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Abstract

:

The generalized inverse has many important applications in the aspects of the theoretic research of matrices and statistics. One of the core problems of the generalized inverse is finding the necessary and sufficient conditions of the forward order laws for the generalized inverse of the matrix product. In this paper, by using the extremal ranks of the generalized Schur complement, we obtain some necessary and sufficient conditions for the forward order laws A1{1,3}A2{1,3}⋯An{1,3}⊆(A1A2⋯An){1,3} and A1{1,4}A2{1,4}⋯An{1,4}⊆(A1A2⋯An){1,4}.
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1. Introduction


Throughout this paper, Cm×n denotes the set of m×n matrices with complex entries and Cm denotes the set of m-dimensional vectors. Im denotes the identity matrix of order m, and Om×n is the m×n matrix of all zero entries (if no confusion occurs, we will drop the subscript). For a matrix A∈Cm×n, A*, r(A), R(A), and N(A) denote the conjugate transpose, the rank, the range space, and the null space of A, respectively. Furthermore, for the sake of simplicity in the later discussion, we will adopt the following notation for the matrix products with Ai∈Cm×m,i=0,1,2,⋯n−1,


Ai=AnAn−1⋯An−i.



(1)







Let A∈Cm×n, a generalized inverse X∈Cn×m of A, be a matrix that satisfies some of the following four Penrose equations [1]:


(1)AXA=A,(2)XAX=X,(3)(AX)*=AX,(4)(XA)*=XA.



(2)




For a subset η⊆{1,2,3,4}, the set of n×m matrices satisfying the equations that is contained in η is denoted by A{η}. A matrix from A{η} is called an {η}-inverse of A and is denoted by A(η). For example, an n×m matrix X of the set A{1} is called a {1}-inverse of A and is denoted by X=A(1). One usually denotes any {1,3}-inverse of A as A(1,3), which is also called a least squares g-inverse of A. Any {1,4}-inverse of the set A{1,4} is denoted by A(1,4), which is also called a minimum norm g-inverse of A. The unique {1,2,3,4}-inverse of A is denoted by A†, which is also called the Moore–Penrose inverse of A. We refer the reader to [2,3] for basic results on the generalized inverses.



Theory and computations of the reverse (forward) order laws for generalized inverse are important in many branches of applied sciences, such as non-linear control theory [4], matrix analysis [2,5], statistics [4,6], and numerical linear algebra; see [3,6]. Suppose Ai∈Cm×m, i=1,2,⋯,n, and b∈Cm; the least squares technique (LS):


minx∈Cm∥(A1A2⋯An)x−b∥2








is used in many practical scientific problems [2,4,6,7]. Any solution x of the above LS problem can be expressed as x=(A1A2⋯An)(1,3)b. If the LS problem is consistent, the minimum norm solution x has the form x=(A1A2⋯An)(1,4)b. The unique minimal norm least squares solution x of the LS problem is x=(A1A2⋯An)†b. One problem concerning the above LS problem is under what conditions do the following reverse order laws hold?


An(i,j,⋯,k)An−1(i,j,⋯,k)⋯A1(i,j,⋯,k)=(A1A2⋯An)(i,j,⋯,k).



(3)




Another problem is under what conditions do the following forward order laws holds?


A1(i,j,⋯,k)A2(i,j,⋯,k)⋯An(i,j,⋯,k)=(A1A2⋯An)(i,j,⋯,k),



(4)




where (i,j,⋯,k)⊆η⊆{1,2,3,4}.



The reverse order law for the generalized inverse of multiple matrix products yields a class of interesting problems that are fundamental in the theory of the generalized inverse of matrices; see [2,3,5,8,9]. As one of the core problems in reverse order laws, the necessary and sufficient conditions for the reverse order laws for the generalized inverse of matrix product hold, is useful in both theoretical study and practical scientific computing, this has attracted considerable attention, and many interesting results have been obtained; see [8,10,11,12,13,14,15,16,17,18].



The forward order law for generalized inverse of multiple matrix products (4) originally arose in studying the inverse of multiple matrix Kronecker products. Let Ai, i=1,2,⋯,n, be n nonsingular matrices, then the Kronecker product A1⨂A2⨂⋯⨂An is nonsingular as well, and the inverse of A1⨂A2⨂⋯⨂An satisfies the forward order law A1−1⨂A2−1⨂⋯⨂An−1=(A1⨂A2⨂⋯⨂An)−1. However, this so-called forward order law is not necessarily true for the matrix product, that is A1−1A2−1⋯An−1≠(A1A2⋯An)−1. An interesting problem is, for given {i,j,⋯,k}⊆η and matrices Ai, i=1,2,⋯,n, with A1A2⋯An meaningful, when A1(i,j,⋯,k)A2(i,j,⋯,k)⋯An(i,j,⋯,k)=(A1A2⋯An)(i,j,⋯,k) or when


A1{i,j,⋯,k}A2{i,j,⋯,k}⋯An{i,j,⋯,k}=(A1A2⋯An){i,j,⋯,k}











Recently, Z. Liu and Z. Xiong [19,20] studied the forward order law for {1,3}-inverses of three matrix products by using the maximal rank of the generalized Schur complement [21], and some necessary and sufficient conditions for A1{1,3}A2{1,3}A3{1,3}⊆(A1A2A3){1,3} were derived. In this paper, we further study this subject, and some necessary and sufficient conditions by the ranks, the ranges, or the null spaces of the known matrices are provided for the following forward order laws:


A1{1,3}A2{1,3}⋯An{1,3}⊆(A1A2⋯An){1,3}



(5)




and:


A1{1,4}A2{1,4}⋯An{1,4}⊆(A1A2⋯An){1,4}.



(6)







The main tools of the later discussion are the following lemmas.



Lemma 1

([21]). Let A∈Cm×n, B∈Cm×k, C∈Cl×n, and D∈Cl×k. Then:


maxA(1,3)r(D−CA(1,3)B)=minrA*AA*BCD−r(A),rBD.













Lemma 2

([5]). Let A∈Cm×n, B∈Cm×k, and C∈Cp×n, then:


(1)rA,B=r(A)+r(EAB)=r(B)+r(EBA),










(2)rAC=r(A)+r(CFA)=r(C)+r(AFC),








where the projectors EA=I−AA†, EB=I−BB†, FA=I−A†A, FC=I−C†C.





Lemma 3

([2,3]). Let L, M be a complementary subspace of Cn, and let PL,M be the projector on L along M. Then:


(1)PL,MA=A⟺R(A)⊆L,










(2)APL,M=A⟺N(A)⊆M.













Lemma 4

([2,3]). Let A∈Cm×n and X∈Cn×m, then:


(1)X∈A{1,3}⟺A*AX=A,










(2)X∈A{1,4}⟺XAA*=A*.














2. Main Results


In this section, we will present some necessary and sufficient conditions for the forward order law (5) by using the maximal ranks of some generalized Schur complement forms. Let:


S(A1A2⋯An)*=Sμ*=(A1A2⋯An)*−(A1A2⋯An)*A1A2⋯AnX1X2⋯Xn=μ*−μ*μX1X2⋯Xn,



(7)




where Ai∈Cm×m, Xi∈Ai{1,3}, i=1,2,⋯,n, and μ=A1A2⋯An.



For the convenience of the readers, we first give a brief outline of the basic idea. From the formula (1) in Lemma 4, we know that the forward order law (5) holds if and only if


μ*μX1X2⋯Xn=μ*








holds for any Xi∈Ai{1,3}, i=1,2,⋯,n, and μ=A1A2⋯An, which is equivalent to the following identity:


maxX1,X2,⋯,Xnr(S(A1A2⋯An)*)=maxX1,X2,⋯,Xnr(Sμ*)=0.



(8)




Hence, we can present the equivalent conditions for the forward order law (5) if the concrete expression of the maximal rank involved in the identity (8) is derived. The relative results are included in the following lemma.



Lemma 5.

Let Ai∈Cm×m, Xi∈Ai{1,3}, i=1,2,⋯,n. Let Ai be as in (1) and Sμ* be as in (7), and EAi=I−AiAi†, i = 1,2,⋯,n be n projectors. Then:


maxX1,X2,⋯,Xnr(S(A1A2⋯An)*)=maxX1,X2,⋯,Xnr(Sμ*)=rμ*μ−μ*An−1,μ*An−2EA1,μ*An−3EA2,⋯,μ*A0EAn−1,μ*EAn=rμ*μ−μ*An−1μ*An−2μ*An−3⋯μ*A0μ*OA1*O⋯OOOOA2*⋯OO⋮⋮⋮⋱⋮⋮OOO⋯An−1*OOOO⋯OAn*−∑i=1nr(Ai).













Proof. 

By Lemma 1 and the formula (2) of Lemma 2, we have:


maxXnr(S(A1A2⋯An)*)=maxXnr(Sμ*)=maxXnr(μ*−μ*μX1X2⋯Xn)=minrAn*AnAn*μ*μX1X2⋯Xn−1μ*−r(An),rImμ*=minrOAn*μ*μX1X2⋯Xn−1−μ*Anμ*−r(An),m=r[μ*μX1X2⋯Xn−1−μ*An,μ*·FO,An*]=rμ*μX1X2⋯Xn−1−μ*An,μ*EAn=r[μ*An,μ*EAn−μ*μX1X2⋯Xn−1Im,O].



(9)







According to Lemma 1, the formula (2) in Lemma 2, and Equations (1) and (9), we have:


maxXn−1,Xnr(S(A1A2⋯An)*)=maxXn−1,Xnr(Sμ*)=maxXn−1r[μ*An,μ*EAn−μ*μX1X2⋯Xn−1Im,O]=minrAn−1*An−1An−1*Oμ*μX1X2⋯Xn−2μ*Anμ*EAn−r(An−1),rImOμ*Anμ*EAn=minrOAn−1*Oμ*μX1⋯Xn−2−μ*A1μ*Anμ*EAn−r(An−1),m+r(μ*EAn)=min{r[μ*μX1X2⋯Xn−2−μ*A1,μ*An,μ*EAnFO,An−1*,O],m+r(μ*EAn)}=rμ*μX1X2⋯Xn−2−μ*A1,μ*A0EAn−1,μ*EAn=r[μ*A1,μ*A0EAn−1,μ*EAn−μ*μX1X2⋯Xn−2Im,O,O].



(10)







Again, by Lemma 1, the formula (2) in Lemma 2 and the results in (1) and (10), we have:


maxXn−2,Xn−1,Xnr(S(A1A2⋯An)*)=maxXn−2,Xn−1,Xnr(Sμ*)=maxXn−2r[μ*A1,μ*A0EAn−1,μ*EAn−μ*μX1X2⋯Xn−2Im,O,O]=min{rAn−2*An−2An−2*OOμ*μX1X2⋯Xn−3μ*A1μ*A0EAn−1μ*EAn−r(An−2),rImOOμ*A1μ*A0EAn−1μ*EAn}=min{rOAn−2*OOμ*μX1X2⋯Xn−3−μ*A2μ*A1μ*A0EAn−1μ*EAn−r(An−2),m+rμ*A0EAn−1,μ*EAn}=min{r[μ*μX1⋯Xn−3−μ*A2,μ*A1,μ*A0EAn−1,μ*EAnFO,An−2*,O,O],m+rμ*A0EAn−1,μ*EAn}=rμ*μX1X2⋯Xn−3−μ*A2,μ*A1EAn−2,μ*A0EAn−1,μ*EAn=r[μ*A2,μ*A1EAn−2,μ*A0EAn−1,μ*EAn−μ*μX1⋯Xn−3Im,O,O,O].



(11)







Suppose X0=Im. We contend that, for 2≤i≤n−1,


maxXn−i,Xn−i+1,⋯,Xnr(S(A1A2⋯An)*)=maxXn−i,Xn−i+1,⋯,Xnr(Sμ*)=maxXn−ir[μ*Ai−1,μ*Ai−2EAn−i+1,⋯,μ*A0EAn−1,μ*EAn−μ*μX1X2⋯Xn−iIm,O,⋯,O,O]=r[μ*Ai,μ*Ai−1EAn−i,μ*Ai−2EAn−i+1,⋯,μ*A0EAn−1,μ*EAn−μ*μX1X2⋯Xn−i−1Im,O,O,⋯,O,O].



(12)







We proceed by induction on i. For i=2, from (11), the equality relation (12) has been proven. Assuming that (12) is true for i−1 (i≥3), that is:


maxXn−i,Xn−i+1,⋯,Xnr(S(A1A2⋯An)*)=maxXn−i+1,Xn−i+2,⋯,Xnr(Sμ*)=maxXn−i+1r[μ*Ai−2EAn−i+1,μ*Ai−3EAn−i+2,⋯,μ*A0EAn−1,μ*EAn−μ*μX1X2⋯Xn−i+1Im,O,⋯,O,O]=r[μ*Ai−1,μ*Ai−2EAn−i+1,⋯,μ*A0EAn−1,μ*EAn−μ*μX1X2⋯Xn−iIm,O,⋯,O,O].



(13)







Next, we will prove that (12) is also true for i. In fact, by Lemma 1, the formula (2) in Lemma 2, and the results in (13) and (1), we have:


maxXn−i,Xn−i+1,⋯,Xnr(S(A1A2⋯An)*)=maxXn−i,Xn−i+1,⋯,Xnr(Sμ*)=maxXn−ir(μ*Ai−1,μ*Ai−2EAn−i+1,⋯,μ*A0EAn−1,μ*EAn−μ*μX1X2⋯Xn−iIm,O,⋯,O,O)=min{rAn−i*An−iAn−i*O⋯Oμ*μX1X2⋯Xn−i−1μ*Ai−1μ*Ai−2EAn−i+1⋯μ*EAn−r(An−i),rImO⋯Oμ*Ai−1μ*Ai−2EAn−i+1⋯μ*EAn}=min{rOAn−i*O⋯Oμ*μX1X2⋯Xn−i−1−μ*Aiμ*Ai−1μ*Ai−2EAn−i+1⋯μ*EAn−r(An−i),m+rμ*Ai−2EAn−i+1,⋯,μ*EAn}=rμ*μX1X2⋯Xn−i−1−μ*Ai,μ*Ai−1EAn−i,μ*Ai−2EAn−i+1,⋯,μ*EAn=r[μ*Ai,μ*Ai−1EAn−i,μ*Ai−2EAn−i+1,⋯,μ*A0EAn−1,μ*EAn−μ*μX1X2⋯Xn−i−1Im,O,O,⋯,O,O].



(14)







That is, the equality relation (12) has been proven. Specifically, when i=n−1, we have:


maxXn−i,Xn−i+1,⋯,Xnr(S(A1A2⋯An)*)=maxX1,X2,⋯,Xnr(Sμ*)=maxX1r[μ*An−2,μ*An−3EA2,μ*An−4EA3,⋯,μ*A0EAn−1,μ*EAn−μ*μX1Im,O,O,⋯,O,O]=r[μ*An−1,μ*An−2EA1,μ*An−3EA2,⋯,μ*A0EAn−1,μ*EAn−μ*μX0Im,O,O,⋯,O,O]=rμ*μ−μ*An−1,μ*An−2EA1,μ*An−3EA2,⋯,μ*A0EAn−1,μ*EAn.



(15)







Combining (15) with Lemma 2, we finally have:


maxXn−i,Xn−i+1,⋯,Xnr(S(A1A2⋯An)*)=maxX1,X2,⋯,Xnr(Sμ*)=rμ*μ−μ*An−1,μ*An−2EA1,μ*An−3EA2,⋯,μ*A0EAn−1,μ*EAn=rμ*μ−μ*An−1μ*An−2μ*An−3⋯μ*A0μ*OA1*O⋯OOOOA2*⋯OO⋮⋮⋮⋱⋮⋮OOO⋯An−1*OOOO⋯OAn*−∑i=1nr(Ai).








□





From Lemma 5, Lemma 2, and Lemma 3, we immediately obtain the following theorem by Equation (8).



Theorem 1.

Let Ai∈Cm×m, i=1,2,⋯,n, Ai be as in (1) and μ=A1A2⋯An. Then, the following statements are equivalent:

	(1) 

	
A1{1,3}A2{1,3}⋯An{1,3}⊆(A1A2⋯An){1,3};




	(2) 

	
rμ*μ−μ*An−1,μ*An−2EA1,μ*An−3EA2,⋯,μ*A0EAn−1,μ*EAn=0;




	(3) 

	
μ*μ−μ*An−1=O and μ*AiEAn−i−1=O(i=0,1,⋯,n−2) and μ*EAn=O;




	(4) 

	
μ*μ=μ*An−1 and N(μ*Ai)⊇N(An−i−1*)(i=0,1,⋯,n−2) and N(μ*)⊇N(An*);




	(5) 

	
rμ*μ−μ*An−1μ*An−2μ*An−3⋯μ*A0μ*OA1*O⋯OOOOA2*⋯OO⋮⋮⋮⋱⋮⋮OOO⋯An−1*OOOO⋯OAn*=∑i=1nr(Ai).











Proof. 

(1)⟺ (2). It is easy to see that the inclusion X1X2⋯Xn∈(A1A2⋯An){1,3} holds for any Xi∈Ai{1,3}, i=1,2,⋯,n if and only if:


maxX1,X2,⋯,Xnr((A1A2⋯An)*−(A1A2⋯An)*A1A2⋯AnX1X2⋯Xn)=maxX1,X2,⋯,Xnr(μ*−μ*μX1X2⋯Xn)=0.











From Lemma 5, we obtain (1)⟺ (2).



(2)⟺ (3). In fact, r(A)=0 if and only if A=O, so (2)⟺ (3) is obvious.



(3)⟺ (4). From (3), we have μ*μ−μ*An−1=O⇔μ*μ=μ*An−1. On the other hand, by (3), we obtain:


μ*An−2EA1=μ*An−2(Im−A1A1†)=O.








That is,


μ*An−2=μ*An−2A1A1†=μ*An−2PR(A1),N(A1*).



(16)




According to the formula (2) of Lemma 3, it is known that the formula of (13) is equivalent to:


N(μ*An−2)⊇N(A1*).











Similarly, we can show that:


μ*AiEn−i−1=O(i=0,1,⋯,n−2)








is equivalent to:


N(μ*Ai)⊇N(An−i−1*)(i=0,1,⋯,n−2).








Hence (3)⟺ (4).



(2)⟺ (5). By Lemma 2, we have:


rμ*μ−μ*An−1,μ*An−2EA1,μ*An−3EA2,⋯,μ*A0EAn−1,μ*EAn=rμ*μ−μ*An−1,μ*An−2FA1*,μ*An−3FA2*,⋯,μ*A0FAn−1*,μ*FAn*=rμ*μ−μ*An−1μ*An−2μ*An−3⋯μ*A0μ*OA1*O⋯OOOOA2*⋯OO⋮⋮⋮⋱⋮⋮OOO⋯An−1*OOOO⋯OAn*−∑i=1nr(Ai).



(17)







From (17), we have:


rμ*μ−μ*An−1,μ*An−2EA1,μ*An−3EA2,⋯,μ*A0EAn−1,μ*EAn=0,








if and only if:


rμ*μ−μ*An−1μ*An−2μ*An−3⋯μ*A0μ*OA1*O⋯OOOOA2*⋯OO⋮⋮⋮⋱⋮⋮OOO⋯An−1*OOOO⋯OAn*=∑i=1nr(Ai).








The proof of Theorem 1 is completed.  □





By Lemma 4, we know that X∈A{1,4} if and only if X*∈A{1,3}. Therefore, from the results obtained in Theorem 1, we can get the necessary and sufficient conditions for the forward order law (6), and hence provide the following theorem without the proof.



Theorem 2.

Let Ai∈Cm×m, i=1,2,⋯,n, μ=A1A2⋯An, and Ai=AiAi−1⋯A1, i=1,2,⋯,n. Then, the following statements are equivalent:

	(1) 

	
A1{1,4}A2{1,4}⋯An{1,4}⊆(A1A2⋯An){1,4};




	(2) 

	
rAnμ*−μμ*FAnAn−1μ*FAn−1An−2μ*⋮FA2A1μ*FA1μ*=0;




	(3) 

	
Anμ*−μμ*=O and FAiAi−1μ*=O, (i=2,3,⋯n) and FA1μ*=O;




	(4) 

	
Anμ*=μμ* and R(Ai−1μ*)⊆R(Ai*), (i=2,3,⋯n) and R(μ*)⊆R(A1*);




	(5) 

	
rAnμ*−μμ*OO⋯OOAn−1μ*OO⋯OAn*An−2μ*OO⋯An−1*O⋮⋮⋮⋮⋮A1μ*OA2*⋯OOμ*A1*O⋯OO=∑i=1nr(Ai).












3. Conclusions


In this paper, we have studied the forward order laws for the {1,3}-inverse and {1,3}-inverse of a product of multiple matrices. By using the expressions for maximal ranks of the generalized Schur complement, we obtained some necessary and sufficient conditions for A1{1,3}⋯An{1,3}⊆(A1A2⋯An){1,3} and A1{1,4}⋯An{1,4}⊆(A1A2⋯An){1,4}. In the near future, we will study more challenging problems to find out the important applications of forward order laws in many algorithms for the computation of the least squares technique (LS) of matrix equations (A1A2⋯An)x=b.
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