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Abstract

:

The principal objective of this work is to propose a fourth, eighth and sixteenth order scheme for solving a nonlinear equation. In terms of computational cost, per iteration, the fourth order method uses two evaluations of the function and one evaluation of the first derivative; the eighth order method uses three evaluations of the function and one evaluation of the first derivative; and sixteenth order method uses four evaluations of the function and one evaluation of the first derivative. So these all the methods have satisfied the Kung-Traub optimality conjecture. In addition, the theoretical convergence properties of our schemes are fully explored with the help of the main theorem that demonstrates the convergence order. The performance and effectiveness of our optimal iteration functions are compared with the existing competitors on some standard academic problems. The conjugacy maps of the presented method and other existing eighth order methods are discussed, and their basins of attraction are also given to demonstrate their dynamical behavior in the complex plane. We apply the new scheme to find the optimal launch angle in a projectile motion problem and Planck’s radiation law problem as an application.
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1. Introduction


One of the most frequent problems in engineering, scientific computing and applied mathematics, in general, is the problem of solving a nonlinear equation f(x)=0. In most of the cases, whenever real problems are faced, such as weather forecasting, accurate positioning of satellite systems in the desired orbit, measurement of earthquake magnitudes and other high-level engineering problems, only approximate solutions may get resolved. However, only in rare cases, it is possible to solve the governing equations exactly. The most familiar method of solving non linear equation is Newton’s iteration method. The local order of convergence of Newton’s method is two and it is an optimal method with two function evaluations per iterative step.



In the past decade, several higher order iterative methods have been developed and analyzed for solving nonlinear equations that improve classical methods such as Newton’s method, Chebyshev method, Halley’s iteration method, etc. As the order of convergence increases, so does the number of function evaluations per step. Hence, a new index to determine the efficiency called the efficiency index is introduced in [1] to measure the balance between these quantities. Kung-Traub [2] conjectured that the order of convergence of any multi-point without memory method with d function evaluations cannot exceed the bound 2d−1, the optimal order. Thus the optimal order for three evaluations per iteration would be four, four evaluations per iteration would be eight, and so on. Recently, some fourth and eighth order optimal iterative methods have been developed (see [3,4,5,6,7,8,9,10,11,12,13,14] and references therein). A more extensive list of references as well as a survey on the progress made in the class of multi-point methods is found in the recent book by Petkovic et al. [11].



This paper is organized as follows. An optimal fourth, eighth and sixteenth order methods are developed by using divided difference techniques in Section 2. In Section 3, convergence order is analyzed. In Section 4, tested numerical examples to compare the proposed methods with other known optimal methods. The problem of Projectile motion is discussed in Section 5 where the presented methods are applied on this problem with some existing ones. In Section 6, we obtain the conjugacy maps of these methods to make a comparison from dynamical point of view. In Section 7, the proposed methods are studied in the complex plane using basins of attraction. Section 8 gives concluding remarks.




2. Design of an Optimal Fourth, Eighth and Sixteenth Order Methods


Definition 1

([15]). If the sequence {xn} tends to a limit x∗ in such a way that


limn→∞xn+1−x∗(xn−x∗)p=C








for p≥1, then the order of convergence of the sequence is said to be p, and C is known as the asymptotic error constant. If p=1, p=2 or p=3, the convergence is said to be linear, quadratic or cubic, respectively.



Let en=xn−x∗, then the relation


en+1=Cenp+Oenp+1=Oenp.



(1)




is called the error equation. The value of p is called the order of convergence of the method.





Definition 2

([1]). The Efficiency Index is given by


EI=p1d,



(2)




where d is the total number of new function evaluations (the values of f and its derivatives) per iteration.





Let xn+1=ψ(xn) define an Iterative Function (IF). Let xn+1 be determined by new information at xn,ϕ1(xn),...,ϕi(xn),i≥1. No old information is reused. Thus,


xn+1=ψ(xn,ϕ1(xn),...,ϕi(xn)).



(3)







Then ψ is called a multipoint IF without memory.



The Newton (also called Newton-Raphson) IF (2ndNR) is given by


ψ2ndNR(x)=x−f(x)f′(x).



(4)







The 2ndNR IF is one-point IF with two function evaluations and it satisfies the Kung-Traub conjecture with d=2. Further, EI2ndNR=1.414.



2.1. An Optimal Fourth Order Method


We attempt to get a new optimal fourth order IF as follows, let us consider two step Newton’s method


ψ4thNR(x)=ψ2ndNR(x)−f(ψ2ndNR(x))f′(ψ2ndNR(x)).



(5)







The above one is having fourth order convergence with four function evaluations. But, this is not an optimal method. To get an optimal, need to reduce a function and preserve the same convergence order, and so we estimate f′(ψ2ndNR(x)) by the following polynomial


q(t)=a0+a1(t−x)+a2(t−x)2,



(6)




which satisfies


q(x)=f(x),q′(x)=f′(x),q(ψ2ndNR(x))=f(ψ2ndNR(x)).











On implementing the above conditions on Equation (6), we obtain three unknowns a0, a1 and a2. Let us define the divided differences


f[y,x]=f(y)−f(x)y−x,f[y,x,x]=f[y,x]−f′(x)y−x.











From conditions, we get a0=f(x), a1=f′(x) and a2=f[ψ2ndNR(x),x,x], respectively, by using divided difference techniques. Now, we have the estimation


f′(ψ2ndNR(x))≈q′(ψ2ndNR(x))=a1+2a2(ψ2thNR(x)−x).











Finally, we propose a new optimal fourth order method as


ψ4thYM(x)=ψ2ndNR(x)−f(ψ2ndNR(x))f′(x)+2f[ψ2ndNR(x),x,x](ψ2thNR(x)−x).



(7)







The efficiency of the method (7) is EI4thYM=1.587.




2.2. An Optimal Eighth Order Method


Next, we attempt to get a new optimal eighth order IF as following way


ψ8thYM(x)=ψ4thYM(x)−f(ψ4thYM(x))f′(ψ4thYM(x)).











The above one is having eighth order convergence with five function evaluations. But, this is not an optimal method. To get an optimal, need to reduce a function and preserve the same convergence order, and so we estimate f′(ψ4thYM(x)) by the following polynomial


q(t)=b0+b1(t−x)+b2(t−x)2+b3(t−x)3,



(8)




which satisfies


q(x)=f(x),q′(x)=f′(x),q(ψ2ndNR(x))=f(ψ2ndNR(x)),q(ψ4thYM(x))=f(ψ4thYM(x)).











On implementing the above conditions on (8), we obtain four linear equations with four unknowns b0, b1, b2 and b3. From conditions, we get b0=f(x) and b1=f′(x). To find b2 and b3, we solve the following equations:


f(ψ2ndNR(x))=f(x)+f′(x)(ψ2ndNR(x)−x)+b2(ψ2ndNR(x)−x)2+b3(ψ2ndNR(x)−x)3f(ψ4thYM(x))=f(x)+f′(x)(ψ4thYM(x)−x)+b2(ψ4thYM(x)−x)2+b3(ψ4thYM(x)−x)3.











Thus by applying divided differences, the above equations simplifies to


b2+b3(ψ2ndNR(x)−x)=f[ψ2ndNR(x),x,x]



(9)






b2+b3(ψ4thYM(x)−x)=f[ψ4thYM(x),x,x]



(10)







Solving Equations (9) and (14), we have


b2=f[ψ2ndNR(x),x,x](ψ4thPM(x)−x)−f[ψ4thYM(x),x,x](ψ2ndNR(x)−x)ψ4thYM(x)−ψ2ndNR(x),b3=f[ψ4thYM(x),x,x]−f[ψ2ndNR(x),x,x]ψ4thYM(x)−ψ2ndNR(x).



(11)







Further, using Equation (11), we have the estimation


f′(ψ4thYM(x))≈q′(ψ4thYM(x))=b1+2b2(ψ4thYM(x)−x)+3b3(ψ4thYM(x)−x)2.











Finally, we propose a new optimal eighth order method as


ψ8thYM(x)=ψ4thYM(x)−f(ψ4thYM(x))f′(x)+2b2(ψ4thYM(x)−x)+3b3(ψ4thYM(x)−x)2.



(12)







The efficiency of the method (12) is EI8thYM=1.682. Remark that the method is seems a particular case of the method of Khan et al. [16], they used weight function to develop their methods. Whereas we used finite difference scheme to develop proposed methods. We can say the methods 4thYM and 8thYM are reconstructed of Khan et al. [16] methods.




2.3. An Optimal Sixteenth Order Method


Next, we attempt to get a new optimal sixteenth order IF as following way


ψ16thYM(x)=ψ8thYM(x)−f(ψ8thYM(x))f′(ψ8thYM(x)).











The above one is having eighth order convergence with five function evaluations. However, this is not an optimal method. To get an optimal, need to reduce a function and preserve the same convergence order, and so we estimate f′(ψ8thYM(x)) by the following polynomial


q(t)=c0+c1(t−x)+c2(t−x)2+c3(t−x)3+c4(t−x)4,



(13)




which satisfies


q(x)=f(x),q′(x)=f′(x),q(ψ2ndNR(x))=f(ψ2ndNR(x)),q(ψ4thYM(x))=f(ψ4thYM(x)),q(ψ8thYM(x))=f(ψ8thYM(x)).











On implementing the above conditions on (13), we obtain four linear equations with four unknowns c0, c1, c2 and c3. From conditions, we get c0=f(x) and c1=f′(x). To find c2, c3 and c4, we solve the following equations:


f(ψ2ndNR(x))=f(x)+f′(x)(ψ2ndNR(x)−x)+c2(ψ2ndNR(x)−x)2+c3(ψ2ndNR(x)−x)3+c4(ψ2ndNR(x)−x)4f(ψ4thYM(x))=f(x)+f′(x)(ψ4thYM(x)−x)+c2(ψ4thYM(x)−x)2+c3(ψ4thYM(x)−x)3+c4(ψ4thYM(x)−x)4f(ψ8thYM(x))=f(x)+f′(x)(ψ8thYM(x)−x)+c2(ψ8thYM(x)−x)2+c3(ψ8thYM(x)−x)3+c4(ψ8thYM(x)−x)4.











Thus by applying divided differences, the above equations simplifies to


c2+c3(ψ2ndNR(x)−x)+c4(ψ2ndNR(x)−x)2=f[ψ2ndNR(x),x,x]c2+c3(ψ4thYM(x)−x)+c4(ψ4thYM(x)−x)2=f[ψ4thYM(x),x,x]c2+c3(ψ8thYM(x)−x)+c4(ψ8thYM(x)−x)2=f[ψ8thYM(x),x,x]



(14)







Solving Equation (14), we have


c2=f[ψ2ndNR(x),x,x]−S22S3+S2S32+f[ψ4thYM(x),x,x]S12S3−S1S32+f[ψ8thYM(x),x,x]−S12S2+S1S22−S12S2+S1S22+S12S3−S22S3−S1S32+S2S32,c3=f[ψ2ndNR(x),x,x]S22−S32+f[ψ4thYM(x),x,x]−S12+S32+f[ψ8thYM(x),x,x]S12−S22−S12S2+S1S22+S12S3−S22S3−S1S32+S2S32,c4=f[ψ2ndNR(x),x,x]−S2+S3+f[ψ4thYM(x),x,x]S1−S3+f[ψ8thYM(x),x,x]−S1+S2−S12S2+S1S22+S12S3−S22S3−S1S32+S2S32,S1=ψ2ndNR(x)−x,S2=ψ4thYM(x)−x,S3=ψ8thYM(x)−x.



(15)







Further, using Equation (15), we have the estimation


f′(ψ8thYM(x))≈q′(ψ8thYM(x))=c1+2c2(ψ8thYM(x)−x)+3c3(ψ8thYM(x)−x)2+4c4(ψ8thYM(x)−x)3.











Finally, we propose a new optimal sixteenth order method as


ψ16thYM(x)=ψ8thYM(x)−f(ψ8thYM(x))f′(x)+2c2(ψ8thYM(x)−x)+3c3(ψ8thYM(x)−x)2+4c4(ψ8thYM(x)−x)3.



(16)







The efficiency of the method (16) is EI16thYM=1.741.





3. Convergence Analysis


In this section, we prove the convergence analysis of proposed IFs with help of Mathematica software.



Theorem 1.

Let f:D⊂R→R be a sufficiently smooth function having continuous derivatives. If f(x) has a simple root x∗ in the open interval D and x0 chosen in sufficiently small neighborhood of x∗, then the method4thYMIFs (7) is of local fourth order convergence, and the8thYMIFs (12) is of local eighth order convergence.





Proof. 

Let e=x−x∗ and c[j]=f(j)(x∗)j!f′(x∗),j=2,3,4,.... Expanding f(x) and f′(x) about x∗ by Taylor’s method, we have


f(x)=f′(x∗)e+e2c[2]+e3c[3]+e4c[4]+e5c[5]+e6c[6]+e7c[7]+e8c[8]+…



(17)




and


f′(x)=f′(x∗)1+2ec[2]+3e2c[3]+4e3c[4]+5e4c[5]+6e5c[6]+7e6c[7]+8e7c[8]+9e8c[9]+…



(18)







Thus,


ψ2ndNR(x)=x∗+c[2]e2+−2c[2]2+2c[3]e3+4c[2]3−7c[2]c[3]+3c[4]e4+(−8c[2]4+20c[2]2c[3]−6c[3]2−10c[2]c[4]+4c[5])e5+(16c[2]5−52c[2]3c[3]+28c[2]2c[4]−17c[3]c[4]+c[2](33c[3]2−13c[5])+5c[6])e6−2(16c[2]6−64c[2]4c[3]−9c[3]3+36c[2]3c[4]+6c[4]2+9c[2]2(7c[3]2−2c[5])+11c[3]c[5]+c[2](−46c[3]c[4]+8c[6])−3c[7])e7+(64c[2]7−304c[2]5c[3]+176c[2]4c[4]+75c[3]2c[4]+c[2]3(408c[3]2−92c[5])−31c[4]c[5]−27c[3]c[6]+c[2]2(−348c[3]c[4]+44c[6])+c[2](−135c[3]3+64c[4]2+118c[3]c[5]−19c[7])+7c[8])e8+….



(19)







Expanding f(ψ2ndNR(x)) about x∗ by Taylor’s method, we have


f(ψ2ndNR(x))=f′(x∗)(c[2]e2+−2c[2]2+2c[3]e3+5c[2]3−7c[2]c[3]+3c[4]e4−2(6c[2]4−12c[2]2c[3]+3c[3]2+5c[2]c[4]−2c[5])e5+(28c[2]5−73c[2]3c[3]+34c[2]2c[4]−17c[3]c[4]+c[2](37c[3]2−13c[5])+5c[6])e6−2(32c[2]6−103c[2]4c[3]−9c[3]3+52c[2]3c[4]+6c[4]2+c[2]2(80c[3]2−22c[5])+11c[3]c[5]+c[2](−52c[3]c[4]+8c[6])−3c[7])e7+(144c[2]7−552c[2]5c[3]+297c[2]4c[4]+75c[3]2c[4]+2c[2]3(291c[3]2−67c[5])−31c[4]c[5]−27c[3]c[6]+c[2]2(−455c[3]c[4]+54c[6])+c[2](−147c[3]3+73c[4]2+134c[3]c[5]−19c[7])+7c[8])e8+….)



(20)







Using Equations (17)–(20) in divided difference techniques. We have


f[ψ2ndNR(x),x,x]=f′(x∗)(c[2]+2c[3]e+c[2]c[3]+3c[4]e2+2(−c[2]2c[3]+c[3]2+c[2]c[4]+2c[5])e3+4c[2]3c[3]−3c[2]2c[4]+7c[3]c[4]+c[2](−7c[3]2+3c[5])+5c[6]e4+(−8c[2]4c[3]−6c[3]3+4c[2]3c[4]+4c[2]2(5c[3]2−c[5])+10c[3]c[5]+4c[2](−5c[3]c[4]+c[6])+6(c[4]2+c[7]))e5+(16c[2]5c[3]−4c[2]4c[4]−25c[3]2c[4]+17c[4]c[5]+c[2]3(−52c[3]2+5c[5])+c[2]2(46c[3]c[4]−5c[6])+13c[3]c[6]+c[2](33c[3]3−14c[4]2−26c[3]c[5]+5c[7])+7c[8])e6+….)



(21)







Substituting Equations (18)–(21) into Equation (7), we obtain, after simplifications,


ψ4thYM(x)=x∗+c[2]3−c[2]c[3]e4−22c[2]4−4c[2]2c[3]+c[3]2+c[2]c[4]e5+(10c[2]5−30c[2]3c[3]+12c[2]2c[4]−7c[3]c[4]+3c[2](6c[3]2−c[5]))e6−2(10c[2]6−40c[2]4c[3]−6c[3]3+20c[2]3c[4]+3c[4]2+8c[2]2(5c[3]2−c[5])+5c[3]c[5]+c[2](−26c[3]c[4]+2c[6]))e7+(36c[2]7−178c[2]5c[3]+101c[2]4c[4]+50c[3]2c[4]+3c[2]3(84c[3]2−17c[5])−17c[4]c[5]−13c[3]c[6]+c[2]2(−209c[3]c[4]+20c[6])+c[2](−91c[3]3+37c[4]2+68c[3]c[5]−5c[7]))e8+….



(22)







Expanding f(ψ4thYM(x)) about x∗ by Taylor’s method, we have


f(ψ4thYM(x))=f′(x∗)(c[2]3−c[2]c[3]e4−22c[2]4−4c[2]2c[3]+c[3]2+c[2]c[4]e5+(10c[2]5−30c[2]3c[3]+12c[2]2c[4]−7c[3]c[4]+3c[2](6c[3]2−c[5]))e6−2(10c[2]6−40c[2]4c[3]−6c[3]3+20c[2]3c[4]+3c[4]2+8c[2]2(5c[3]2−c[5])+5c[3]c[5]+c[2](−26c[3]c[4]+2c[6]))e7+(37c[2]7−180c[2]5c[3]+101c[2]4c[4]+50c[3]2c[4]+c[2]3(253c[3]2−51c[5])−17c[4]c[5]−13c[3]c[6]+c[2]2(−209c[3]c[4]+20c[6])+c[2](−91c[3]3+37c[4]2+68c[3]c[5]−5c[7]))e8+….)



(23)







Now,


f[ψ4thYM(x),x,x]=f′(x∗)(c[2]+2c[3]e+3c[4]e2+4c[5]e3+c[2]3c[3]−c[2]c[3]2+5c[6]e4+−4c[2]4c[3]+8c[2]2c[3]2−2c[3]3+2c[2]3c[4]−4c[2]c[3]c[4]+6c[7]e5+(10c[2]5c[3]−8c[2]4c[4]+28c[2]2c[3]c[4]−11c[3]2c[4]+c[2]3(−30c[3]2+3c[5])+2c[2](9c[3]3−2c[4]2−3c[3]c[5])+7c[8])e6+….)



(24)







Substituting Equations (19)–(21), (23) and (24) into Equation (12), we obtain, after simplifications,


ψ8thYM(x)−x∗=c[2]2c[2]2−c[3]c[2]3−c[2]c[3]+c[4]e8+O(e9)



(25)







Hence from Equations (22) and (25), we concluded that the convergence order of the 4thYM and 8thYM are four and eight respectively. □





The following theorem is given without proof, which can be worked out with the help of Mathematica.



Theorem 2.

Let f:D⊂R→R be a sufficiently smooth function having continuous derivatives. If f(x) has a simple root x∗ in the open interval D and x0 chosen in sufficiently small neighborhood of x∗, then the method (16) is of local sixteenth order convergence and and it satisfies the error equation



ψ16thYM(x)−x∗ = ((c[2]4)((c[2]2 − c[3])2)(c[2]3 − c[2]c[3] + c[4])(c[2]4 − c[2]2c[3] + c[2]c[4] − c[5]))e16 + O(e17).






4. Numerical Examples


In this section, numerical results on some test functions are compared for the new methods 4thYM, 8thYM and 16thYM with some existing eighth order methods and Newton’s method. Numerical computations have been carried out in the Matlab software with 500 significant digits. We have used the stopping criteria for the iterative process satisfying error=|xN−xN−1|<ϵ, where ϵ=10−50 and N is the number of iterations required for convergence. The computational order of convergence is given by ([17])


ρ=ln|(xN−xN−1)/(xN−1−xN−2)|ln|(xN−1−xN−2)/(xN−2−xN−3)|.











We consider the following iterative methods for solving nonlinear equations for the purpose of comparison: ψ4thSB, a method proposed by Sharma et al. [18]:


y=x−2f(x)3f′(x),ψ4thSB(x)=x−−12+98f′(x)f′(y)+38f′(y)f′(x)f(x)f′(x).



(26)







ψ4thCLND, a method proposed by Chun et al. [19]:


y=x−2f(x)3f′(x),ψ4thCLND(x)=x−16f(x)f′(x)−5f′(x)2+30f′(x)f′(y)−9f′(y)2.



(27)







ψ4thSJ, a method proposed by Singh et al. [20]:


y=x−23f(x)f′(x),ψ4thSJ(x)=x−178−94f′(y)f′(x)+98f′(y)f′(x)274−34f′(y)f′(xn)f(x)f′(x).



(28)







ψ8thKT, a method proposed by Kung-Traub [2]:


y=x−f(x)f′(x),z=y−f(y)∗f(x)(f(x)−f(y))2f(x)f′(x),ψ8thKT(x)=z−f(x)f′(x)f(x)f(y)f(z)(f(x)−f(y))2f(x)2+f(y)(f(y)−f(z))(f(x)−f(z))2(f(y)−f(z)).



(29)







ψ8thLW, a method proposed by Liu et al. [8]


y=x−f(x)f′(x),z=y−f(x)f(x)−2f(y)f(y)f′(x),ψ8thLW(x)=z−f(z)f′(x)f(x)−f(y)f(x)−2f(y)2+f(z)f(y)−f(z)+4f(z)f(x)+f(z).



(30)







ψ8thPNPD, a method proposed by Petkovic et al. [11]


y=x−f(x)f′(x),z=x−f(y)f(x)2−f(x)f(y)−f(x)f(x)f′(x),ψ8thPNPD(x)=z−f(z)f′(x)φ(t)+f(z)f(y)−f(z)+4f(z)f(x),



(31)




whereφ(t)=1+2t+2t2−t3andt=f(y)f(x).



ψ8thSA1, a method proposed by Sharma et al. [12]


y=x−f(x)f′(x),z=y−3−2f[y,x]f′(x)f(y)f′(x),ψ8thSA1(x)=z−f(z)f′(x)f′(x)−f[y,x]+f[z,y]2f[z,y]−f[z,x].



(32)







ψ8thSA2, a method proposed by Sharma et al. [13]


y=x−f(x)f′(x),z=y−f(y)2f[y,x]−f′(x),ψ8thSA2(x)=z−f[z,y]f[z,x]f(z)2f[z,y]−f[z,x]



(33)







ψ8thCFGT, a method proposed by Cordero et al. [6]


y=x−f(x)f′(x),z=y−f(y)f′(x)11−2t+t2−t3/2,ψ8thCFGT(x)=z−1+3r1+rf(z)f[z,y]+f[z,x,x](z−y),r=f(z)f(x).



(34)







ψ8thCTV, a method proposed by Cordero et al. [7]


y=x−f(x)f′(x),z=x−1−t1−2tf(x)f′(x),ψ8thCTV(x)=z−1−t1−2t−v211−3vf(z)f′(x),v=f(z)f(y).



(35)







Table 1 shows the efficiency indices of the new methods with some known methods.



The following test functions and their simple zeros for our study are given below [10]:


f1(x)=sin(2cosx)−1−x2+esin(x3),x∗=−0.7848959876612125352...f2(x)=xex2−sin2x+3cosx+5,x∗=−1.2076478271309189270...f3(x)=x3+4x2−10,x∗=1.3652300134140968457...f4(x)=sin(x)+cos(x)+x,x∗=−0.4566247045676308244...f5(x)=x2−sinx,x∗=1.8954942670339809471...f6(x)=x2+sin(x5)−14,x∗=0.4099920179891371316...











Table 2, shows that corresponding results for f1−f6. We observe that proposed method 4thYM is converge in a lesser or equal number of iterations and with least error when compare to compared methods. Note that 4thSB and 4thSJ methods are getting diverge in f5 function. Hence, the proposed method 4thYM can be considered competent enough to existing other compared equivalent methods.



Also, from Table 3, Table 4 and Table 5 are shows the corresponding results for f1−f6. The computational order of convergence agrees with the theoretical order of convergence in all the functions. Note that 8thPNPD method is getting diverge in f5 function and all other compared methods are converges with least error. Also, function f1 having least error in 8thCFGT, function f2 having least error in 8thCTV, functions f3 and f4 having least error in 8thYM, function f5 having least error in 8thSA2, function f6 having least error in 8thCFGT. The proposed 16thYM method converges less number of iteration with least error in all the tested functions. Hence, the 16thYM can be considered competent enough to existing other compared equivalent methods.




5. Applications to Some Real World Problems


5.1. Projectile Motion Problem


We consider the classical projectile problem [21,22] in which a projectile is launched from a tower of height h>0, with initial speed v and at an angle θ with respect to the horizontal onto a hill, which is defined by the function ω, called the impact function which is dependent on the horizontal distance, x. We wish to find the optimal launch angle θm which maximizes the horizontal distance. In our calculations, we neglect air resistances.



The path function y=P(x) that describes the motion of the projectile is given by


P(x)=h+xtanθ−gx22v2sec2θ



(36)







When the projectile hits the hill, there is a value of x for which P(x)=ω(x) for each value of x. We wish to find the value of θ that maximize x.


ω(x)=P(x)=h+xtanθ−gx22v2sec2θ



(37)







Differentiating Equation (37) implicitly w.r.t. θ, we have


ω′(x)dxdθ=xsec2θ+dxdθtanθ−gv2x2sec2θtanθ+xdxdθsec2θ



(38)







Setting dxdθ=0 in Equation (38), we have


xm=v2gcotθm



(39)




or


θm=arctanv2gxm



(40)







An enveloping parabola is a path that encloses and intersects all possible paths. Henelsmith [23] derived an enveloping parabola by maximizing the height of the projectile fora given horizontal distance x, which will give the path that encloses all possible paths. Let w=tanθ, then Equation (36) becomes


y=P(x)=h+xw−gx22v2(1+w2)



(41)







Differentiating Equation (41) w.r.t. w and setting y′=0, Henelsmith obtained


y′=x−xg2v2(w)=0w=v2gx



(42)




so that the enveloping parabola defined by


ym=ρ(x)=h+v22g−gx22v2



(43)







The solution to the projectile problem requires first finding xm which satisfies ρ(x)=ω(x) and solving for θm in Equation (40) because we want to find the point at which the enveloping parabola ρ intersects the impact function ω, and then find θ that corresponds to this point on the enveloping parabola. We choose a linear impact function ω(x)=0.4x with h=10 and v=20. We let g=9.8. Then we apply our IFs starting from x0=30 to solve the non-linear equation


f(x)=ρ(x)−ω(x)=h+v22g−gx22v2−0.4x








whose root is given by xm=36.102990117..... and


θm=arctanv2gxm=48.5∘.











Figure 1 shows the intersection of the path function, the enveloping parabola and the linear impact function for this application. The approximate solutions are calculated correct to 500 significant figures. The stopping criterion |xN−xN−1|<ϵ, where ϵ=10−50 is used. Table 6 shows that proposed method 16thYM is converging better than other compared methods. Also, we observe that the computational order of convergence agrees with the theoretical order of convergence.




5.2. Planck’s Radiation Law Problem


We consider the following Planck’s radiation law problem found in [24]:


φ(λ)=8πchλ−5ech/λkT−1,



(44)




which calculates the energy density within an isothermal blackbody. Here, λ is the wavelength of the radiation, T is the absolute temperature of the blackbody, k is Boltzmann’s constant, h is the Planck’s constant and c is the speed of light. Suppose, we would like to determine wavelength λ which corresponds to maximum energy density φ(λ). From (44), we get


φ′(λ)=8πchλ−6ech/λkT−1(ch/λkT)ech/λkTech/λkT−1−5=A·B.











It can be checked that a maxima for φ occurs when B=0, that is, when


(ch/λkT)ech/λkTech/λkT−1=5.











Here putting x=ch/λkT, the above equation becomes


1−x5=e−x.



(45)







Define


f(x)=e−x−1+x5.



(46)







The aim is to find a root of the equation f(x)=0. Obviously, one of the root x=0 is not taken for discussion. As argued in [24], the left-hand side of (45) is zero for x=5 and e−5≈6.74×10−3. Hence, it is expected that another root of the equation f(x)=0 might occur near x=5. The approximate root of the Equation (46) is given by x∗≈4.96511423174427630369 with x0=3. Consequently, the wavelength of radiation (λ) corresponding to which the energy density is maximum is approximated as


λ≈ch(kT)4.96511423174427630369.











Table 7 shows that proposed method 16thYM is converging better than other compared methods. Also, we observe that the computational order of convergence agrees with the theoretical order of convergence.



Hereafter, we will study the optimal fourth and eighth order methods along with Newton’s method.





6. Corresponding Conjugacy Maps for Quadratic Polynomials


In this section, we discuss the rational map Rp arising from 2ndNR, proposed methods 4thYM and 8thYM applied to a generic polynomial with simple roots.



Theorem 3.

(2ndNR) [18] For a rational map Rp(z) arising from Newton’s method (4) applied to p(z)=(z−a)(z−b), a≠b, Rp(z) is conjugate via the a Möbius transformation given by M(z)=(z−a)/(z−b) to


S(z)=z2.













Theorem 4.

(4thYM) For a rational map Rp(z) arising from Proposed Method (7) applied to p(z)=(z−a)(z−b), a≠b, Rp(z) is conjugate via the a Möbius transformation given by M(z)=(z−a)/(z−b) to


S(z)=z4.













Proof. 

Let p(z)=(z−a)(z−b), a≠b, and let M be Möbius transformation given by M(z)=(z−a)/(z−b) with its inverse M−1(z)=(zb−a)(z−1), which may be considered as map from C∪{∞}. We then have


S(z)=M∘Rp∘M−1(z)=MRpzb−az−1=z4.








□





Theorem 5.

(8thYM) For a rational map Rp(z) arising from Proposed Method (12) applied to p(z)=(z−a)(z−b), a≠b, Rp(z) is conjugate via the a Möbius transformation given by M(z)=(z−a)/(z−b) to


S(z)=z8.













Proof. 

Let p(z)=(z−a)(z−b), a≠b, and let M be Möbius transformation given by M(z)=(z−a)/(z−b) with its inverse M−1(z)=(zb−a)(z−1), which may be considered as map from C∪{∞}. We then have


S(z)=M∘Rp∘M−1(z)=MRpzb−az−1=z8.








□





Remark 1.

The methods (29)–(35) are given without proof, which can be worked out with the help of Mathematica.





Remark 2.

All the maps obtained above are of the form S(z)=zpR(z), where R(z) is either unity or a rational function and p is the order of the method.






7. Basins of Attraction


The study of dynamical behavior of the rational function associated to an iterative method gives important information about convergence and stability of the method. The basic definitions and dynamical concepts of rational function which can found in [4,25].



We take a square R×R=[−2,2]×[−2,2] of 256×256 points and we apply our iterative methods starting in every z(0) in the square. If the sequence generated by the iterative method attempts a zero zj∗ of the polynomial with a tolerance |f(z(k))|<×10−4 and a maximum of 100 iterations, we decide that z(0) is in the basin of attraction of this zero. If the iterative method starting in z(0) reaches a zero in N iterations (N≤100), then we mark this point z(0) with colors if |z(N)−zj∗|<×10−4. If N>50, we conclude that the starting point has diverged and we assign a dark blue color. Let ND be a number of diverging points and we count the number of starting points which converge in 1, 2, 3, 4, 5 or above 5 iterations. In the following, we describe the basins of attraction for Newton’s method and some higher order Newton type methods for finding complex roots of polynomials p1(z)=z2−1, p2(z)=z3−1 and p3(z)=z5−1.



Figure 2 and Figure 3 shows the polynomiographs of the methods for the polynomial p1(z). We can see that the methods 2ndNR, 4thYM, 8thSA2 and 8thYM performed very nicely. The methods 4thSB, 4thSJ, 8thKT, 8thLW, 8thPNPD, 8thSA1, 8thCFGT and 8thCTV are shows some chaotic behavior near the boundary points. The method 4thCLND have sensitive to the choice of initial guess in this case.



Figure 2 and Figure 4 shows the polynomiographs of the methods for the polynomial p2(z). We can see that the methods 2ndNR, 4thYM, 8thSA2 and 8thYM performed very nicely. The methods 4thSB, 8thKT, 8thLW and 8thCTV are shows some chaotic behavior near the boundary points. The methods 4thCLND, 4thSJ, 8thPNPD, 8thSA1, and 8thCFGT have sensitive to the choice of initial guess in this case.



Figure 2 and Figure 5 shows the polynomiographs of the methods for the polynomial p3(z). We can see that the methods 4thYM, 8thSA2 and 8thYM are shows some chaotic behavior near the boundary points. The methods 2ndNR, 4thSB, 4thCLND, 4thSJ, 8thKT, 8thLW, 8thPNPD, 8thSA1, 8thCFGT and 8thCTV have sensitive to the choice of initial guess in this case. In Table 8, Table 9 and Table 10, we classify the number of converging and diverging grid points for each iterative method.



We note that a point z0 belongs to the Julia set if and only if the dynamics in a neighborhood of z0 displays sensitive dependence on the initial conditions, so that nearby initial conditions lead to wildly different behavior after a number of iterations. For this reason, some of the methods are getting divergent points. The common boundaries of these basins of attraction constitute the Julia set of the iteration function. It is clear that one has to use quantitative measures to distinguish between the methods, since we have a different conclusion when just viewing the basins of attraction.



In order to summarize the results, we have compared mean number of iteration and total number of functional evaluations (TNFE) for each polynomials and each methods in Table 11. The best method based on the comparison in Table 11 is 8thSA2. The method with the fewest number of functional evaluations per point is 8thSA2 followed closely by 4thYM. The fastest method is 8thSA2 followed closely by 8thYM. The method with highest number of functional evaluation and slowest method is 8thPNPD.




8. Concluding Remarks and Future Work


In this work, we have developed optimal fourth, eighth and sixteenth order iterative methods for solving nonlinear equations using the divided difference approximation. The methods require the computations of three functions evaluations reaching order of convergence is four, four functions evaluations reaching order of convergence is eight and five functions evaluations reaching order of convergence is sixteen. In the sense of convergence analysis and numerical examples, the Kung-Traub’s conjecture is satisfied. We have tested some examples using the proposed schemes and some known schemes, which illustrate the superiority of the proposed method 16thYM. Also, proposed methods and some existing methods have been applied on the Projectile motion problem and Planck’s radiation law problem. The results obtained are interesting and encouraging for the new method 16thYM. The numerical experiments suggests that the new methods would be valuable alternative for solving nonlinear equations. Finally, we have also compared the basins of attraction of various fourth and eighth order methods in the complex plane.



Future work includes:

	
Now we are investigating the proposed scheme to develop optimal methods of arbitrarily high order with Newton’s method, as in [26].



	
Also, we are investigating to develop derivative free methods to study dynamical behavior and local convergence, as in [27,28].
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Figure 1. The enveloping parabola with linear impact function. 
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Figure 2. Basins of attraction for 2ndNR for the polynomial p1(z), p2(z), p3(z). 
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Figure 3. Basins of attraction for p1(z)=z2−1. 
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Figure 4. Basins of attraction for p2(z)=z3−1. 
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Figure 5. Basins of attraction for p3(z)=z5−1. 






Figure 5. Basins of attraction for p3(z)=z5−1.
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Table 1. Comparison of Efficiency Indices.






Table 1. Comparison of Efficiency Indices.





	Methods
	p
	d
	EI





	2ndNR
	2
	2
	1.414



	4thSB
	4
	3
	1.587



	4thCLND
	4
	3
	1.587



	4thSJ
	4
	3
	1.587



	4thYM
	4
	3
	1.587



	8thKT
	8
	4
	1.682



	8thLW
	8
	4
	1.682



	8thPNPD
	8
	4
	1.682



	8thSA1
	8
	4
	1.682



	8thSA2
	8
	4
	1.682



	8thCFGT
	8
	4
	1.682



	8thCTV
	8
	4
	1.682



	8thYM
	8
	4
	1.682



	16thYM
	16
	5
	1.741
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Table 2. Numerical results for nonlinear equations.






Table 2. Numerical results for nonlinear equations.





	
Methods

	
f1(x), x0=−0.9

	
f2(x), x0=−1.6






	

	
N

	
|x1−x0|

	
|xN−xN−1|

	
ρ

	
N

	
|x1−x0|

	
|xN−xN−1|

	
ρ




	
2ndNR (4)

	
7

	
0.1080

	
7.7326 ×10−74

	
1.99

	
9

	
0.2044

	
9.2727 ×10−74

	
1.99




	
4thSB (26)

	
4

	
0.1150

	
9.7275 ×10−64

	
3.99

	
5

	
0.3343

	
1.4237 ×10−65

	
3.99




	
4thCLND (27)

	
4

	
0.1150

	
1.4296 ×10−64

	
3.99

	
5

	
0.3801

	
1.1080 ×10−72

	
3.99




	
4thSJ (28)

	
4

	
0.1150

	
3.0653 ×10−62

	
3.99

	
5

	
0.3190

	
9.9781 ×10−56

	
3.99




	
4thYM (7)

	
4

	
0.1150

	
6.0046 ×10−67

	
3.99

	
5

	
0.3737

	
7.2910 ×10−120

	
4.00




	
Methods

	
f3(x), x0=0.9

	
f4(x), x0=−1.9




	
2ndNR (4)

	
8

	
0.6263

	
1.3514 ×10−72

	
2.00

	
8

	
1.9529

	
1.6092 ×10−72

	
1.99




	
4thSB (26)

	
5

	
0.5018

	
4.5722 ×10−106

	
3.99

	
5

	
1.5940

	
6.0381 ×10−92

	
3.99




	
4thCLND (27)

	
5

	
0.5012

	
4.7331 ×10−108

	
3.99

	
5

	
1.5894

	
2.7352 ×10−93

	
3.99




	
4thSJ (28)

	
5

	
0.4767

	
3.0351 ×10−135

	
3.99

	
5

	
1.5776

	
9.5025 ×10−95

	
3.99




	
4thYM (7)

	
5

	
0.4735

	
2.6396 ×10−156

	
3.99

	
5

	
1.5519

	
1.4400 ×10−102

	
3.99




	
Methods

	
f5(x), x0=1.2

	
f6(x), x0=0.8




	
2ndNR (4)

	
9

	
2.4123

	
1.3564 ×10−83

	
1.99

	
8

	
0.3056

	
3.2094 ×10−72

	
1.99




	
4thSB (26)

	

	

	
Diverge

	

	
5

	
0.3801

	
2.8269 ×10−122

	
3.99




	
4thCLND (27)

	
14

	
0.0566

	
6.8760 ×10−134

	
3.99

	
5

	
0.3812

	
7.8638 ×10−127

	
3.99




	
4thSJ (28)

	

	

	
Diverge

	

	
5

	
0.3780

	
1.4355 ×10−114

	
3.99




	
4thYM (7)

	
6

	
1.2887

	
2.3155 ×10−149

	
3.99

	
5

	
0.3840

	
1.1319 ×10−143

	
3.99
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Table 3. Numerical results for nonlinear equations.
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Methods

	
f1(x), x0=−0.9

	
f2(x), x0=−1.6






	

	
N

	
|x1−x0|

	
|xN−xN−1|

	
ρ

	
N

	
|x1−x0|

	
|xN−xN−1|

	
ρ




	
8thKT (29)

	
3

	
0.1151

	
1.6238 ×10−61

	
7.91

	
4

	
0.3876

	
7.2890 ×10−137

	
7.99




	
8thLW (30)

	
3

	
0.1151

	
4.5242 ×10−59

	
7.91

	
4

	
0.3904

	
1.1195 ×10−170

	
8.00




	
8thPNPD (31)

	
3

	
0.1151

	
8.8549 ×10−56

	
7.87

	
4

	
0.3734

	
2.3461 ×10−85

	
7.99




	
8thSA1 (32)

	
3

	
0.1151

	
3.4432 ×10−60

	
7.88

	
4

	
0.3983

	
8.4343 ×10−121

	
8.00




	
8thSA2 (33)

	
3

	
0.1151

	
6.9371 ×10−67

	
7.99

	
4

	
0.3927

	
5.9247 ×10−225

	
7.99




	
8thCFGT (34)

	
3

	
0.1151

	
1.1715 ×10−82

	
7.77

	
5

	
0.1532

	
2.0650 ×10−183

	
7.99




	
8thCTV (35)

	
3

	
0.1151

	
4.4923 ×10−61

	
7.94

	
4

	
0.3925

	
2.3865 ×10−252

	
7.99




	
8thYM (12)

	
3

	
0.1151

	
1.1416 ×10−70

	
7.96

	
4

	
0.3896

	
8.9301 ×10−163

	
8.00




	
16thYM (16)

	
3

	
0.1151

	
0

	
15.99

	
3

	
0.3923

	
3.5535 ×10−85

	
16.20
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Table 4. Numerical results for nonlinear equations.
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Methods

	
f3(x), x0=0.9

	
f4(x), x0=−1.9






	

	
N

	
|x1−x0|

	
|xN−xN−1|

	
ρ

	
N

	
|x1−x0|

	
|xN−xN−1|

	
ρ




	
8thKT (29)

	
4

	
0.4659

	
5.0765 ×10−216

	
7.99

	
4

	
1.4461

	
5.5095 ×10−204

	
8.00




	
8thLW (30)

	
4

	
0.4660

	
2.7346 ×10−213

	
7.99

	
4

	
1.4620

	
3.7210 ×10−146

	
8.00




	
8thPNPD (31)

	
4

	
0.3821

	
9.9119 ×10−71

	
8.02

	
4

	
1.3858

	
2.0603 ×10−116

	
7.98




	
8thSA1 (32)

	
4

	
0.4492

	
1.5396 ×10−122

	
8.00

	
4

	
1.4170

	
2.2735 ×10−136

	
7.99




	
8thSA2 (33)

	
4

	
0.4652

	
4.1445 ×10−254

	
7.98

	
4

	
1.4339

	
2.5430 ×10−166

	
7.99




	
8thCFGT (34)

	
4

	
0.4654

	
2.4091 ×10−260

	
7.99

	
4

	
1.4417

	
4.7007 ×10−224

	
7.99




	
8thCTV (35)

	
4

	
0.4652

	
3.8782 ×10−288

	
8.00

	
4

	
1.3957

	
3.7790 ×10−117

	
7.99




	
8thYM (12)

	
4

	
0.4653

	
3.5460 ×10−309

	
7.99

	
4

	
1.4417

	
2.9317 ×10−229

	
7.99




	
16thYM (16)

	
3

	
0.4652

	
3.6310 ×10−154

	
16.13

	
3

	
1.4434

	
1.8489 ×10−110

	
16.36
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Table 5. Numerical results for nonlinear equations.






Table 5. Numerical results for nonlinear equations.





	
Methods

	
f5(x), x0=1.2

	
f6(x), x0=0.8






	

	
N

	
|x1−x0|

	
|xN−xN−1|

	
ρ

	
N

	
|x1−x0|

	
|xN−xN−1|

	
ρ




	
8thKT (29)

	
5

	
1.8787

	
2.6836 ×10−182

	
7.99

	
4

	
0.3898

	
6.0701 ×10−234

	
7.99




	
8thLW (30)

	
6

	
40.5156

	
4.6640 ×10−161

	
7.99

	
4

	
0.3898

	
6.1410 ×10−228

	
7.99




	
8thPNPD (31)

	

	

	
Diverge

	

	
4

	
0.3894

	
3.6051 ×10−190

	
7.99




	
8thSA1 (32)

	
7

	
891.9802

	
2.1076 ×10−215

	
9.00

	
4

	
0.3901

	
5.9608 ×10−245

	
8.00




	
8thSA2 (33)

	
4

	
0.7161

	
5.3670 ×10−128

	
7.99

	
4

	
0.3900

	
8.3398 ×10−251

	
8.61




	
8thCFGT (34)

	
5

	
2.8541

	
0

	
7.99

	
4

	
0.3900

	
0

	
7.99




	
8thCTV (35)

	
5

	
0.6192

	
1.6474 ×10−219

	
9.00

	
4

	
0.3901

	
1.0314 ×10−274

	
8.00




	
8thYM (12)

	
4

	
0.7733

	
1.3183 ×10−87

	
7.98

	
4

	
0.3900

	
1.2160 ×10−286

	
7.99




	
16thYM (16)

	
4

	
0.6985

	
0

	
16.10

	
3

	
0.3900

	
1.1066 ×10−143

	
15.73
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Table 6. Results of projectile problem.






Table 6. Results of projectile problem.





	IF
	N
	Error
	cpuTime(s)
	ρ





	2ndNR
	7
	4.3980 ×10−76
	1.074036
	1.99



	4thYM
	4
	4.3980 ×10−76
	0.902015
	3.99



	8thKT
	3
	1.5610 ×10−66
	0.658235
	8.03



	8thLW
	3
	7.8416 ×10−66
	0.672524
	8.03



	8thPNPD
	3
	4.2702 ×10−57
	0.672042
	8.05



	8thSA1
	3
	1.2092 ×10−61
	0.654623
	8.06



	8thCTV
	3
	3.5871 ×10−73
	0.689627
	8.02



	8thYM
	3
	4.3980 ×10−76
	0.618145
	8.02



	16thYM
	3
	0
	0.512152
	16.01
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Table 7. Results of Planck’s radiation law problem.






Table 7. Results of Planck’s radiation law problem.





	IF
	N
	Error
	cpuTime(s)
	ρ





	2ndNR
	7
	1.8205 ×10−70
	0.991020
	2.00



	4thYM
	5
	1.4688 ×10−181
	0.842220
	4.00



	8thKT
	4
	4.0810 ×10−288
	0.808787
	7.99



	8thLW
	4
	3.1188 ×10−268
	0.801304
	7.99



	8thPNPD
	4
	8.0615 ×10−260
	0.800895
	7.99



	8thSA1
	4
	1.9335 ×10−298
	0.791706
	8.00



	8thCTV
	4
	5.8673 ×10−282
	0.831006
	8.00



	8thYM
	4
	2.5197 ×10−322
	0.855137
	8.00



	16thYM
	3
	8.3176 ×10−153
	0.828053
	16.52
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Table 8. Results of the polynomials p1(z)=z2−1.






Table 8. Results of the polynomials p1(z)=z2−1.





	IF
	N=1
	N=2
	N=3
	N=4
	N=5
	N>5
	ND





	2ndNR
	4
	516
	7828
	23,272
	20,548
	13,368
	0



	4thSB
	340
	22,784
	29,056
	6836
	2928
	3592
	0



	4thCLND
	372
	24,600
	29,140
	6512
	2224
	2688
	1076



	4thSJ
	300
	19,816
	28,008
	5844
	2968
	8600
	0



	4thYM
	520
	31,100
	27,520
	4828
	1208
	360
	0



	8thKT
	4684
	44,528
	9840
	3820
	1408
	1256
	24



	8thLW
	4452
	43,236
	11,408
	3520
	1540
	1380
	0



	8thPNPD
	2732
	39,768
	13,112
	3480
	1568
	4876
	16



	8thSA1
	4328
	45,824
	8136
	2564
	1484
	3200
	0



	8thSA2
	15,680
	45,784
	3696
	376
	0
	0
	0



	8thCFGT
	9616
	43,716
	7744
	2916
	980
	564
	64



	8thCTV
	7124
	48,232
	7464
	1892
	632
	192
	0



	8thYM
	8348
	50,792
	5572
	824
	0
	0
	0
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Table 9. Results of the polynomials p2(z)=z3−1.






Table 9. Results of the polynomials p2(z)=z3−1.





	IF
	N=1
	N=2
	N=3
	N=4
	N=5
	N>5
	ND





	2ndNR
	0
	224
	2908
	11,302
	19,170
	31,932
	0



	4thSB
	160
	9816
	27,438
	9346
	5452
	13,324
	6



	4thCLND
	170
	11,242
	28,610
	9984
	4202
	11,328
	7176



	4thSJ
	138
	7760
	25,092
	8260
	5058
	19,228
	1576



	4thYM
	270
	18,064
	30,374
	9862
	3688
	3278
	0



	8thKT
	2066
	34,248
	11,752
	6130
	4478
	6862
	0



	8thLW
	2092
	33,968
	12,180
	4830
	3030
	9436
	0



	8thPNPD
	1106
	25,712
	11,258
	3854
	1906
	21,700
	10,452



	8thSA1
	1608
	36,488
	12,486
	3718
	1780
	9456
	872



	8thSA2
	6432
	46,850
	9120
	2230
	640
	264
	0



	8thCFGT
	3688
	40,740
	13,696
	4278
	1390
	1744
	7395



	8thCTV
	3530
	43,554
	11,724
	3220
	1412
	2096
	0



	8thYM
	3816
	43,596
	12,464
	3636
	1302
	722
	0
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Table 10. Results of the polynomials p3(z)=z5−1.






Table 10. Results of the polynomials p3(z)=z5−1.





	IF
	N=1
	N=2
	N=3
	N=4
	N=5
	N>5
	ND





	2ndNR
	2
	100
	1222
	4106
	7918
	52,188
	638



	4thSB
	76
	3850
	15,458
	18,026
	5532
	22,594
	5324



	4thCLND
	86
	4476
	18,150
	17,774
	5434
	19,616
	12,208



	4thSJ
	62
	3094
	11,716
	16,840
	5682
	28,142
	19,900



	4thYM
	142
	7956
	27,428
	15,850
	5726
	8434
	0



	8thKT
	950
	17,884
	20,892
	5675
	4024
	16,111
	217



	8thLW
	1032
	18,764
	20,622
	5056
	3446
	16,616
	1684



	8thPNPD
	496
	12,770
	21,472
	6576
	2434
	21,788
	14,236



	8thSA1
	692
	26,212
	15,024
	4060
	1834
	17,714
	8814



	8thSA2
	2662
	41,400
	12,914
	4364
	1892
	2304
	0



	8thCFGT
	2008
	21,194
	23,734
	6180
	3958
	8462
	1953



	8thCTV
	1802
	36,630
	13,222
	4112
	2096
	7674
	350



	8thYM
	1736
	27,808
	21,136
	5804
	2704
	6348
	0
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Table 11. Mean number of iteration (Nμ) and TNFE for each polynomials and each methods.






Table 11. Mean number of iteration (Nμ) and TNFE for each polynomials and each methods.





	IF
	Nμforp1(z)
	Nμforp2(z)
	Nμforp3(z)
	Average
	TNFE





	2ndNR
	4.7767
	6.4317
	9.8531
	7.0205
	14.0410



	4thSB
	3.0701
	4.5733
	9.2701
	5.6378
	16.9135



	4thCLND
	3.6644
	8.6354
	12.8612
	8.3870
	25.1610



	4thSJ
	3.7002
	7.0909
	14.5650
	8.4520
	25.3561



	4thYM
	2.6366
	3.1733
	4.0183
	3.2760
	9.8282



	8thKT
	2.3647
	3.1270
	4.4501
	3.3139
	13.2557



	8thLW
	2.3879
	3.5209
	6.3296
	4.0794
	16.3178



	8thPNPD
	2.9959
	10.5024
	12.3360
	8.6114
	34.4457



	8thSA1
	2.5097
	4.5787
	9.7899
	5.6262
	22.5044



	8thSA2
	1.8286
	2.1559
	2.5732
	2.1859
	8.7436



	8thCFGT
	2.1683
	2.8029
	3.4959
	2.8223
	11.2894



	8thCTV
	2.1047
	2.4708
	3.9573
	2.8442
	11.3770



	8thYM
	1.9828
	2.3532
	3.3617
	2.5659
	10.2636
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