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Abstract: The study is on the existence of the solution for a coupled system of fractional differential
equations with integral boundary conditions. The first result will address the existence and uniqueness
of solutions for the proposed problem and it is based on the contraction mapping principle. Secondly,
by using Leray-Schauder’s alternative we manage to prove the existence of solutions. Finally,
the conclusion is confirmed and supported by examples.
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1. Introduction

Fractional calculus and more specifically coupled fractional differential equations are amongst the
strongest tools of modern mathematics as they play a key role in developing differential models
for high complexity systems. Examples include the quantum evolution of complex systems [1],
dynamical systems of distributed order [2], chuashirku [3], Duffing system [4], Lorentz system [5],
anomalous diffusion [6,7], nonlocal thermoelasticity systems [8,9], secure communication and control
processing [10], synchronization of coupled chaotic systems of fractional order [11-14], etc. In terms
of developing high complexity models, applications of coupled fractional differential equations can
be significantly extended by dealing with various types of integral boundary conditions. Integral
boundary conditions are in fact essential for obtaining reliable models in many practical problems,
such as regularization of parabolic inverse problems [15] and flow analysis in computational fluid
dynamics [16].

Some of the latest studies on integral and nonlocal boundary value problems for coupled fractional
differential equations are presented in [17-25].

In [26], the following coupled system of fractional differential equations was studied:

Do () = £ (t,x (), y () DTy (1), te[0T],
l<a<2 0<y<l,

Dfy (t) =g (t,x (t),D°x (t),y (t)), te€[0,T],
1<Bf<2 0<o<],

supplemented with the coupled nonlocal and integral boundary conditions of the form

{ x(0) =h(y), f(%Ty(S)dSZMX(ﬂ)
y(0)=¢(x), [y x(s)ds=pay(€), 1,8 € (0,T)
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where D' denotes the Caputo fractional derivatives of order i = &, 8,7,6 and f,g : [0, T] x R x R x
R—R, h,¢:C([0,T],R) — R are given continuous functions, and y pirare real constants.
In [27], the authors investigated the existence and uniqueness of solutions for the coupled system of
nonlinear fractional differential equations with three-point boundary conditions, given below:
D*u(t) = f (t,v(t),DFo(t)), te (0,1),
DPu (t) = g (t,u(t),DTu(t)), te(0,1),
w(0) =0, u(1)=yu(n), v(0) =0, v(1) = yo(n),

wherel <a,<2, p,q,7y>0,0<yp<l,a—gq>1, —p>1, 'm“’l <1, 'mﬁ’l < 1l,and D is the
standard Riemann-Liouville fractional derivative and f,g : [0,1] x R X R — xR are given continuous
functions. It is worth mentioning that the nonlinear terms in the coupled system contain the fractional
derivatives of the unknown functions.

Moreover, in a study [28], the following coupled system of nonlinear fractional differential
equations, with the given boundary conditions was studied:

D*u (t) = f (t,v(t),DF'v(t)), 0<t<1,
DFu (t) = g(t,u(t),D'u(t)), 0<t<1,
u(0)=u(l)=0v(0)=v(1)=0,

wherel <o, <2,u,v>0a—v>1F—pu>1and f,g:[0,1] X R x R — R are given functions
and D is the standard Riemann-Liouville differentiation.

The present paper is motivated by the above papers and is aimed to study a coupled system of
nonlinear fractional differential equations:

Dex (1) = £ (t,x (£),y (£),D7y(), € [0,T]

l<a<?2 0<y<l1

1
Dy (t) = g (% (1), D7x(t), ¥ (1)), € [0,T] @
1<p<L2 0<o<l1
supported by integral boundary conditions of the form
o, (5) ds = 1y (), Jy ' () ds = 2y’ (22)
fo s)ds = pyx

m). Jy v (s)ds = pax’ (ip2) e)
]

7

(
’71,772,51152 €T

where DF denote the Caputo fractional derivatives of order k,and f,g : [0, T| x R3® — R, are given
continuous functions, and p1, p2, }1, 2 are real constants.

The paper is organized as follows. In Section 2, we recall some definitions from fractional
calculus, and state and prove an auxiliary lemma, which gives an explicit formula for a solution of
nonhomogeneous equation correspond to our problem. The main results for the coupled system of
Caputo fractional differential equations with integral boundary conditions, using the Banach fixed
point theorem and Leray-Schauder alternative, are presented in Section 3. The paper concludes with
concrete examples.

2. Preliminaries

Firstly, we recall definitions of fractional derivative and integral [29,30].

Definition 1. The Riemann-Liouville fractional integral of order a for a continuous function h is given by

(125) (5) = g3 I =L
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provided that the inteqral exists on R™T.

3of 14

Definition 2. The Caputo fractional derivatives of order « for (m — 1) —times absolutely continuous function

h:[0,00) — R is defined as

(D) () =

where [«] is the integer part of the real number «.

We use the following notations.

Ay =T?—1py #0, Ay =T? — pops #0,

2T — T4y + 2T — T2 Tt
@ () == pi8ipapz = T'pa +2Tpumps = T2paprp2 P2

AA, Ay
0 (1) = —2T%0181 + T2p2 — 201pm1p2 + 1 T° pat
S A1A Ay’
_ T o . P
O3:= 1t @=L

5 () = 2T?011 2 — T3papn + 20111110212 — 112 T? . -

A1 Ay
=, (1) = —2Torlap + T2 = 2Tpyaip + Topugey Tt
..o oo T
Ha ol AL , gl Al.

7_“)/05(5—15)"17"‘71}1(’”)(15)&, m—1l<a<m, m=][a]+1,

. 1 1 T2 1 1 7131 1
O (t) = A <P2T (Tﬂl’hAz—VlZAz) + pop2 (V1P151A2—2A2>) + Eﬂzpzf-

. 1 1 T2 1 1 T8 1 1
G2 (t) =3 <—P2 (TﬂlrllAZ—#lez> -7 <y1p1§1A2—2A2>) -5

1 PN
@3 = lelylr @3 = Tl

2 T 1

a . i— —i i_ii
E(t) = A <y2p2 (Tﬂlrll A 251 5 A2> +u2T (,ulplgl A, 2 A2>) +
1
5 . 5 .M
—3 . A 7 —4 . A] °

1
1
= 1 T? 1 1 11 1
8o (1) : A <—T <TV1U1A2_F12A2> —H2 <V1P1§1A2—2A2)> _Eyzt’
mt
1

Tt,

1
— Tt
A, M2

To show that the problem (1) and (2) is equivalent to the problem of finding solutions to the

Volterra integral equation, we need the following auxiliary lemma
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Lemma 1. Let w,z € C ([0, T|,R) . Then the unique solution for the problem

“x(t)y=w(t), tel0,T], 1<a<2,
Dﬂy(t) z(t), t[O,T, 1<B<2,

T
/Ox(s) s =1y (G1),

S—

x'(s)ds = pay’ (2)
[Ty (sas = prxom), oTy s = o’ ()
is
T T
x(H) =01 (1) (IF7'2) (&) + O (1 )/0 (112) (s)ds + @5 (1°2) (gl)f®4/0 (1P2) (s) ds
T . T
FE() (IHw) (1) + Es (1) /O (sz) (s) ds + Es (I*w) (111) — Eq / (Iw) (s) ds

0

H
/
—
=
|
—
—~
S~—
=
»
+
(6]
@D
/\
\_/
~—~
N
—_
S~—
®>

/OT (Iﬁz) (s)ds

/OT (1) (s) ds

+
D
-
—
-
S—
—
—~
=
L
(S
N——
—
=
N
SN—
+
[
N
—~
-
S—
;E?“‘->
»\]
VS
—~
R
AN
N——
—
SN—
QU
1)
+
w
—
—~—
=
SN—
—
=
[
N—
[1]>

Proof. We know that, see [30] Lemma 2.12, the general solutions for the FDE in (3) is defined as

x(t) = c1t + cp+ (I*w) (¥)
y(t) = dit +dp + (IP2) (1),

where c1,cp,d1,dy € R are arbitrary constants. It follows that

Applying the conditions
T, . T, ,
| ¥ 6 s = pay' (@), [ (5)ds = ¥’ ()
we get
T+ /T (I'Xflw) (s)ds = pady +P2( ) (C2),
0

di T+ /OT (15—1,2) (s)ds = ppc1 + ﬂz(I"“lw) ().

Solving the above equations together for c¢; and d; we get

1= Aiz <p2T(1/51;z) (22) —p2 /OT (Iﬁflz> (s)ds + u2p02 (I“*lw) (172) — T/OT (I”‘*lw> (s)ds

)

dp = Aiz <V2T (I”‘*lw) (12) —p2 /OT (I""%u) (s) ds+p202 (1/3*12) (%) _T/OT (IﬁﬂZ) (s)ds)

®)

(4)

©)

(6)
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Considering the following boundary conditions not involving derivatives

T T
/Ox(s)ds:ply(gl), /Oy(s)ds:,ulx(r]l),

we get
TZ T
2T — p1d2 = p1d1 {1 +P1(Iﬁz) (C1) — 1y /0 (I"w) (s) ds,
T T
dyT — pycy = prcrm + pr(I*w) (1) —d17 - /0 (Iﬁz) (s)ds.
This implies

3 T
0= Ail (TpldlC1 +P1T(Iﬁz> (¢1) — Cl% - T/o (I"w) (s) ds

TZ T
o + pap (Ifw) () —prdi—- — Pl/o (1’32) (s) ds) ’

1 T3 T
dy = ™ <TV1€1771 + 1 T(I*w) (1) —d17 - T/ (Iﬁz) (s) ds+p101d101
1 0
2

+P1#1(Iﬁz) (C1) — Cl#l% — /OT (I"w) (s) d5> .

Inserting the values of ¢; and d; we get

_ 2Tp18ipap2 — T4Pz +2Tp1p11102 — T2V2P1P2 g—1
2= MM, (I Z) (¢2)

—2T20101 + T202 = 2p1paip2 +01T° (T (154
TN /0 (I z) (s)ds

T T

+ 5y (P2 @ =5[] (%) 0
2 _ 73 — 3

L2l - T pzuzz 112;21#177192?42 prp2T (1 1w) ()

—2Tp1l1p2 + T* = 2Tp1paip + T*o1pi2 /T 1
+ AR, : (I w) (s)ds
T

O 1) () = 5 [ (170 () s,

+

50f 14
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2 _ 3 - >
4y = 202T?p1m PzﬂszzlePfPWlplgl Hap2T (1’5_12) (22)

) 4
—2Tpopaiy + 2 T° = 2Tpe161 = T /T (I’g’1Z> (s)ds
0

+ 210,

1 1 T
- B _ = B
+ A1 (I Z) (C1) A1T/0 (I Z) (s)ds
2Tpapapat1 — p2P2i1 T2 4+ 20 Tu1 101 — 2T (41
+ M4, (I w) (72)

—2T2 11 4 w1 T — 2p200p10181 + 2 T3 (T /g
+ T /0 (I w) (s)ds

T () o) =y [ (1%0) (9.

Substituting c1, ¢, d1,dp in (6) we get (4) and (5). O
Remark 1. In (4) and (5) x (t) and y (t) depend on v;, T;, ui, pi, i = 1,2.

3. Existence Results

Consider the space
C, ([0, T],R) = {x(t) : x(t) € C([0,T],R) and D"x(t) € C([0,T],R)},

with the norm

= Dx|| = t D7x(t)|.
Il = ll¥l + D7) = max, |x (8)| + max [Dx(t)

It is clear that (Cy([O, T],R),||-\|7) is a Banach space. Consequently, the product space

(Cg ([0,T],R) x C, ([0, T],R), H~||UXW) is a Banach Space with the norm||(x, y)|[ ., = lIx[l, + [lyl,,
for (x,y) € C, ([0, T],R) x C, ([0,T],R).

Next, using Lemma 1, we define the operator G : C, ([0, T], R) x Cy ([0, T],R) = C¢ ([0, T], R) x
C, ([0, T],R) as follows

G (xy) (1) = (G1(x,y) (1), G2 (x,y) (1),

where

485 (19 (x()y0), DY) ()~ Za [ (1 (30,500, DTy(0) (5)

t(t—s a1
+/o (tf(a))f (s,x(s),y(s), D7y(s)) ds,
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and
Ga () (£)= 61 (1) (1P 1g (-, x() x())) (G2) + O (¢ / (1718 (,x(), (), D7x())) (s) ds
+©3(1ﬁg<-,x<> ¥(),D <>>)< = / (188 (,2(),y(), D7x()) ) (5) s
FE (1) (17 (OO, D7) )+ B 1) [ (17 (x50, D)) () ds

+85 (I (, x(-), (), Dy())) (m) — /0 (I*f (- x(-),y(-), D7y (-))) (s) ds
t(p—g)f1
-l-/o %g(s,x(s),y(s),Dax(s))ds.

In what follows we use the following notations.

C T8-1 gﬁ T8 Tl-0 C -1
= el +H®2H +103] 7+ 104 + ICAI= 2 +|| zH T )

r'(p) I'(p) rg+1) rg+1) TI2-0

H le _ T« T
2 = &) oy + 1 ()H | (H1)+\~4\F(H1)+F(H1)

T1-0 }7 -1 o T T 1
s (1280 g 198 Ty + T )
~ ~ Ti1=7 , TB-1
o- H®1Hr2 s o] Ty + 18] gy 10 ey + riemsy ([04] 5 + 184 o )
=_ = T'Xl = ™ TF
i +H H ) ‘r oc+1)+‘ 4’1“(o¢+1)+1“(/3+1)
+T17<6/ 7727 =/ Tal_i_Tﬁ_l)

T(2-9) \IMT@ "7 @) " T )’

where ©; (1), ©; (t), &; (t), &; (t),i = 1,...,4, are defined before Lemma 1.
Now we state and prove our first main result.

Theorem 1. Let f,g: [0, T] x R® — R be jointly continuous functions. Assume that
(i) there exist constants ly > 0,1 > 0, Vt € [0,T] and x;,y; € R,i =1,2,3
|f (t,x1,%2,%3) — f(t,y1,92,3)| < Ip(Ix1 —ya| + [x2 —y2| + |x3 — y3l),

1§ (£, %1, %2,%3) = g (£, 1,52, y3)| < lg (|x1 = 1] + [x2 = ya| +[x3 = y3]) -
(ii)
~2(®lg+Elf) >0, 1-2 (Ol + &) >0
Then the boundary value problem (1), (2) has a unique solution on [0, T].

Proof. Assume that e > 0 is a real number satisfying

e > max | —2 (©g0 +Ef0) 2 <@80 + Efo)
> *2(®18+Elf)’1*2(@lg+§,zf) ,

where

t = £,0,0,0)| = :
qmax |f (£,0,0,0)] = fo < e, max [g(t,0,0,0)] = go < e
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Define
O ={(x,y) € Co (10,7, R) x Cy (10,7, R) < [ (5,)llgy < ¢}

Step 1: Show that GQ C Q.
By our assumption, for (x,y) € Q,t € [0, T|, we have

1 (60,5 (1), D) < If (4, (6), (1), DY(1) = £ (1,0,0,0)] +1f (,0,0,0)]
< 1 (K0 + [y +1DY(O) + f

< I (Ilxlly +llyll,) + fo < Lye + fo,
similarly, we have
g (£,x (), D7x(t), y (£))] < Ige + go.
Using these estimates, we get
G1 (x,y) (D101 (1)] (1P 1g1) (2) +1©2 (1)) /OT (1P 131) (s) ds
T
(03] (1P1s1) @) + 1@l [ (1 1]) (5)ds
T
#1217 ) )+ 22 ()] [ (127 171) () ds
1l (14 D) () + 12l [ (¥ 1£1) 5) s

1

t 1
bt ) (=901 5,309,969, D) s

We use the following type inequalities

(1 1s1) @) = gy =92 ls @)l
1 & B g
<tEom ), ¢ aslsl= P lel,

to get

8 of 14

@)

®)

61w 1= (100 )] (1#711) @)+ 020 | (19°11) (s + sl (171) @)+l [ (1) ()5 [

+ (12001 (P71) )+ 2 O] [ (170) ) st 20 (171) () + 124 | (1) 935 1]

1 gt .
m/o (t=s)"ds ]

c Tﬁ ' 44 T#

J’_

a—1 71

+<|Elﬁ()+n~z| ()+\ 5| (il)ﬂw (Hl))v
raan M-

(a+1

Hence, by (7) and (8) we have

1G1 (x| < (Ol +Ely ) e+ (g0 +Efy).

©)
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On the other hand,

261 () (0=, (1) (1#75) (@) + @5 () [ (1#75) () s

L2 (1717 () + 2 (1) /OT (I‘Hf) (5)ds

and

B—1
o0 < (1ot £ + el I )

a—1 w—1 w—1
+ ( | ’rh(“) =4 ;r(a) + g(a)> I£1l-

It follows that

p—1
< oy (1080 S5y + 180 g5 ) e (o)

=/ ;7%_1 =/ Ta_l Tlx_l
HH]HF([X) +H‘-‘2H F(tx) +r(“ Hf”

~—

Thus by (7)-(10) we obtain

1G1 (x,9)llo= [IGr (x, )| + [D7G1 (%, y)

<Olgl+E|fl (11)
£

(@l +_lf) e+ (Og0+2f) < =

2
In similar way we get
1G2 (2, )l = [|G2 (x, )| + DTG (x, y)| )
€
(@l +Hlf)s+ (@go+_fo) >

From (11) and (12) we get
1G1 (I, + G2 (%, y)ll,, < ¢
Step 2: Show that G ia a contraction.
Now for x1,x2,y1,y2 € Q, Vt € [0, T] we have

1G1 (x1,v1) — G1 (x2,12) |
< (@l +&f) (1 = 2]l + lly1 = 2l + [ID"y1 = D)),
1G2 (x1,1) — G2 (x2,12) [,
< (Ol +8lf) (|1 = %l + 1 = 2|l + D731 = D7x2]))
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So we obtain

1(G1,G2) (x1,y1) — (G1, G2) (x2,12) [l g,
< ((®lg+81r) + (Ol +Elf ) ) 1 (x1,1) = (x2,92) s

which shows that G is a contraction. So, by the Banach fixed point theorem, the operator (G, G;) has
a unique fixed point in Q. [

The second result is based on the Leray-Schauder alternative. Now we formulate and prove the
second existence result.

Theorem 2. Let f,g:[0,T] x R® — R be continuous functions. Assume that
(i) there exist a positive real constants 0;, A; (i = 0,1,2,3) such that Vx; € R, (i = 1,2,3)
|f (t,x1,%2,x3)] < 60+ 61 [x1] + 02 |x2| + 03 |x3],
g (t,x1,%2,x3)| < Ao+ A1 [x1] + Az [x2] + Az |x3].
(ii) max{A, B} < 1 where
A= (®+@) M+ (:+E) max (61,63),

B= (@ + @) max (A, Az) + (E + @) 05.
Then there exists at least one solution for the problem (1), (2) on [0, T|.

Proof. The proof will be divided into several steps.

Stepl: We show that G : C,([0,T],R) x C, ([0,T],R) — C.([0,T],R) x Cy([0,T],R) is
completely continuous. The continuity of the operator holds true because of continuity of the
function f, g.

Let O C Gy ([0, T],R) x Cy ([0, T], R) be bounded. Then there exist k¢, kg > 0 such that

[f(Ex(8),y (5), DTy ()] <kg, [g(tx(t),D7x(t),y (1) <kg V(xy) €,

also, from (11) it follows that

1G1 (X, y)llo= IG1 (x, y) | + [ D7GCx (x, y) |
<O|gl+E[fl (13)
< Okg + Eky.
Similarly, we obtain that
1G2 (%, )], = IG2 (x, y) || + [[DY G2 (x,y) |
<Ol +E|fI (14)
< Okg + Bk;.

So, from (13) and (14) we conclude that our operator G is uniformly bounded.
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Now, let us show that G is equicontinuous. Consider t1,t, € [0, T|] with f; < f5. Then we have:
G1(x,) (2) = G1 (%) ()| < |01 (1) = @4 (12)] (1P [3]) (22)
T
+102(t1) — O, (t2)|/0 (Iﬁ_l \8|) (s)ds
+ (21 (1) = & ()] (1*71£1) O2)
- - T/
122 () =S ()] [ (17111 (5) s
]. 31 a—1 a—1
Y |9 = =) Iflds

1 5] -1
+‘|‘7/ ty —s|” ds
F(oc) H |2 ‘ |f|

and
‘Gl (x,y)’ (t2) =G (x,y)’ (tl)‘ < l“k(]t;) [(tz - tl)a_l + ‘fz'x_l - tllx_lH '
Thus
t(t—s) 7 ’ /
|DYG1 (x,y) (t2) — DGy (x,y) (1)[= ./0 T(i=7) ‘Gl (x,y) t2) — G1 (%, y) (h)’ ds

which implies that ||G; (x,v) (f2) — Gy (x,y) (t1)|| = 0, , independent of (x,y) as tp — t;. Similarly
G2 (x,y) (t2) — G2 (x,y) (t1)|| — 0,independent of (x,y) as t, — t;.Thus, G (x,y) is equicontinuous,
so by Arzela-Ascoli theorem G (x, y) is completely continuous.
Step 2: Boundednessof R = {(x,y) € Cy; ([0, T],R) x C, ([0, T],R) : (x,y) =rG (x,y),r € [0,1]}.
Let

x(t) =161 (x,y) (1), y(t) = rGa (x,y) (1),
then
[x(B)] =7[G1 (xy) (D]
By using our assumption we can easily get
¥l = 7l1G1 (2, y)llo= 1G1 (x,y) | + [D7Gr (x, y)
< O|gll+E[f
<0 (Ao -+ M [lxll + A2 Iyl + A3 |1yl
+E (60 + 01 [[x]| + 02 |ly|| + 65 [|x[l,.) ,

and in similar way, we can have

= rlG2 (x,y)ll,= G2 (x, )| + [ D7Ga (x,)|
<@gl +EIIf]

< ® (Ao + M [lxll + A2 llyll + A3 [l
+E (80 + 01 |1x]| + 02 1yl + 5 |xI,)

vl

So
Ixllo + 1y, < (©4©) Ao+ (2+E) b9 +max{A, B} | (x,9) |y,
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where
(©0+8) 10+ (E+E) 6
<
1) oy < T (AL )
As a result the set R is bounded. So, by Leray-Schauder alternative the operator G has at least one
fixed point, which is the solution for the problem (1) with the boundary conditions (2) on [0, T]. O

4. Examples
Example 1. Consider the following coupled system of fractional differential equation:

—3t

“D/5x (1) = ]QVQQ&T;;f( (x (1)) +cos (y (£)) +sin (D (1)) )
s yol [P0
Dby (t) = 12m Os(x(t))+2+\y(t)|+4+|D1/3x(t)| ,t€0,1]

With the integral boundary conditions:

folx(s)ds =3y (1/3), le’ (s)ds = —2y' (1/4),
Joy(s)ds=x (1), [}y (s)ds = 2x' (1/2).

It is clear that

73t

12v 6400 +t4
t,x, vy, Ccos
8 y.z) = 12\/ 3600 + 2 (

are jointly continuous and satisfy the Lipschitz condition with Iy = 1/320,l; = 1/240. On the other hand

ftxyz)=

———— (sinx 4 cosy +sinz),

e L)
2+ 1y 4+ |z

T=10=30=1/3,p00=-20=1/4m=1Lm=Lu=2m=1/2,y=1/5,0=1/3,
and ©, &, @, = can be chosen as follows
O = 3.4959, & = 6.4324, © = 5.1602, & = 4.6058.
Then we obtain:
—2 (@l +&lf) =1~ 00693 = 09307 > 0,
—2 (Bl +Elf) =1-0.0718 = 09282 > 0.
Obviously, all the condition of Theorem 1 are satisfied so there exists unique solution for this problem.

Example 2. Consider the following system:

— _1 (t) 1 : 1 —3t o
D°x () = grm + (i) T 300 S (Dl/SV (t)> + 3vsarie s (x (1)
cDO/5y (1) ﬁsint—l—llme’z’fsin(y(t))—i—lé—o (t )—|—3( )Dl/3 (t),t€[0,1],

with the following boundary conditions:

Jo x (8)ds =3y (1/3), [y &' (5)ds = ~2y' (1/4),
Joy(s)ds =x(1), [y Y (s)ds =22 (1/2),
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T=10=30=1/3,p0=-20=1/4m=1,m=Lu=21mn=1/2,vy=1/5,0 =1/3,
©® =3.4959, & = 6.4324,@ = 5.1602, E = 4.6058.
It is clear that:

41%+L0|x1\+11+5|x2|+$|9€3|,
3+ 150 [0l + 155 [x2] + 555 [x3]-

—_—

|f (£, x1,%2,x3)] <
|g (trxllx2/x3)| S

Thus
6p=1/40,0, =1/180,6, = 1/115,65 = 1/300,
Ao =1/3,A1 =1/150,A, = 1/180,A3 = 1/540.

We found A and B such that: A = 0.1190, B = 0.1444 and that max {A,B} = 0.1444 < 1. Since the
conditions of Theorem 2 is achieved. So, there exists a solution for this problem.

5. Conclusions

We studied the existence of solutions for a coupled system of fractional differential equations with
integral boundary conditions. The first result was based on the Banach fixed point theorem. Secondly,
by using Leray—Schauder’s alternative, we proved the existence of solutions for Caputo fractional
equations with integral boundary conditions. Finally, our results are supported by examples.
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