Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the Half-Axis
Abstract
:1. Introduction
2. Some Preliminaries on Approximate Solution
3. Existence of Approximate Solution
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Valério, D.; da Costa, J.S. Variable-order fractional derivative and their numerical approximations. Signal Process. 2011, 91, 470–483. [Google Scholar] [CrossRef]
- Tavares, D.; Almeida, R.; Torres, D.F.M. Caputo derivatives of fractional variable order: Numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 2016, 35, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Razminia, A.; Dizaji, A.F.; Majd, V.J. Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Model. 2012, 55, 1106–1117. [Google Scholar] [CrossRef]
- Alikhanov, A.A. Boundary value problems for the equation of the variable order in differential and difference settings. Appl. Math. Comput. 2012, 219, 3938–3946. [Google Scholar] [CrossRef]
- Moghaddam, B.P.; Machado, J.A.T.; Behforooz, H. An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Solitons Fractals 2017, 102, 354–360. [Google Scholar] [CrossRef]
- Zúniga-Aguilar, C.J.; Romero-Ugalde, H.M.; Gómez-Aguilar, J.F.; Escobar-Jiménez, R.F.; Valtierra-Rodríguez, M. Solving fractional differential equations of variable-order involving operator with Mittag-Leffler kernel using artifical neural networks. Chaos Solitons Fractals 2017, 103, 382–403. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, F.; Anh, V.; Turner, I. Numberical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 2010, 32, 1740–1760. [Google Scholar] [CrossRef]
- Sierociuk, D.; Malesza, W.; Macias, M. Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. 2015, 39, 3876–3888. [Google Scholar] [CrossRef]
- Sun, H.; Chen, W.; Wei, H.; Chen, Y. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. 2011, 193, 185–192. [Google Scholar] [CrossRef]
- Ye, H.; Gao, J.; Ding, Y. A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 2007, 328, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.V.D.C.; de Oliveira, E.C. Two new fractional derivatives of variable order with non-singular kernel and fractional differential equation. Comput. Appl. Math. 2018, 37, 5375–5394. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F. Analytical and numerical solutions of nonlinear alcoholism model via variable-order fractional differential equations. Phys. A 2018, 494, 52–57. [Google Scholar] [CrossRef]
- Yang, J.; Yao, H.; Wu, B. An efficient numberical method for variable order fractional functional differential equation. Appl. Math. Lett. 2018, 76, 221–226. [Google Scholar] [CrossRef]
- Hajipour, M.; Jajarmi, A.; Baleanu, D.; Sun, H. On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 119–133. [Google Scholar] [CrossRef]
- Samko, S.G. Fractional integration and differentiation of variable order. Anal. Math. 1995, 21, 213–236. [Google Scholar] [CrossRef]
- Samko, S.G.; Boss, B. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1993, 1, 277–300. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.S.; Hu, L. The existeness and uniqueness result of solutions to initial value problems of nonlinear diffusion equations involving with the conformable variable derivative. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2018. [Google Scholar] [CrossRef]
- Zhang, S. The uniqueness result of solutions to initial value problem of differential equations of variable-order. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2018, 112, 407–423. [Google Scholar] [CrossRef]
- Malesza, W.; Macias, M.; Sierociuk, D. Analysitical solution of fractional variable order differential equations. J. Comput. Appl. Math. 2019, 348, 214–236. [Google Scholar] [CrossRef]
- Kian, Y.; Sorsi, E.; Yamamoto, M. On time-fractional diffusion equations with space-dependent variable order. Ann. Henri Poincaré 2018, 19, 3855–3881. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kou, C.; Zhou, H.; Yan, Y. Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal. 2011, 74, 5975–5986. [Google Scholar] [CrossRef]
- Deng, J.; Deng, Z. Existence of solutions of initial value problems for nonlinear fractional differential equations. Appl. Math. Lett. 2014, 32, 6–12. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Benchohra, M.; Hamani, S. Boundary value problems for fractional differential equations. Georgian Math. J. 2009, 16, 401–411. [Google Scholar]
- Dong, X.; Bai, Z.; Zhang, S. Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017, 5, 1–15. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, S.; Sun, S.; Chun, Y. Monotone iterative method for a class of fractional differential equations. Electron. J. Differ. Equ. 2016, 6, 1–8. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Hu, L. Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the Half-Axis. Mathematics 2019, 7, 286. https://doi.org/10.3390/math7030286
Zhang S, Hu L. Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the Half-Axis. Mathematics. 2019; 7(3):286. https://doi.org/10.3390/math7030286
Chicago/Turabian StyleZhang, Shuqin, and Lei Hu. 2019. "Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the Half-Axis" Mathematics 7, no. 3: 286. https://doi.org/10.3390/math7030286
APA StyleZhang, S., & Hu, L. (2019). Unique Existence Result of Approximate Solution to Initial Value Problem for Fractional Differential Equation of Variable Order Involving the Derivative Arguments on the Half-Axis. Mathematics, 7(3), 286. https://doi.org/10.3390/math7030286