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Abstract

:

In this paper, we study an absolutely new problem, namely, the Cayley inclusion problem which involves the Cayley operator and a multi-valued mapping with XOR-operation. We have shown that the Cayley operator is a single-valued comparison and it is Lipschitz-type-continuous. A fixed point formulation of the Cayley inclusion problem is shown by using the concept of a resolvent operator as well as the Yosida approximation operator. Finally, an existence and convergence result is proved. An example is constructed for some of the concepts used in this work.
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1. Introduction


It is well known that inclusion problems were introduced and studied as a generalization of equilibrium problems, which include a vast range of problems in analysis such as variational inequalities, vector optimization, game theory, fixed point problems, the Nash equilibrium problem, complementary problems, traffic equilibrium problems, economics, etc., see [1,2,3]. It is interesting to note that the term “Variational inclusion”, is understood with different aspects in several works. That is, it means simply multi-valued variational inequalities in [4,5] and the problem of finding the zeros of maximal monotone mappings in [6,7,8], etc. Variational inclusions involving different kinds of operators are useful and have a wide range of applications in industry, mathematical finance, decision sciences, ecology, engineering sciences, etc., see [9,10,11,12,13,14,15].



Due to the fact that the projection methods cannot be used to solve variational inclusion problems, the resolvent operator methods came into the picture to solve them efficiently. It is also known that the monotone operators in abstract spaces can be regularized into single-valued Lipschitzian monotone operator through a process known as Yosida approximation, see [16,17,18,19].



The XOR-operation ⊕ is a binary operation and behaves like ADD operation, which is associative as well as commutative. XOR-operation depicts interesting facts and observations and forms various real time applications, i.e., data encryption, error detection in digital communication, parity check and helps to implement multi-layer perception in neural networks.



Many problems related to ordered variational inequalities and ordered equations were studied by H.G.Li together with his co-authors, see [20,21,22,23,24] and I.Ahmad with his co-authors, see [25,26]. Considering all the facts mentioned above, in this paper, we introduce and study a quite new and interesting problem which we call Cayley inclusion problem involving XOR-operation. The Cayley inclusion problem involves a Cayley operator and a multi-valued mapping. We have shown some properties of the Cayley operator, that is, it is single-valued, comparison as well as Lipschitz-type-continuous. A fixed point formulation of the Cayley inclusion problem is given by using the concept of resolvent operator and Yosida approximation operator. An iterative algorithm is established and finally an existence and convergence result is proved for the Cayley inclusion problem involving XOR-operation. An example is constructed to illustrate some of the concepts used in this paper.




2. Preliminaries


Throughout this paper, we suppose that H is a real ordered Hilbert space endowed with a norm ∥.∥ and an inner product ⟨·,·⟩,d is the metric induced by the norm ∥.∥ and 2H is the family of all nonempty subsets of H.



Now, we recall some known concepts are results which we need to prove the main result of this paper and can be found in [22,23,24,27,28].



Definition 1.

A nonempty closed convex subset C of H is said to be a cone, if

	(i) 

	
for any x∈C and λ>0, then λx∈C,




	(ii) 

	
for any x,∈C and −x∈C, then x=0.











Definition 2.

A cone C is said to be normal if and only if, there exist a constant λN>0 such that 0≤x≤y implies ∥x∥≤λN∥y∥, where λN is the normal constant of C.





Definition 3.

Let C be a cone. For arbitrary element x,y∈H, x≤y holds if and only if, x−y∈C. The relation “≤” in H is called partial ordered relation.





Definition 4.

For arbitrary elements x,y∈H, if x≤y (or y≤x) holds, then x and y are said to be comparable to each other (denoted by x∝y).





Definition 5.

For arbitrary elements x,y∈H,lub{x,y} and glb{x,y} means least upper bound and greatest upper bound of the set {x,y}. Suppose lub{x,y} and glb{x,y} exist, then some binary operations are defined as follows:

	(i) 

	
x∨y=lub{x,y},




	(ii) 

	
x∧y=glb{x,y},




	(iii) 

	
x⊕y=(x−y)∨(y−x),




	(iv) 

	
x⊙y=(x−y)∧(y−x).









The operations ∨,∧,⊕ and ⊙ are called OR, AND, XOR and XNOR operations, respectively.





Lemma 1.

If x∝y, then lub{x,y} and glb{x,y} exist, x−y∝y−x and 0≤(x−y)∨(y−x).





Lemma 2.

For any natural number n,x∝yn and yn→y∗ as n→∞, then x∝y∗.





Proposition 1.

Let ⊕ be an XOR-operation and ⊙ be an XNOR-operation. Then the following relations hold:

	(i) 

	
x⊙x=0,x⊙y=y⊙x=−(x⊕y)=−(y⊕x),




	(ii) 

	
if x∝0, then −x⊕0≤x≤x⊕0,




	(iii) 

	
(λx)⊕(λy)=|λ|(x⊕y),




	(iv) 

	
0≤x⊕y, if x∝y,




	(v) 

	
if x∝y, then x⊕y=0 if and only if x=y,




	(vi) 

	
(x+y)⊙(u+v)≥(x⊙u)+(y⊙v),




	(vii) 

	
(x+y)⊙(u+v)≥(x⊙v)+(y⊙u),




	(viii) 

	
if x,y and w are comparable to each other, then (x⊕y)≤x⊕w+w⊕y,




	(ix) 

	
αx⊕βx=|α−β|x=(α⊕β)x, if x∝0,x,y,u,v∈H and α,β,λ∈R.











Proposition 2.

Let C be a normal cone in H with normal constant λN, then for each x,y∈H, the following relations hold:

	(i) 

	
∥0⊕0∥=∥0∥=0,




	(ii) 

	
∥x∨y∥≤∥x∥∨∥y∥≤∥x∥+∥y∥,




	(iii) 

	
∥x⊕y∥≤∥x−y∥≤λN|x⊕y∥,




	(iv) 

	
if x∝y, then ∥x⊕y∥=∥x−y∥.











Definition 6.

Let A:H→H be a single-valued mapping.

	(i) 

	
A is said to be a comparison mapping if x∝y then A(x)∝A(y), x∝A(x) and y∝A(y), forallx,y∈H,




	(ii) 

	
A is said to be strongly comparison mapping, if A is a comparison mapping and A(x)∝A(y) if and only if x∝y, forallx,y∈H.











Definition 7.

A mapping A:H→H is said to be β-ordered comparison mapping, if A is comparison mapping and


A(x)⊕A(y)≤β(x⊕y),for0≤β≤1,forallx,y∈H.













Definition 8.

Let M:H→2H be a multi-valued mapping. Then

	(i) 

	
M is said to be a comparison mapping, if for any vx∈M(x),x∝vx, and if x∝y, then for any vx∈M(x) and any vy∈M(y),vx∝vy,forallx,y∈H,




	(ii) 

	
a comparison mapping M is said to be α-non-ordinary difference mapping, if for each x,y∈H,vx∈M(x) and vy∈M(y) such that


(vx⊕vy)⊕α(x⊕y)=0,












	(iii) 

	
a comparison mapping M is said to be γ-ordered rectangular, if there exists a constant γ>0, and for any x,y∈H, there exist vx∈M(x) and vy∈M(y) such that


⟨vx⊙vy,−(x⊕y)⟩≥γ∥x⊕y∥2,








holds.




	(iv) 

	
M is said to be weak comparison mapping, if for any x,y∈H, x∝y, then there exist vx∈M(x) and vy∈M(y) such that x∝vx, y∝vy and vx∝vy.




	(v) 

	
M is said to be λ-weak ordered different comparison mapping, if there exist a constant λ>0 such that for any x,y∈H, there exist vx∈M(x), vy∈M(y), λ(vx−vy)∝(x−y) holds.




	(vi) 

	
a weak comparison mapping M:H→2H is said to be a (γ,λ)-weak ordered rectangular different multi-valued mapping, if M is a γ-ordered rectangular and λ-weak ordered different comparison mapping and [I+λM](H)=H, for λ>0.











Definition 9.

Let M:H→2H be a multi-valued mapping. The operator RI,λM:H→H defined by


RI,λM(x)=[I+λM]−1(x),forallx∈H,



(1)




is called the resolvent operator associated with M, where λ>0 is a constant.





It is well known that the resolvent operator associated with M is single-valued.



Definition 10.

The Yosida approximation operator JI,λM associated with M is defined by


JI,λM(x)=1λ[I−RI,λM](x),forallx∈H,



(2)




where λ>0 is a constant.





Now we define the Cayley operator based on resolvent operator (1)



Definition 11.

The Cayley operator CI,λM of M is defined as:


CI,λM(x)=[2RIλM−I](x),forallx∈H,



(3)




where I is the identity operator.





Proposition 3.

Let M:H→2H is a γ-ordered rectangular multi-valued mapping. Then, the Yosida approximation operator JI,λM is single-valued, for λ>0.





Proof. 

For the proof we refer to [25]. □





Proposition 4.

Let M:H→2H is a γ-ordered rectangular multi-valued mapping. Then, the Cayley operator CI,λM associated with M is single valued, for γλ>1.





Proof. 

Let x,y∈CI,λM(u). Then


x∈CI,λM(u)=(2RI,λM−I)(u),12(x+u)∈RI,λM(u)=[I+λM]−1(u),i.e.,u∈12(x+u)[I+λM],u∈12(x+u)+12λM(x+u),2u∈(x+u)+λM(x+u),u−x∈λM(x+u).











Thus 1λ(u−x)∈M(z1), where z1=x+u. Let 1λ(u−x)=vz1, then vz1∈M(z1).



Similarly, for y∈CI,λM(u), we have vz2∈M(z2), where


vz2=1λ(u−y)andz2=y+u.











Now, we evaluate vz1⊕vz2 by using the values of vz1 and vz2 calculated above and using Proposition 1.


vz1⊕vz2=[1λ(u−x)⊕1λ(u−y)]=1λ[(u−x)⊕(u−y)]≤1λ(x⊕y).



(4)







Since M is γ-ordered rectangular multi-valued mapping and using (4), we have


γ∥(x+u)⊕(y+u)∥2≤⟨vz1⊙vz2,−[(x+u)⊕(y+u)]⟩=⟨vz1⊕vz2,x⊕y⟩≤1λ⟨x⊕y,x⊕y⟩,








which implies that


γ∥x⊕y∥2≤1λ∥x⊕y∥2(γλ−1)∥x⊕y⊕∥2≤0i.e.,x⊕y=0whichimpliesthatx=y.











Therefore, the Cayley operator CI,λM associated with M is single-valued. □





Proposition 5.

For any x,y∈H, let x∝y and RI,λM(x)∝RI,λM(y).Then, the Cayley operator CI,λM associated with M is a comparison mapping.





Proof. 

For any x,y∈H, let x∝y then obviously I(x)∝I(y). As RI,λM is a comparison mapping, we have RI,λM(x)∝RI,λM(y). Thus, we have


[2RI,λM−I](x)∝[2RI,λM−I](y).








i.e., we have


CI,λM(x)∝CI,λM(y).











Therefore, the Cayley operator CI,λM associated with M is a comparison mapping. □





Lemma 3.

Let M:H→2H be a γ-ordered rectangular multi-valued mapping with respect to RI,λM, for λ>1γ. Then the following condition holds:


∥RI,λM(x)⊕RI,λM(y)∥≤θ∥x⊕y∥,forallx,y∈H,whereθ=1γλ−1.











That is, the resolvent operator RI,λM is Lipschitz-type-continuous.





Proof. 

For the proof we refer to [25]. □





Lemma 4.

Let M:H→2H be a (γ,λ)-weak ordered rectangular different multi-valued mapping with respect to RI,λM and the resolvent operator RI,λM defined by (1) is θ-Lipschitz-type-continuous. Then, the Yosida approximation operator JI,λM defined by (2) is θ′-Lipschitz-type-continuous. i.e.,


∥JI,λM(x)⊕JI,λM(y)∥≤θ′∥x⊕y∥,forallx,y∈H,whereθ=1γλ−1,θ′=γγλ−1andγλ>1.











That is, the Yosida approximation operator JI,λM is Lipschitz-type-continuous.





Proof. 

For the proof we refer to [25]. □





Lemma 5.

Let M:H→2H be (γ,λ)-weak ordered rectangular different multi-valued mapping with respect to RI,λM and the resolvent operator RI,λM is θ-Lipschitz-type-continuous. Then, the Cayley operator CI,λM defined by (3) is (2θ+1)-Lipschitz-type-continuous. That is,


∥CI,λM(x)⊕CI,λM(y)∥≤(2θ+1)∥x⊕y∥,forallx,y∈H,whereθ=1γλ−1andγλ>1.













Proof. 

Using Cauchy-Schwartz inequality and Proposition 1, we have


∥CI,λM(x)⊕CI,λM(y)∥2=⟨CI,λM(x)⊕CI,λM(y),CI,λM(x)⊕CI,λM(y)⟩=⟨(2RI,λM(x)−I(x))⊕(2RI,λM(y)−I(y)),(2RI,λM(x)−I(x))⊕(2RI,λM(y)−I(y))⟩=⟨(2RI,λM(x)⊕2RI,λM(y))+(I(x)⊕I(y)),(2RI,λM(x)⊕2RI,λM(y))+(I(x)⊕I(y))⟩=⟨2RI,λM(x)⊕2RI,λM(y),2RI,λM(x)⊕2RI,λM(y)⟩+⟨2RI,λM(x)⊕2RI,λM(y),I(x)⊕I(y)⟩+⟨I(x)⊕I(y),2RI,λM(x)⊕2RI,λM(y)⟩+⟨I(x)⊕I(y),I(x)⊕I(y)⟩≤4∥RI,λM(x)⊕RI,λM(y)∥2+2∥RI,λM(x)⊕RI,λM(y)∥∥x⊕y∥+2∥RI,λM(x)⊕RI,λM(y)∥∥x⊕y∥+∥x⊕y∥2=2∥RI,λM(x)⊕RI,λM(y)∥+∥x⊕y∥2i.e.,∥CI,λM(x)⊕CI,λM(y)∥≤2∥RI,λM(x)⊕RI,λM(y)∥+∥x⊕y∥.











Using the Lipschitz-type-continuity of the resolvent operator RI,λM, we have


∥CI,λM(x)⊕CI,λM(y)∥≤2θ∥x⊕y∥+∥x⊕y∥,i.e.,∥CI,λM(x)⊕CI,λM(y)≤(2θ+1)∥x⊕y∥,whereθ=1γλ−1andγλ>1.








i.e., the Cayley operator CI,λM is Lipschitz-type-continuous. □





We construct the following example in support of some of the concepts used in this paper.



Example 1.

Let C⊆H be a normal cone with constant λN. Let M:H→2H be the multi-valued mapping defined by M(x)={x+1:x∈H} and x∝y.


Asx∝y,clearlyM(x)∝M(y)











That is, M is a comparison mapping.


Letvx=x+1∈M(x)andvy=y+1∈M(y)and⟨vx⊕vy,−(x⊕y)⟩=⟨vx⊕vy,x⊕y⟩=⟨(x+1)⊕(y+1),x⊕y⟩=⟨x⊕y,x⊕y⟩=∥x⊕y∥2≥45∥x⊕y∥2,∀x,y∈H.











Thus, M is 45-ordered rectangular mapping. Also it is easy to see that for λ=2, M is 2-weak ordered different comparison mapping. Hence, M is (45,2)-weak ordered rectangular different multi-valued mapping.



The resolvent operator defined by (1) is given by


RI,λM(x)=(x−2)3,forallx∈H.











Also,


∥RI,λM(x)⊕RI,λM(y)∥=∥(x−2)3⊕(y−2)3∥=13∥x⊕y∥≤53∥x⊕y∥.











That is, the resolvent operator RI,λM is 53-Lipschitz-type-continuous.



In view of the above, the Cayley operator CI,λM defined by (3) is of the form:


CI,λM(x)=(−x−4)3,forallx∈H.











It is easy to see that that the Cayley operator defined above is a comparison and single-valued mapping. Also,


∥CI,λM(x)⊕CI,λM(y)∥=∥(−x−4)3⊕(−y−4)3∥=13∥x⊕y∥≤133∥x⊕y∥,⇒∥CI,λM(x)⊕CI,λM(y)∥≤133∥x⊕y∥,forallx,y∈H.











That is, the Cayley operator CI,λM is 133-Lipschitz-type-continuous.






3. Formulation of The Problem and Existence of Solution


Let H be a real ordered Hilbert space. Let M:H→2H be the multi-valued mapping and CI,λM be the Cayley operator. We consider the following problem:



Find x∈H such that


0∈CI,λM(x)⊕M(x).



(5)







We call Problem (5) a Cayley inclusion problem involving XOR-operation.



If C=0, then the Problem (5) reduces to the problem of finding x∈H such that


0∈M(x).



(6)







Problem (6) is a fundamental problem of inclusions in analysis and studied by Li et al. [22] and others.



The following Lemma is a fixed point formulation of Cayley inclusion Problem involving XOR-operation (5).



Lemma 6.

The Cayley inclusion Problem (5) involving XOR-operation has a solution x∈H if and only if, it satisfies the following equation:


x=RI,λMλ(JI,λM(x)⊕CI,λM(x))+RI,λM(x).



(7)









Proof. 

From Equation (7), we have


x=RI,λMλ(JI,λM(x)⊕CI,λM(x))+RI,λM(x).











Using the definition of resolvent operator and Yosida approximation operator, we obtain


x=[I+λM]−1λ(JI,λM(x)⊕CI,λM(x))+RI,λM(x),x+λM(x)=λ.1λ(I−RI,λM)(x)⊕λCI,λM(x)+RI,λM(x)=x−RI,λM(x)⊕λCI,λM(x)+RI,λM(x),λM(x)=λCI,λM(x),








which implies that


0∈CI,λM(x)⊕M(x),








i.e., the required Cayley inclusion Problem involving XOR-operation (5). □





Based on Lemma 6, we define the following iterative algorithm for finding the solution of the Cayley inclusion problem involving XOR-operation (5).



Iterative Algorithm 1.

For initial element x0∈H, compute the sequence {xn} by the following iterative scheme:


xn+1=(1−α)xn+αRI,λM{λ(JI,λM(xn)⊕CI,λM(xn))+RI,λM(xn)},








where α∈[0,1], λ>0 is a constant and I is the identity operator.





Theorem 1.

Let H be a real ordered Hilbert space and C be a normal cone with normal constant λN with ordering “≤”. Let M:H→2H be γ-ordered rectangular, (γ,λ)-weak ordered rectangular different multi-valued mapping. Let JI,λM be the Yosida approximation operator defined by (2) and CI,λM be the Cayley operator defined by (3) such that both the operators are Lipschitz-type-continuous with constant θ′ and (2θ+1), respectively. Let xn+1∝xn and JI,λM(x)⊕JI,λM(y)∝CI,λM(x)⊕CI,λM(y), for all x,y∈H, n=0,1,2,3,… such that the following condition is satisfied:


θ′+2θ<[1−θ(1+λ)]λθ,whereθ=1γλ−1,θ′=γγλ−1andγλ>1.



(8)







Then the sequence {xn} generated by the Algorithm 1 strongly converges to x∗, the solution of the Cayley inclusion Problem involving XOR-operation (5). In addition, for any x0∈H, the following condition holds:


∥x∗−x0∥≤1+(λN−1)[(1−α)+αθ[1+λθ′+λ(2θ+1)]1−[(1−α)+αθ[1+λθ1+λ(2θ+1)]×α∥x0+RI,λM{λ(JI,λM(x0)⊕CI,λM(x0))+RI,λM(x0)}∥.













Proof. 

By using Algorithm 1 and Proposition 1, we have


0≤xn+1⊕xn=(1−α)xn+αRI,λM{λ(JI,λM(xn)⊕CI,λM(xn))+RI,λM(xn)}⊕(1−α)xn−1+αRI,λM{λ(JI,λM(xn−1)⊕CI,λM(xn−1))+RI,λM(xn−1)}=(1−α)(xn⊕xn−1)+α(RI,λM{λ(JI,λM(xn)⊕CI,λM(xn))+RI,λM(xn)}⊕RI,λM{λ(JI,λM(xn−1)⊕CI,λM(xn−1))+RI,λM(xn−1)}).



(9)







Using Proposition 2, we calculate


∥xn+1⊕xn∥≤λN∥(1−α)(xn⊕xn−1)+α(RI,λM{λ(JI,λM(xn)⊕CI,λM(xn))+RI,λM(xn)}⊕RI,λM{λ(JI,λM(xn−1)⊕CI,λM(xn−1))+RI,λM(xn−1)})∥≤λN(1−α)∥xn⊕xn−1∥+λNα∥RI,λM{λ(JI,λM(xn)⊕CI,λM(xn))}⊕RI,λM{λ(JI,λM(xn−1)⊕CI,λM(xn−1))}∥+λNα∥RI,λM(xn)⊕RI,λM(xn−1)∥.











As RI,λM is Lipschitz-type-continuous, we have


∥xn+1⊕xn∥≤λN(1−α)∥xn⊕xn−1∥+λNαλθ∥[JI,λM(xn)⊕CI,λM(xn)]⊕[JI,λM(xn−1)⊕CI,λM(xn−1)]∥+λNαθ∥xn⊕xn−1∥≤λN(1−α)+λNαθ∥xn⊕xn−1∥+λNαλθ∥JI,λM(xn)⊕JI,λM(xn−1⊕CI,λM(xn)⊕CI,λM(xn−1)∥≤λN(1−α)+λNαθ∥xn⊕xn−1∥+λNαλθ∥(JI,λM(xn)⊕JI,λM(xn−1))−(CI,λM(xn)⊕CI,λM(xn−1))∥.











That is,


∥xn+1⊕xn∥≤λN(1−α)+λNαθ∥xn⊕xn−1∥+λNαλθ∥JI,λM(xn)⊕JI,λM(xn−1)∥+λNαλθ∥CI,λM(xn)⊕CI,λM(xn−1)∥,whereθ=1γλ−1andγλ>1.



(10)







Using the Lipschitz-type-continuity of Yosida approximation operator JI,λM and Cayley operator CI,λM, we have


∥xn+1⊕xn∥≤λN(1−α)+λNαθ∥xn⊕xn−1∥+λNαλθθ′∥xn⊕xn−1∥+λNαλθ(2θ+1)∥xn⊕xn−1∥=λN(1−α)+αθ+αλθθ′+αλθ(2θ+1)∥xn⊕xn−1∥,i.e.,∥xn+1⊕xn∥≤λN(1−α)+αθ(1+λθ′+λ(2θ+1))∥xn⊕xn−1∥,



(11)




where θ=1γλ−1, θ′=γγλ−1andγλ>1.



Since xn+1∝xn, we have


∥xn+1⊕xn∥=∥xn+1−xn∥≤λN(1−α)+αθ[1+λθ′+λ(2θ+1)]∥xn−xn−1∥.











Thus, we have


∥xn+1−xn∥≤λNνn∥x1−x0∥,whereν=(1−α)+αθ[1+λθ′+λ(2θ+1)].











Hence, for m>n>0, we have


∥xm−xn∥≤∑i=nm−1∥xi+1−xi∥≤λN∥x1−x0∥∑i=nm−1νi.



(12)







It follows from condition (8) that 0<ν<1, and thus ∥xm−xn∥→0,asn→∞ and so {xn} is a Cauchy sequence in H. Since H is complete xn→x∗∈H,asn→∞. Thus, we can write


x∗=limn→∞xn+1=limn→∞(1−α)xn+α[RI,λM{λ(JI,λM(xn)⊕CI,λM(xn))+RI,λM(xn)}]=(1−α)limn→∞xn+αlimn→∞RI,λM{λ(JI,λM(xn)⊕CI,λM(xn))+RI,λM(xn)}=(1−α)x∗+αRI,λM{λ(JI,λM(limn→∞xn)⊕CI,λM(limn→∞xn))+RI,λM(limn→∞xn)}=(1−α)x∗+αRI,λM{λ(JI,λM(x∗)⊕CI,λM(x∗))+RI,λM(x∗)}.











It follows that x∗ satisfies the Equation (7),


i.e.,x=RI,λMλ(JI,λM(x)⊕CI,λM(x))+RI,λM(x).











By Lemma 6, x∗ is a solution of Cayley inclusion problem involving XOR-operation (5). On the other hand, it follows that RI,λMλ(JI,λM(x)⊕CI,λM(x))+RI,λM(x)∝x∗,n=0,1,2,….



Using Lemma 1 and (12), we have


∥x∗−x0∥=limn→∞∥xn−x∗∥≤limn→∞∑i=1n∥xi+1−xi∥≤limn→∞λN∑i=2nνi−1∥x1−x0∥+∥x1−x0∥≤1+(λN−1)[(1−α)+αθ[1+λθ′+λ(2θ+1)]1−[(1−α)+αθ[1+λθ′+λ(2θ+1)]×α∥x0+RI,λM{λJI,λM(x0)⊕CI,λM(x0)+RI,λM(x0)}∥.











This complete the proof. □






4. Conclusions


We have introduced and studied a new problem which involves a Cayley operator and a multi-valued mapping with XOR-operation in real ordered Hilbert space, called the Cayley Inclusion problem involving XOR-operation. A fixed point formulation of the Cayley inclusion problem involving XOR-operation is given by using the Yosida approximation operator and resolvent operator. Finally, an existence and convergence result is proved with some extra condition. An example is constructed to illustrate some of the concepts used in this paper.



We remark that our results may be extended in ordered Banach spaces and other higher dimensional spaces.
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