Spreading Speed in A Nonmonotone Equation with Dispersal and Delay
Abstract
:1. Introduction
- (J)
- J is nonnegative and continuous; there exists such that for any ,
- (I1)
- is uniformly continuous and bounded for and is a nonnegative function with nonempty support;
- (I2)
- has nonempty compact support.
2. Preliminaries
3. Main Results
- (v1)
- (v2)
- (v3)
- if (), then is decreasing (increasing).
- (p1)
- (p2)
- (p3)
- (w1)
- (w2)
- (w3)
- (w4)
- is decreasing and continuous for
4. Conclusion Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aronson, D.G.; Weinberger, H.F. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In Partial Differential Equations and Related Topics; Lecture Notes in Mathematics; Goldstein, J.A., Ed.; Springer: Berlin, Germany, 1975; Volume 446, pp. 5–49. [Google Scholar]
- Shigesada, N.; Kawasaki, K. Biological Invasions: Theory and Practice; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Weinberger, H.F.; Lewis, M.A.; Li, B. Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 2002, 45, 183–218. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q. Spatial dynamics of some evolution systems in biology. In Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions; Du, Y., Ishii, H., Lin, W.Y., Eds.; World Scientific: Singapore, 2009; pp. 332–363. [Google Scholar]
- Bao, X.; Shen, W.; Shen, Z. Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems. Commun. Pure Appl. Anal. 2019, 18, 361–396. [Google Scholar] [CrossRef]
- Wu, S.L.; Liu, S.Y. Traveling waves for delayed non-local diffusion equations with crossing-monostability. Appl. Math. Comput. 2010, 217, 1435–1444. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, R. Spreading speeds and traveling waves for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity. Z. Angew. Math. Phys. 2014, 65, 819–844. [Google Scholar] [CrossRef]
- Ducrot, A. Spatial propagation for a two component reaction-diffusion system arising in population dynamics. J. Differ. Equ. 2016, 260, 8316–8357. [Google Scholar] [CrossRef]
- Pan, S. Invasion speed of a predator-prey system. Appl. Math. Lett. 2017, 74, 46–51. [Google Scholar] [CrossRef]
- Andreu-Vaillo, F.; Mazón, J.; Rossi, J.; Julio, D.; Toledo-Melero, J. Nonlocal Diffusion Problems; Mathematical Surveys and Monographs; AMS: Providence, RI, USA, 2010; Volume 165. [Google Scholar]
- Gourley, S.A.; Wu, J. Delayed non-local diffusive systems in biological invasion and disease spread. In Nonlinear Dynamics and Evolution Equations; Fields Institute Communications; Brunner, H., Zhao, X., Zou, X., Eds.; AMS: Providence, RI, USA, 2006; Volume 48, pp. 137–200. [Google Scholar]
- Lin, G. Spreading speed of the delayed Fisher equation without quasimonotonicity. Nonlinear Anal. Real World Appl. 2011, 12, 3713–3718. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, X.Q. Spatial dynamics of a periodic population model with dispersal. Nonlinearity 2009, 22, 1167–1189. [Google Scholar] [CrossRef]
- Li, X.S.; Pan, S.; Shi, H.B. Minimal wave speed in a dispersal predator-prey system with delays. Bound. Value Probl. 2018, 2018, 49. [Google Scholar] [CrossRef]
- Pan, S. Traveling wave solutions in nonlocal dispersal models with nonlocal delays. J. Korean Math. Soc. 2014, 51, 703–719. [Google Scholar] [CrossRef]
- Martin, R.H.; Smith, H.L. Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 1990, 321, 1–44. [Google Scholar]
- Brown, K.J.; Carr, J. Deterministic epidemic waves of critical velocity. Math. Proc. Camb. Philos. Soc. 1977, 81, 431–433. [Google Scholar] [CrossRef]
- Lin, G.; Ruan, S. Traveling wave solutions for delayed reaction-diffusion systems and applications to Lotka-Volterra competition-diffusion models with distributed delays. J. Dyn. Differ. Equ. 2014, 26, 583–605. [Google Scholar] [CrossRef]
- Murray, J.D. Mathematical Biology. I. An Introduction, 3rd ed.; Interdisciplinary Applied Mathematics; Springer: New York, NY, USA, 2002; Volume 17. [Google Scholar]
- Wu, J. Theory and Applications of Partial Functional Differential Equations; Springer: New York, NY, USA, 1996. [Google Scholar]
- Li, X.S.; Pan, S. Traveling wave solutions of a delayed cooperative system. Mathematics 2019, 7, 269. [Google Scholar] [CrossRef]
- Trofimchuk, S.; Volpert, V. Traveling waves for a bistable reaction-diffusion equation with delay. SIAM J. Math. Anal. 2018, 50, 1175–1199. [Google Scholar] [CrossRef]
- Wang, Z.C.; Li, W.T. Dynamics of a non-local delayed reaction-diffusion equation without quasi-monotonicity. Proc. R. Soc. Edinb. Sect. A 2010, 140, 1081–1109. [Google Scholar] [CrossRef]
- Wang, Z.C.; Li, W.T.; Wu, J. Entire solutions in delayed lattice differential equations with monostable nonlinearity. SIAM J. Math. Anal. 2009, 40, 2392–2420. [Google Scholar] [CrossRef]
- Wu, S.L.; Hsu, C.H. Existence of entire solutions for delayed monostable epidemic models. Trans. Am. Math. Soc. 2016, 368, 6033–6062. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, S. Entire solutions of integrodifference equations. J. Differ. Equ. Appl. 2019. [Google Scholar] [CrossRef]
- Huang, R.; Mei, M.; Zhang, K.; Zhang, Q. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discret. Contin. Dyn. Syst. 2016, 36, 1331–1353. [Google Scholar] [CrossRef]
- Pan, S.; Li, W.T.; Lin, G. Existence and stability of traveling wavefronts in a nonlocal diffusion equation with delay. Nonlinear Anal. 2010, 72, 3150–3158. [Google Scholar] [CrossRef]
- Hamel, F.; Roques, L. Fast propagation for KPP equations with slowly decaying initial conditions. J. Differ. Equ. 2010, 249, 1726–1745. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.-L.; Pan, S. Spreading Speed in A Nonmonotone Equation with Dispersal and Delay. Mathematics 2019, 7, 291. https://doi.org/10.3390/math7030291
Liu X-L, Pan S. Spreading Speed in A Nonmonotone Equation with Dispersal and Delay. Mathematics. 2019; 7(3):291. https://doi.org/10.3390/math7030291
Chicago/Turabian StyleLiu, Xi-Lan, and Shuxia Pan. 2019. "Spreading Speed in A Nonmonotone Equation with Dispersal and Delay" Mathematics 7, no. 3: 291. https://doi.org/10.3390/math7030291
APA StyleLiu, X. -L., & Pan, S. (2019). Spreading Speed in A Nonmonotone Equation with Dispersal and Delay. Mathematics, 7(3), 291. https://doi.org/10.3390/math7030291