Sci. China Inf. Sci. 2019, 62, 070212. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Zhou, X.; Sun, H.; Zhao, J.; Yu, X.; Cui, Z. Firefly algorithm with neighborhood attraction. Inf. Sci. 2017, 382, 374–387. [Google Scholar] [CrossRef]
- Cui, Z.; Sun, B.; Wang, G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber–physical systems. J. Parallel. Distrb. Comput. 2017, 103, 42–52. [Google Scholar] [CrossRef]
Symbol | Definitions |
---|---|
the lightness layer | |
the face structure layer | |
the skin detail layer | |
gradient editing | |
the image pixel | |
a constant to balance and | |
a very small constant preventing division by zero | |
the coefficient for adjusting the effect of on | |
the pixel over the image | |
the weight value to control blending effect | |
the weight value during the transfer of skin details |
Search domain | |
Frequency | [0.0, 1.0] |
Initial | 1 |
Initial | 0.9 |
0.8 | |
0.9 | |
Dimension | 1 |
Fitness value evaluation times | 1000 |
Population size | 10 |
Method | 1 | 2 | 3 | 4 | 5 | Guo | |
---|---|---|---|---|---|---|---|
Result | |||||||
Weight value | 0.04942 | 0.06211 | 0.05080 | 0.04300 | 0.03100 | 0.8 | |
Beauty value | 54.2054 | 54.2700 | 54.1822 | 54.1819 | 54.1600 | 48.75 | |
Result |
A | Euramerica makeup style |
B | Euramerica smoky-eyes makeup style |
C | Asian smoky-eyes makeup style |
D | Asian retro makeup style |
E | Korean makeup style |
F | Japanese makeup style |
Method | A | B | C | D | E | F | |
---|---|---|---|---|---|---|---|
Result | |||||||
Weight value | 0.02029105 | 0.16022225 | 0.92002203 | 0.08074119 | 0.38217941 | 0.23897183 | |
Result | |||||||
Beauty value with makeup | 59.69 | 59.58 | 54.19 | 58.48 | 58.45 | 56.83 |
Method | a | b | c | d | e | Guo | |
---|---|---|---|---|---|---|---|
Result | |||||||
Beauty value without makeup | 61.5 | 49.77 | 58.08 | 54.16 | 51.13 | 52.48 | |
Weight value | 0.96340331 | 0.75844676 | 0.92040913 | 0.82734115 | 0.13291619 | 0.38217941 | |
Result | |||||||
Beauty value with makeup | 71.23 | 59.05 | 65.11 | 60.5 | 59.71 | 58.45 |
Much Better | Better | Same | Worse | Much Worse | |
---|---|---|---|---|---|
non-makeup | 53.71% | 34.38% | 9.43% | 2.48% | 0% |
Much Better | Better | Same | Worse | Much Worse | |
---|---|---|---|---|---|
Guo | 24.38% | 43.95% | 21.62% | 8.71% | 1.33% |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Sun, Y.; Jing, X.; Cui, Z.; Shi, Z. Adaptive Makeup Transfer via Bat Algorithm. Mathematics 2019, 7, 273. https://doi.org/10.3390/math7030273
Ren Y, Sun Y, Jing X, Cui Z, Shi Z. Adaptive Makeup Transfer via Bat Algorithm. Mathematics. 2019; 7(3):273. https://doi.org/10.3390/math7030273
Chicago/Turabian StyleRen, Yeqing, Youqiang Sun, Xuechun Jing, Zhihua Cui, and Zhentao Shi. 2019. "Adaptive Makeup Transfer via Bat Algorithm" Mathematics 7, no. 3: 273. https://doi.org/10.3390/math7030273
APA StyleRen, Y., Sun, Y., Jing, X., Cui, Z., & Shi, Z. (2019). Adaptive Makeup Transfer via Bat Algorithm. Mathematics, 7(3), 273. https://doi.org/10.3390/math7030273