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Abstract: This model investigates the variable production cost for a production house; under a
two-echelon supply chain management where a single vendor and multi-retailers are involved.
This production system goes through a long run system and generates an out-of-control state due to
different issues and produces defective items. This model considers the reduction of the defective rate
and setup cost through investment. A discrete investment for setup cost reduction and a continuous
investment is considered to reduce the defective rate and to increase the quality of products. Setup
and processing time are dependent on lead time in this model. The model is solved analytically to
find the optimal values of the production rate, safety factors, optimum quantity, lead time length,
investment for setup cost reduction, and the probability of the production process going out-of-control.
An efficient algorithm is constructed to find the optimal solution numerically and sensitivity analysis
is given to show the impact of different parameters. A case study and different cases are also given to
validate the model.

Keywords: lead-time reduction; production modelling; optimization; inventory control; backorder

1. Introduction

In the current competitive business world each and every company would like to make more
profit with less investment. The concept of a basic production model was introduced by Taft [1].
To celebrate a century of the economic order quantity model, Cárdenas-Barrón et al. [2] have written
about Ford Whitman Harris’ model.

A two-echelon supply chain with both buyers and a vendor was developed by Sarkar [3] with
several types of deterioration. In this modern business environment, a single vendor fulfils the
demand of several customers. Thus, the model of a single-vendor and multiple buyers is a realistic
approach these days. In the view of literature, Goyal [4] first optimized the joint cost for a single buyer
and single vendor. This research was extended by Banerjee [5]. Again by considering single-setup
multi-delivery Goyal [6] extended Banerjee’s [5] model. Chakraborty and Bhuiya [7] developed an
inventory model with a fuzzy service level constraint. A fuzzy stochastic optimization technique
was used for solving their model. In 1996, Ouyang et al. [8] proposed an integrated model in which
they considered backorders and variable lead times. The concept of a controllable lead time was
introduced by Ouyang et al. [9] with discrete crashing cost. An integrated model with vendor’s setup
cost reduction was proposed by Sarkar and Majumder [10], where a distribution free approach was
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incorporated to solve the model. The concept of distribution free was introduced by Gallego and
Moon [11]. In recent years, Sarkar et al. [12] proposed a two-echelon supply chain model with an
improvement in a product’s quality. A selling-price-dependent integrated model with reduced setup
cost was proposed by Dey et al. [13]. Recently, Majumder et al. [14] proposed a supply chain model
for variable production costs with a variable production rate.

Banerjee and Burton [15] discussed a comparison between coordinated and independent
replenishment policies in a single-vendor multi-buyer supply chain model. Banerjee and Banerjee [16]
developed a multi-buyer inventory model using an electronic data interchange with an order-up-to
inventory control policy. Sarmah et al. [17] considered a single-supplier multi-buyer coordinated
supply chain model with a trade credit policy. A variable production cost for inventory model
was used by Khouja and Mehrez [18] and Tripathi et al. [19]. Under the time value of money,
Chakrabarty et al. [20] developed an inventory model for defective items. Hoque [21] introduced
three different single-vendor multi-buyer models by synchronizing the production flow with equal
and unequal-sized batch transfers for the first two models and the last model, respectively. Jha and
Shankar [22] developed a single-vendor multi-buyer constrained non-linear model under a service
level constraint and solved it using the Lagrange multiplier method. Glock and Kim [23] studied the
effect of forward integration in a multi-retailer supply chain under retailer competition.

To improve customer service and to reduce stock out loss, it is important to reduce lead time. Liao
and Shyu [24] first incorporated a probabilistic inventory model by assuming a lead time as a unique
decision variable. Ben-Daya and Rauf [25] considered an inventory model as an extension of Liao
and Shyu’s [24] model, where lead time was one of the decision variables. Ben-Daya’s and Rauf’s [25]
model dealt with no shortages and continuous lead time. Ouyang et al. [8] extended Ben-Daya’s and
Rauf’s [25] model by assuming a discrete lead time and shortages. Pan and Yang [26] analyzed an
integrated inventory model with a controllable lead time. Annadurai and Uthayakumar [27] developed
a periodic review inventory model under a controllable lead time and lost sales reduction.

Lo et al. [28] developed an integrated production–inventory model for an imperfect production
process and they considered Weibull distribution deterioration under inflation. Poisson distributed
lead time was considered by Huang et al. [29]. Recently, Tayyeb and Sarkar [30] discussed a multi-stage
cleaner production system, where the defective rate is random. The impact of a random defective rate
was calculated by Kang et al. [31] for a production model.

A time-dependent deterioration with partial backlogging was calculated by Mishra [32].
A stochastic lead time demand was considered by Khan et al. [33]. In this model, the effect of a learning
and screening error for a production model is considered. An imperfect production and two-stage
assembly system in an economic manufacturing quantity model were introduced by Chang et al. [34].
Cárdenas–Barrón et al. [35] provided an improved solution to the replenishment policy in an economic
manufacturing quantity model. A multi-delivery policy and rework were also considered in this model.
In 2017, Debata and Acharya [36] developed an inventory model under the consideration of a partial
backorder. All researchers used different types of deteriorations, but a probabilistic deterioration in a
two-echelon supply chain management (SCM) was considered by Sarkar [3], who minimized the cost
of whole SCM in this model by using an algebraic solution methodology.

An economic manufacturing quantity (EMQ) model was discussed by Sana and Chaudhuri [37]
under an imperfect production process. In reality, backlogging has a huge impact in any production
model. Wee et al. [38] proposed an alternative approach to derive an inventory model with a rework
process for a single-stage manufacturing system with planned backorders. Sarkar et al. [39] revisited
the production model with the rework process in a single-stage manufacturing system with planned
backorders. Three different distribution functions were used for the model. A just-in-time production
process for an integrated model was developed by Das Roy et al. [40]. Recently, Kim et al. [41]
proposed an integrated model with backorders, where they used an improved technique to calculate
imperfect items when a process has gone through a long-run process.
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It is true that any firm can use a discrete investment to reduce setup time, but this model proposes
discrete investment for reducing ordering cost. Two continuous investments are used to reduce setup
cost and to reduce the probability of an “in-control” to “out-of-control” state in a long-run process
rather than the reduction of setup time. The investment for reducing setup cost is also considered
as continuous, which is also quite realistic for an imperfect production model. Many production
companies would like to sell more of their products, thus, they aim to produce more reliable products
compared to others. Retailers always want more profitable products. Most of today’s customers
want more quality products, they do not consider the cost. Most customers want quality products,
thus, the the quality of products is one of the main targets of most production industries. The quality
of product can be improved by some investment discussed by Sarkar and Moon [42]. They also
reduced the setup cost for an imperfect production process in this model. Cárdenas-Barrón et al. [43]
developed an economic production model with an improved solution procedure. In this model, they
also considered rework and multiple shipments. An imperfect production model with stochastic
demand was formulated by Pal et al. [44]. A warranty for defective products was also provided,
which increased the good-will of the companies. The capacity for holding the product is limited.
Regarding this, Sana [45] developed an inventory model under the consideration of stochastic demand.
Basically, most researchers considered that the holding cost for any production company is fixed but in
reality this is not always true. A nonlinear holding cost for a newsvendor problem was considered by
Pal et al. [46]. They considered a distribution-free approach.

Different researchers have developed different types of models under consideration of imperfect
production, multi-product production systems with safety stock, and improved quality production
processes under setup cost reduction (see for reference Sarkar et al. [12]). However, no one has
developed a model for a single vendor-multi-buyer with consideration of a partial backorder, normally
distributed lead time, shortages, and a variable production cost along with discrete investment
for reduced setup cost for the vendor and an investment for improvement of the quality of the
manufacturing process. There is a big research gap in this direction, which is fulfilled by this
proposed research.

This research is based on a daily problem; basically in this research model, the lead time and total
system cost are reduced. The lead time is dependent on production time and transportation time; let
us suppose if one orders through an online delivery system (like pizza), the customer would like to
have it as soon as possible. For this type of case, the lead time can be reduced by reducing production
time and reducing transportation time. This is the theme along which this work is considered; that the
lead time does not follow any distribution. Several researchers have reduced lead time with different
considerations, but the consideration of the reduction of production and transportation time, along
with a variable production rate for a multiple buyer, single retailer is a novel attempt.

See Table 1 for the contributions of previous authors.

Table 1. Contributions of previous authors.

Author(s) Buyer Production Rate Backorder Lead Time Crashed Investment

Ouyang et al. [8] Single Constant Planed Yes NA
Sarkar and Majumder [10] Single Constant NA Yes NA
Dey et al. [13] Single Constant NA Yes Continious
Majumder et al. [14] Multi Variable Partial Yes NA
Banerjee and Banerjee [16] Multi Constant NA NA NA
Ben-Daya and Rauf [25] Single Constant NA Yes NA
Sana and Chaudhuri [37] Single Constant NA NA NA
Sarkar et al. [39] Single Constant Planned NA NA
This paper Multi Variable Partial Yes Continious

“NA” stands for Not Applicable.
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2. Problem Definition, Notation, and Assumptions

The problem, which is solved by this model, along with notations and assumptions are briefly
described in this section.

2.1. Problem Definition

This model is concerned with a two-echelon supply chain model, where multiple buyers take
a single type of products from a single vendor. The rate of production is considered variable along
with a variable production cost. A discrete investment is used by the vendor to reduce the setup
cost. As the production process runs through a long-run process, after certain time period, it starts
to produce defective items. To prevent this, a continuous investment is also added in this model.
A Partial backlogging is also consider for buyers, as there are shortages and a lead time crashing cost
is used to reduce the lead time of buyers. A distribution-free case is considered, where the lead time is
crashed in two ways: reducing production time and by reducing transportation time. It is considered
that a single-setup-multi-delivery (SSMD) policy is used by the vendor for shipping the product to
different buyers.

2.2. Notation

2.2.1. For Buyers:

The notation of decision variables and parameters for buyers are as follows:

Decision Variables

qi order quantity for buyer i (units)
ki safety factor for buyer i
I investment for ordering cost reduction I = Ibi ($/order)
Q delivery lot size of vendor such that Q = ∑n

i=1 qi

Av setup cost per setup ($/setup)
m number of lots (same for all buyers) delivered to each buyer in one production cycle

(positive integer)
θ probability of the production process which may go to out-of-control state

Parameters

n number of buyers
di average demand per unit time (units)
A0bi initial ordering cost of the buyer per order ($/order)
Si safety stock for buyer i (units)
Abi ordering cost of the buyer per order ($/order)
hbi holding cost per unit per time ($/unit/unit time)
σi standard deviation of the demand
πi stockout cost per unit of shortage ($/unit)
π0i marginal profit per unit item for buyer i ($/unit)
CTi transportation cost per lot ($/shipment)
tTi transportation time (time unit)
tsi setup and transportation time (time unit)

αi the fraction of the transportation time tTi and setup time i.e., α =
tTi
tsi
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2.2.2. For Vendor

The notation for parameter of the vendor are as follows:

Parameters

P production rate per unit time (units)
Av0 initial setup cost for vendor per setup ($/setup)
hv holding cost per unit per unit time $/unit/unit time)
Cv(P) unit production cost per unit ($/unit)
β annual fractional cost of capital investment

Other Notation

Xi normally distributed lead time demand for buyer i with mean diLi and standard deviation σi
√

Li

E(·) mathematical expectation
x+ maximum value of x and 0

2.3. Assumptions

1. This is a single-vendor, multiple buyer SCM model.
2. The vendor supplies a total of Q quantity to fulfil the demand of each buyer, such that Q = ∑n

i=1 qi.
3. The mQ quantities are produced by the vendor or manufacturer against the order of qi quantity

for i buyers, and the shipment is in quantity Q over m times. The shipment procedure follows the
relation qi = di

Q
D , i.e., qi

di
= Q

D .

4. Inventory is continuously reviewed by each buyer. According to this policy, an order is placed
whenever the level of inventory decreases to a particular inventory level (reorder point).

5. Ordering cost for each buyer is not always constant. However if the ordering cost is reduced
during each order, a continuous investment is not needed. Thus, a discrete investment function is
used to reduce the ordering cost for each buyer (see for instance Huang et al., 2011) specifically,
A(Ibi) = A0bi e

−ri Ibi , where i = 0, 1, ..., n and I0bi = 0.
6. In reality, it is not possible for an industry manager to find out the exact distribution function of

lead time demand and to solve the lead time problem. Whenever the previous data are known,
then the mean and the standard deviation can be calculated. The buyer’s model considers a (Q, S)
continuous review inventory model with demand D. The demand D during lead time L(P, Q)

follows an unknown distribution having a known mean DL(P, Q) and standard deviation σi,
where L(P, Q) is the lead time and depends upon setup and transportation time (ts) as well as
and processing time ( qi

P ) i.e., L(P, Q) = tsi +
qi
P = setup and transportation time and processing

time. Lead time of the first shipment is proportional to the lot size produced by the vendor.
7. A partial backorder is considered with a backorder ratio αi for the retailer i.
8. A customer prefers to never wait to get a product from retailer. Thus, the retailer faces a problem

of lost sales, which has a direct effect in market. The lead time has two parts: setup time and
transportation time. It is now essential to reduce the lead time to save markets’ demand. To reduce
this lead time some cost is needed as the lead time crashing cost. The setup and transportation
time consists of n mutual components with a normal distribution bi, the minimum duration ai,
and the crashing cost Ci = 1, 2, ..., n, where

n

∑
i=1

bi ≤ tsi ≤
n

∑
i=1

ai = tsmax .
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That indicates the setup time components 1, 2, 3, ..., j crashed to their minimum duration i.e.,

ts,j =
n

∑
i=j+1

ai −
j

∑
i=1

bi

for all j = 1, 2, ..., n. The crashing cost for the setup and transportation time is

CRi(tsi )
= Cj(ts,j−1 − tsi ) +

j+1

∑
i=1

Ci(ai − bi)

9. If lead time is high, then lost sale increases, which causes a huge loss to the industry. Instead
of using a single safety factor, it is beneficial to use a double safety factor. The known mean
and standard deviation of lead time demand are DL(P, Q) and DL(tTi ), respectively and the

corresponding standard deviation as σi
√

L(P, Q) and σi

√
L(tTi ), respectively. Thus, the safety

stock for the first batch is represented as:

Si = k1σi

√
L(P, Q) = k1i

√
tsi +

Q
P

and the safety stock for the second batch to onwards is defined as

Si = k2i σi

√
L(tTi ) = k2i σi

√
tTi

which gives relation between safety factors as

k2i = k1i

√
tsi +

Q
P

tTi

for batches 2, 3, ..., m.
10. The lead time crashing cost entirely belongs to the buyer’s cost component.
11. Many production models in literature consider a fixed or constant setup cost for vendor, but in

reality, it is possible to reduce the setup cost using a continuous investment function (see for
reference Sarkar and Moon [42]).

12. In a long-run system, the process changes to an out-of-control state from an in-control state, and as
a result, the defective items are produced, which need to be improved via an investment function.

13. The time horizon is infinite.

3. Mathematical Model

In this section the supply chain model is developed and the joint total cost JTEC of the vendor
and the buyer is minimized. The vendor produces Q = qi items for n buyers, the demand of buyer’s
is D = di. The vendor uses a single-setup-multi-delivery (SSMD) policy to transport the required
items, ordered by buyers and uses m lots to delivery all products. This shipment m must be an integer,
thus this problem becomes a mixed-integer programming problem. The main purpose of this model is
to optimize the total cost, along with optimized ordered quantity Q, numbers of lots m, different types
of investment function to reduce the total cost such as a discrete investment I for reduced ordering
cost, two continuous investment Av, and θ to reduce setup cost and the probability of production
process going into an out-of-control state. Finally a modified algorithm is developed to obtain the
numerical result. Basically, two players as a vendor and multi-retailer are considered in this model.
Two different models for buyers and the vendor are formulated as follows.
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3.1. Mathematical Model of Buyers

This is a multi-buyer model where a bunch of buyers n order Q = qi, (i = 1, 2, ..., n) quantity from
a single vendor. To reduce the ordering cost, buyers use a discrete investment Ibi

. For a more realistic
result, a safety stock ki is used by buyers. The demand of buyers is di, which is obviously less than
the production rate of the vendor. A distribution free approach is considered in lead time reduction.
In this model, the lead time is reduced by two way: one by reducing production time tsi and the other
by reducing transportation time tTi . The parameter ri is the reordered point for buyers and qi

di
is the

expected cycle time for each buyer and (m−1)qi
di

is the total cycle length for the buyers. In this model,
the buyer’s cost component are as follows.

Reduced ordering cost through an investment.

To receive the particular product from the vendor, each buyer should invest some costs to order
the product, which known as the ordering cost. It is found that the ordering cost may differ in real life.
For example, there are many sim cards providers for mobile in India and the charge to make a phone
call is different for different provider. One can use a discrete investment to reduce the ordering cost for
a buyer. Thus the ordering cost for buyer i is given by

A0bi e
−ri Ibi di

qi
+

Ibidi
qi

as the expected cycle time for each buyer is qi
di

.

Holding cost.

Each buyer in the SCM continuously reviews the inventory level. As a result, (qi) order is placed
by buyer i only when the level of inventory reaches to a specified indicator that is the reorder point
(ri) (see Figure 1). Therefore, the approximated average inventory for buyer i over the time cycle is
given by

qi
2
+ ri − diLi.

Figure 1. Inventory position for the buyer.

Now, the reorder point ri can be expressed as diLi + kiσi
√

Li, which results in the average inventory
for the i-th buyer being

qi
2
+ kiσi

√
tsi +

qi
P
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Hence, the holding cost for buyer i per unit time is

hbi

[
qi
2
+ kiσi

√
tsi +

qi
P

]
.

Shortage cost.

As the production machine produces defective items in the long-run, shortages must occurs,
the backorder quantity for buyers are E(x1i − r1i )

+ and E(x2i − r2i )
+., then the shortage cost per item

per unit time is given by

diπi
qi

E(x1i − r1i )
+ +

diπi(m− 1)
qi

E(x2i − r2i )
+.

Transportation cost.

The cost for transportation of buyers is given by

mCTi di

qi
.

Lead time crashing cost.

Some of the most realistic research these days is to satisfy customers by reducing the lead time
when an extra cost is added by the production manager. The lead time can be reduced in two ways,
by reducing production and transportation time. According to the assumptions, the lead time crashing
cost per unit time can be expressed as

mdiCRi (tsi )

qi

The total expected cost for buyer i is TECbi = ordering cost + holding cost + shortage cost +
transportation cost + lead time crashing cost

Thus, TECbi leads to the following expression:

TECbi(qi, ki, Li) =

[
A0bi

e−ri Ibi di
qi

+ Ibidi
qi

+ hbi

{
qi
2 + kiσi

√
tsi +

qi
P

}
+ diπi

qi
E(x1i − r1i )

+

+ diπi(m−1)
qi

E(x2i − r2i )
+ +

mdiCTi
qi

+
mdiCRi

(tsi )

qi

]
.

(1)

For the distribution-free approach, a lemma was proved by Gallego and Moon [47], in which they
proved that “if the distribution G of demand D is unknown, then,

E(D−Q)+ ≤ [σ2 + (Q− µ)2]
1
2 − (Q− µ)

2
.

The above expression is tight for every Q if there exist a distribution G∗ ∈ ζ, where ζ is the worst
possible distribution.
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According to Gallego and Moon’s [47], lemma where the least favorable distribution G ∈ ζ,
one can obtain

E(x1i − R1i )
+ ≤

√
σ2

i Li(P, qi) + (R1+i − diLi(P, qi))2 − (R1i − diLi(P, qi))

2

=
σi
2

√
ts +

qi
P
[
√

1 + k2
1i
− k1i ]

E(x2i − R2i)
+ ≤

√
σ2

i Li(tTi ) + (R2i − diLi(tTi ))
2 − (R2i − diLi(tTi ))

2

=
σi
2
√

tTi

√1 + k2
1i

tsi +
qi
P

tTi

− k1i

√
tsi +

qi
P

tTi

 .

Then, Equation (1) can be rewritten as

TECbi(Q, ki, P, m, Ibi) =

[
di
qi

(
A0bi e

−ri Ibi + Ibi + mCTi

)
+ hbi

{
qi
2
+ kiσi

√
tsi +

qi
P

}

+
diπiσi

2qi

√
ts +

qi
P
[
√

1 + k2
1i
− k1i ] +

mdiCRi (tsi )

qi

+
diπiσi(m− 1)

2qi

√
tTi

√1 + k2
1i

tsi +
qi
P

tTi

− k1i

√
tsi +

qi
P

tTi

 ]

TECbi(Q, ki, P, m, Ibi) =

[
di
qi

(
A0bi e

−ri Ibi + Ibi + mCTi

)
+ hbi

{
qi
2
+ kiσi

√
tsi +

qi
P

}

+
diπi

qi

(
σi
2

[√
ts +

qi
P
[
√

1 + k2
1i
− k1i ]

]
+

mCRi (tsi )

πi

+
σi(m− 1)

2
√

tTi

√1 + k2
1i

tsi +
qi
P

tTi

− k1i

√
tsi +

qi
P

tTi

)]. (2)

3.2. Mathematical Model for the Vendor

To fulfill the buyer’s demand, the vendor produces Q quantity at a production rate P and the
production cost Cv(P). As it is too difficult to guess how much production is needed, in this model,
a variable production rate P with the variable production cost Cv(P) is considered for the vendor.
The vendor uses a single-setup-multi-delivery (SSMD) policy to transport the items to each buyer.
Thus m shipment is considered for a single-setup-multi-delivery (SSMD) policy. Thus the total cycle
time for vendor is mQ

D . Two continuous investments are considered by the vendor to reduce the total
system cost. An investment Av is used to reduce the setup cost of the vendor and another investment
θ is used to reduce the chance of a system out-of-control state from in-control state. As in long-run
system, the production process may move from an in-control to out-of-control state due to the labour
problems, machinery problems etc. To reduce this chance, a continuous investment θ is introduced by
the vendor. In this model, the following costs component are used for vendor:

Setup cost with an investment.
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The setup cost for the vendor per unit time is DAv
mQ . But a continuous investment is introduced

to reduce the setup cost. Hence, after introducing continuous investment, the total setup cost for the
vendor is given by

b ln
[

Av0

Av

]
+

AvD
mQ

Holding cost.

The average inventory of the vendor is[{
mQ

(
Q
P
+ (m− 1)

Q
D

)
− m2Q2

2P

}
−
{

Q2

D
(1 + 2 + ... + (m− 1))

}]
D

mQ

=
Q
2

[
m
(

1− D
P

)
− 1 +

2D
P

]
.

(see Figure 2)

Figure 2. Inventory position for the vendor.

Therefore, the holding cost per unit time for the vendor is

hv
Q
2

[
m
(

1− D
P

)
− 1 +

2D
P

]
.

Investment.

To improve the quality of the product, the vendor uses some investment. Thus, the investment
for quality improvement is given by

B ln
(

θ0

θ

)
.

Total investment.
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Thus, the total investment for the reduced setup cost and improved the quality of the product is
given by:

b ln
[

Av0

Av

]
+ B ln

[
θ0

θ

]
= γ− B ln θ − b ln Av

where, γ = B ln θ0 + b ln Av0 and 0 < θ ≤ θ0, 0 < Av ≤ Av0.

Production/material cost.

Production cost Cv(P) of the vendor assumed to be a function of P. The production cost is of the
form is:

Cv(P) =

(
ζ1

P
+ ζ2P

)
.

The unit production cost is P∗ =
√

ζ2
ζ1

Therefore, the total expected cost of to the vendor is
expressed as TECv = setup cost + holding cost + material cost + investment cost i.e.,

TECv(m, Q, P, Av, θ) =
AvD
mQ

+
Q
2

hv

[
m
(

1− D
P

)
− 1 +

2D
P

]
+ Cv(P)D +

SDmQθ

2
+ β (γ− B ln θ − b ln Av). (3)

In order to obtain centralized decisions for both the vendor and buyers to minimize the entire
supply chain cost, the total cost expression of both ends must be combined. Therefore, the joint total
expected cost for both vendor and the buyers (JTEC) is obtained as follows

JTEC(Q, ki, m, θ, P, I, Av)

=
n

∑
i=1

[
D
Q

(
A0bi e

−ri Ibi + Ibi +
Av

m
+ mCTi

)
+ hbi

{
Q

2D
di + kiσi

√
tsi +

Q
P

}

+
Dπi
Q

(
σi
2

[√
ts +

qi
P
[
√

1 + k2
1i
− k1i ]

]
+

mCRi (tsi )

πi
+

σi(m− 1)
2

√
tTi

[√
1 + k2

1i

tsi +
qi
P

tTi

− k1i

√
tsi +

qi
P

tTi

])]
+

Q
2

hv

[
m
(

1− D
P

)
− 1 +

2D
P

]
+ DCv(P)

+
SDmQθ

2
+ β (γ− B ln θ − b ln Av). (4)

4. Solution Methodology

The main aim of this model is to minimize the optimum value of the decision variable such as
the total joint cost can be minimized. This is an unconstrainted minimization problem along with an
integer programming problem. To find the optimum values of decision variable one needs to calculate
the first order derivative of the objective function with respect to the decision variables and then equate
them to zero. Now, according to the assumptions, m is an integer and therefore, can be treated as a
discrete decision variable. One can use the analytic discrete optimization method to find the optimum
value of m.
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To find the optimum value of the other decision variables, one can use the classical optimization
technique, which gives the global optimum value. To do this, after calculating derivatives with respect
to ki, θ, I, Av, Q and P, one can obtain

∂JTEC(Q, k, m, θ, P, I, Av)

∂ki
=

n

∑
i=1

(√
qi
P
+ tsi

)
σi

[
hbi +

diπi
2qi

{ ki√
1 + k2

i

− 1


+ (m− 1)

 ki

√
(tsi +

qi
P )√

tTi + (tsi +
qi
P )k

2
i

− 1

}],

∂JTEC(Q, k, m, θ, P, I, Av)

∂ki
=

n

∑
i=1

(√
qi
P
+ tsi

)
σi

[
hbi +

diπi
2qi

{ ki√
1 + k2

i

− 1


+ (m− 1)

 ki

√
(tsi +

qi
P )√

tTi + (tsi +
qi
P )k

2
i

− 1

}],

∂JTEC(Q, k, m, θ, P, I, Av)

∂θ
=

SDmQ
2

− Bβ

θ
,

∂JTEC(Q, k, m, θ, P, I, Av)

∂I
=

(1− Av0 re−rI)D
mQ

,

∂JTEC(Q, k, m, θ, P, I, Av)

∂Av
=

D
mQ
− bβ

Av
,

∂JTEC(Q, k, m, θ, P, I, Av)

∂Q
= − τ1

Q2 +
τ2

Q
+ τ3,

∂JTEC(Q, k, m, θ, P, I, Av)

∂P
= − τ4

P2 + Dζ2

(5)

(See Appendix A for the values of τi, i = 1, 2, 3, 4.)
For a fixed positive integer m, the values of Q, ki, P, I, Av, and θ can be obtained by equating

every individual equation of the system in Equation (5) to zero. Then, one can obtain the optimum
result Q∗, k∗i , P∗, I∗, A∗v and θ∗ as follows:

Q∗ =
τ1

τ3Q + τ2
, (6)

k∗i =
m(Dπi − 2hbiQ)

Dπi

 1√
1+k2

i
+

(m−1)

√(
Q
P +tsi

)
√

tTi
+

(
Q
P +tsi

)
k2

i


, (7)

P∗ =
√

τ4

Dζ2
, (8)

θ∗ =
2Bβ

SDmQ
, (9)
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I∗ =
1
r

log(rAv0), (10)

A∗v =
bmβQ

D
. (11)

Lemma 1. For the fixed value of m, the condition is sufficient at the optimum value of the decision variables Q∗,
k∗i , P∗, I∗, A∗v and θ∗, i.e., all principal minor of the Hessian matrix is greater than zero for the optimum value
of the decision variables Q∗, k∗i , P∗, I∗, A∗v and θ∗.

Proof. See Appendix B for the proof of the lemma.

Solution Algorithm

A closed form solution of this mathematical model is very difficult to obtain. One can use the
fixed point iteration technique to create a suitable algorithm in order to solve the model.

Step 1 Set m = 1, and input all the values of the parameters.
Step 2 For all buyers i = 1, 2, ..., n, assign the values of all parameters and perform the following steps.
Step 3 For every combination of Li,r, r = 1, 2, ..., Ni, i = 1, 2, ..., n perform steps 3a–3e.
Step 3a Set kj1

i = 0 for each buyer i.
Step 3b Substitute kj1

i , (i = 1,2,...,n) into Equation (6) and evaluate Qj1.
Step 3c Utilize Qj1 to determine the value of (kj2

i ) for each i from (7).
Step 3d Using the value of (kj2

i ), obtain the value of kj2
i from the normal distribution table.

Step 3e Repeat steps 3b to 3d until no changes occur in the values of Qj and kj
i and denote these values

as Qj∗ and kj∗
i , respectively.

Step 4 Evaluate the value of Pj∗, I j∗, θ j∗, and Aj∗
v from Equations (8), (10), (9), and (11), respectively,

using the value of Qj∗.
Step 5 Denote the latest updated values of Qj, kj

i , Pj, I θ j, and Aj
v as Qj∗∗, kj∗∗

i , Pj∗∗ I j∗∗, θ j∗∗,

and Aj∗∗
v respectively.

Step 6 Obtain JTEC(Qj∗∗, kj∗∗
i , Pj∗∗, I j∗∗, θ j∗∗, Aj∗∗

v , m) and

Minj=1,2,...,Ni JATC(Qj∗∗, kj∗∗
i , Pj∗∗, I j∗∗, θ j∗∗, Aj∗∗

v , m) for all i.
Step 7 Set m = m + 1.

If JTEC(Q∗∗m , k∗∗im, P∗∗m , I∗∗m , θ∗∗m , Aj∗∗
vm , m) ≤ JATC(Q∗∗m−1, k∗∗m−1, I∗∗m−1, θ∗∗m−1, Avm−1, m− 1), repeat

steps 2–4. Otherwise, go to Step 6.
Step 8 Set JTEC(Q∗∗m , k∗∗m , I∗∗m , θ∗∗m , A∗∗v , m) = JTEC(Q∗∗m−1, k∗∗m−1, S∗∗m−1, θ∗∗m−1, A∗∗vm−1

, m− 1).
Then, (Q∗∗, k∗∗, L∗∗, I∗∗, θ∗∗, A∗∗v , m∗∗) is the optimal solution.

5. Numerical Analysis

In this section, some numerical examples are provided to validate the model. The parametric
values of demand, holding cost, initial ordering cost, stockout cost, marginal profit, annual fractional
cost for three different buyer’s are given in Table 2, and parametric values for the vendor are given
in Table 3. The parametric values are taken from Majumder et al. [14]. By using the software Matlab
R2015a, one can obtain the optimum results which are shown in Table 4.

From Table 4, one can easily find that the total system cost is minimized when the batch size
is 4, which can be obtained by analytic discrete optimization technique, the optimum quantity
is 595.65 units, the investment for reducing setup cost per unit is 253.13 ($/order), the optimum
production rate is 704.48, the optimum setup cost is 1152.89 ($/setup) and the optimum production
cost per unit is 2.34 ($/unit). Using those optimum values, the total system cost was $2225.18.

Based on the above results this model is more beneficial compared to the Sarkar and
Majumder [10], Sarkar and Moon [42], and Kim and Sarkar’s [48] model. In Sarkar and Majumder’s [10]
model, the total system cost was $6994.4, in Sarkar and Moon’s [42] model the total system cost was
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$3500.73, whereas in Kim and Sarkar’s [48] model this total system cost was $1961.21, with a constant
production rate, but in this current model the production rate is variable.

Table 2. Parametric value.

di(unit/week) 95, 92, 92 A0bi($/order) 332, 315, 314

hbi($/unit/week) 3.4, 2.8, 3.5 πi($/unit) 30, 25, 20

π0i($/unit) 150, 140, 152 σi 5, 7, 9

Ci 10, 30, 70 bi 0.05, 0.08, 0.04

tSi 0.03, 0.04, 0.03 ai 0.1, 0.15, 0.1

Table 3. Parametric value.

ξ1 ξ2 S Av0 θ0 r tT Cr β B b hv
($/setup) ($/unit/setup) ($/shipment) ($/unit/week)

0.06 0.00333 1 1257 0.0001 0.01 1.9 100 1.5 1300 90 2.5

Table 4. Summary of optimal values.

m Q k1 k2 k3 P θ I Av C(p) TEC
(units) ($/order) ($/setup) ($)

5 595.65 18.70 18.78 18.85 704.48 0.00005 253.13 1152.89 2.34 2225.18

5.1. Special Case I: When No Investment Is Used

When there is no investment, that is I = 0, then the total system cost TEC is $179162813414.03.
It is found that without investment, the system cost is huge compared to the use of investment. Thus,
if one uses investment then the total system cost is remarkably reduced.

5.2. Special Case II: When No Quality Improvement Is Considered

If θ = 0, that is the probability of the production process which may go to an out-of-control state
is zero, then the system cost TEC is $5928.30, thus the investment for reducing the probability of the
production process, which may go to an out-of-control state is also reduces the total system cost.

5.3. Special Case III: When Setup Cost Is Fixed

If the setup cost is fixed, then the total system cost TEC is $404516898.87. Thus, it is clear that use
of investment to reduce setup cost and is highly beneficial to any industry.

6. Sensitivity Analysis

One can easily find the effect of a change of parameters to the total cost by the sensitivity shown
in Table 5. This table is formulated for a change in parameter −10%, −5%, 5%, and 10%. From Table 5,
it is easily concluded that

• A small change in ordering cost for buyers has a great effect in total cost of the SCM system.
• A small change in the initial setup cost also has an impact on total cost. Setup cost is more effective

for this model. With very little change in setup cost, there is a huge change in total cost. From the
sensitivity table it is clear that setup cost is more sensitive for this model.

• Scaling parameter B is lightly sensitive for the total cost in this model.
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Table 5. Sensitivity analysis for different key parameters.

Parameters Changes(in %) TECN Parameters Changes(in %) TECN

−10% −18.09 −10% +24.95
−5% −9.39 −5% +12.59

Ab1 +5% +10.09 B +5% −12.81
+10% +20.90 +10% −25.83

−10% −41.97
−5% −25.18

Av0 +5% +35.14
+10% +81.59

The effect of change in total cost are shown graphically in the Figures 3–5.

Figure 3. Changes of parameter Ab1
versus percentage change in total cost.
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Figure 4. Changes of parameter Av versus percentage change in total cost.

Figure 5. Changes of parameter B versus percentage change in total cost.

Case Study

A real case study was also done to validate this model. The model was tested on real data from a
company, located in West Bengal, India. They happily accepted the proposal to allow access to data
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from their company and the model is validated with the real data. The results were found in the
similar direction of the research. The results of the proposed model with the real data were considered
after the normalization of each data, as without normalization, those data cannot fit with the proposed
model. The basic normalization towards mean was used for the purpose. Using sample mean, sample
variance, and histogram, and finally the confirmation test of the distribution function. The input data
from the company is given in Tables 6 and 7 and the results are given in Table 8. The company was
really satisfied with results. But if they will use the findings of the proposed model. Thus, the proposed
strategy effects a major savings of the company. Based on the findings, the company may change their
production planning.

Table 6. Parametric value.

di(unit/week) 95, 92, 92 Abi($/setup) 332, 320, 313

hbi($/unit/week) 3.4, 2.8, 3.5 πi($/unit) 30, 25, 20

π0i($/unit) 150, 140, 152 σi 5, 7, 9

β 1.5 bi 0.05, 0.08, 0.04

Ci 10, 30, 70 ai 0.1, 0.15, 0.1

tSi 0.03, 0.04, 0.03

Table 7. Parametric value.

ξ1 ξ2 S Av0 θ0 r tT Cr B hv
($/setup) ($/unit/setup) ($/shipment) ($/unit/week)

0.06 0.00333 1 1198 0.0001 0.01 1.9 100 100 2.5

Table 8. Optimum result for case study.

m Q k1 ts P θ I Av C(p) TEC
(units) ($/order) ($/setup) ($)

4 598.91 18.74 1.0 705.27 0.00004 248.32 1159.17 2.35 4800.00

7. Managerial Insights

This model developed a single vendor-multi-buyer SCM model, where the single vendor produces
a single item and sends it to multiple buyers using a SSMD policy. The production rate and production
cost are variable which is quite realistic. Three types of investments are used to reduce cost and
improve the quality of the production system. Based on different variables such as lead time, order
quantity, reorder point, production cost, production rate, and number of shipments, investments
decision are made. The managerial insights for this model are as follows:

• The production rate are considered as variable, which is more realistic rather than constant.
Industries can use variable production for cost savings or earning more profit.

• The production cost is also variable which also a more realistic.
• The company would like to reduce the total cost of their production system. For this, a continuous

investment is made to reduce the setup cost of whole production system along with a discrete
investment to reduce the ordering cost.

• To control the long-run system, a continuous investment is made such that the production quality
can be improved.

• By increasing the lead time crashing cost, a manager can reduce the lead time to upgrade the
service label for the customer.
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8. Concluding Remarks

This research developed an SCM model, where a single vendor produces a single type of item and
sends it to multiple buyers using an SSMD policy. Contradictory to the literature, a variable production
rate with variable production cost was used. The production cost depends on the production rate. From
the numerical result, it is found that the optimum result is obtained when the number of shipments
is four. It is also concluded that some investment in setup cost, reduced the setup cost of the whole
system and some investment was done to improve the quality of the production system for the long
run. As this model considered defective items, the inspection process (see for reference Sarkar [49])
will be a very interesting finding as a future extension. This model can also be extended by considering
the autonomation policy for inspection along with different types of warehousing. This model can be
extended in future with unreliability for the vendor. Another very interesting extension of this model
would be considering a multi-echelon model with multi-buyer and multi-vendor for multiple product
or an assembled product.
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Appendix A

τ1 = D(A0bi e
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∑
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(√
1 + k2
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√
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qi
P + tsi

+ (m− 1)ki

(
ki√

tTi + ( qi
P + tsi )k

2
i

− 1√
qi
P + tsi

)]

τ3 =
n

∑
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√
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)
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(
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Appendix B

Proof of Lemma 1
This paper computes the Hessian matrix at the optimal values for a given m as follows:
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|H(JTEC)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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∂I2
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where JTEC(.) = JTEC(Q, k, θ, P, I, Av).

The second order partial derivatives at the optimal values are
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The first principal minor is grater than zero since all the parameters and variables are positive:
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The second order principal minor of H(JTEC) is

det(H22) = det

(
∂2 JTEC(.)

∂I2
∂2 JTEC(.)

∂I∂θ
∂2 JTEC(.)

∂I∂θ
∂2 JTEC(.)

∂θ2

)

=
A0bi r

2 Ibie−rIbi

Q
Bβ

θ2 − 0 > 0

The second principal minor is also grater then zero as ∂2 JTEC(.)
∂I2 > 0, ∂2 JTEC(.)

∂θ2 > 0, and
∂2 JTEC(.)

∂I∂θ = 0.
The third order principal minor of H(JTEC) is given by

det(H33) = det


∂2 JTEC(.)

∂I2
∂2 JTEC(.)

∂I∂θ
∂2 JTEC(.)

∂I∂Av
∂2 JTEC(.)

∂θ∂I
∂2 JTEC(.)

∂θ2
∂2 JTEC(.)

∂θ∂Av
∂2 JTEC(.)

∂I∂Av

∂2 JTEC(.)
∂Av∂θ

∂2 JTEC(.)
∂A2

v


=

A0bi r
2 Ibie−rIbi

Q
Bβ

θ2
bβ

A2
v
> 0.

Thus, third principal minor is also grater than zero, as all three terms ∂2 JTEC(.)
∂I2 , ∂2 JTEC(.)

∂θ2 , ∂2 JTEC(.)
∂A2

v
are positive and others terms are zero.

The forth order principal minor of H(JTEC) is

det(H44) =


∂2 JTEC(.)

∂I2
∂2 JTEC(.)

∂I∂θ
∂2 JTEC(.)

∂I∂Av

∂2 JTEC(.)
∂I∂P

∂2 JTEC(.)
∂I∂θ

∂2 JTEC(.)
∂θ2

∂2 JTEC(.)
∂θ∂Av

∂2 JTEC(.)
∂θ∂P

∂2 JTEC(.)
∂Av∂I

∂2 JTEC(.)
∂θ∂Av

∂2 JTEC(.)
∂A2

v

∂2 JTEC(.)
∂Av∂P

∂2 JTEC(.)
∂P∂I

∂2 JTEC(.)
∂P∂θ

∂2 JTEC(.)
∂P∂Av

∂2 JTEC(.)
∂P2


=

A0bi r
2 Ibie−rIbi

Q
Bβ

θ2
bβ

A2
v

2τ4

P3 > 0.

Thus fourth principal minor is grater than zero as all four terms are positive and all others terms
are zero.

The fifth order principal minor of H(JTEC) is given by

det(H55) = det



∂2 JTEC(.)
∂I2

∂2 JTEC(.)
∂I∂θ

∂2 JTEC(.)
∂I∂Av

∂2 JTEC(.)
∂I∂P

∂2 JTEC(.)
∂I∂k

∂2 JTEC(.)
∂I∂θ

∂2 JTEC(.)
∂θ2

∂2 JTEC(.)
∂θ∂Av

∂2 JTEC(.)
∂θ∂P

∂2 JTEC(.)
∂θ∂k

∂2 JTEC(.)
∂Av∂I

∂2 JTEC(.)
∂θ∂Av

∂2 JTEC(.)
∂A2

v

∂2 JTEC(.)
∂Av∂P

∂2 JTEC(.)
∂Av∂k

∂2 JTEC(.)
∂P∂I

∂2 JTEC(.)
∂P∂θ

∂2 JTEC(.)
∂P∂Av

∂2 JTEC(.)
∂P2

∂2 JTEC(.)
∂P∂k

∂2 JTEC(.)
∂k∂I

∂2 JTEC(.)
∂k∂θ

∂2 JTEC(.)
∂k∂Av

∂2 JTEC(.)
∂P∂k

∂2 JTEC(.)
∂k2 .



=
A0bi r

2 Ibie−rIbi

Q
Bβ

θ2
bβ

A2
v

det

(
∂2 JTEC(.)

∂P2
∂2 JTEC(.)

∂P∂k
∂2 JTEC(.)

∂k∂P
∂2 JTEC(.)

∂k2

)
.
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Now, if

2τ4

P3 >
1

2P2

[
− hbiQσi√

Q
P + tsi

+ Dπiσi

[
−

ki√
1+k2

i−1

2
√

Q
P + tsi

+ (m− 1)

(
1

2
√

Q
P + tsi

+
(Q

P + tsi)k2
i

2
(

tTi + (Q
P + tsi)k2

i

) 3
2
− ki√

tTi + (Q
P + tsi)k2

i

)]]

1
2

Dπiσi

√
Q
P
+ tsi

[
1(

1 + k2
i
) 3

2
+ (m− 1)

√√√√√ Q
P + tsi

tTi +
(

Q
P + tsi

)
k2

i

(
1−

(
Q
P + tsi

)
k2

i

tTi +
(

Q
P + tsi

)
k2

i

)]

>
1

2P2

[
− hbiQσi√

Q
P + tsi

+ Dπiσi

[
−

ki√
1+k2

i−1

2
√

Q
P + tsi

+ (m− 1)

(
1

2
√

Q
P + tsi

+
(Q

P + tsi)k2
i

2
(

tTi + (Q
P + tsi)k2

i

) 3
2
− ki√

tTi + (Q
P + tsi)k2

i

)]]
,

then by the formula xy > z2, if x > z, and y > z, one can get

det

(
∂2 JTEC(.)

∂P2
∂2 JTEC(.)

∂P∂k
∂2 JTEC(.)

∂k∂P
∂2 JTEC(.)

∂k2

)
=

∂2 JTEC(.)
∂P2 × ∂2 JTEC(.)

∂k2 −
(

∂2 JTEC(.)
∂k∂P

)2

> 0.

Thus, one can state that fifth order principal minor is grater than zero as this is the products of
four positive terms and all others terms are zero. Now, the sixth order minor i.e., the full Hessian is of
the form

|H66| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2 JTEC(.)
∂I2

∂2 JTEC(.)
∂I∂θ

∂2 JTEC(.)
∂I∂Av

∂2 JTEC(.)
∂Q∂P

∂2 JTEC(.)
∂I∂k

∂2 JTEC(.)
∂I∂Q

∂2 JTEC(.)
∂θ∂I

∂2 JTEC(.)
∂θ2

∂2 JTEC(.)
∂θ∂Av

∂2 JTEC(.)
∂θ∂P

∂2 JTEC(.)
∂θ∂k

∂2 JTEC(.)
∂θ∂Q

∂2 JTEC(.)
∂Av∂I

∂2 JTEC(.)
∂Av∂θ

∂2 JTEC(.)
∂A2

v

∂2 JTEC(.)
∂Av∂P

∂2 JTEC(.)
∂Av∂k

∂2 JTEC(.)
∂Av∂Q

∂2 JTEC(.)
∂P∂I

∂2 JTEC(.)
∂P∂θ

∂2 JTEC(.)
∂P∂Av

∂2 JTEC(.)
∂P2

∂2 JTEC(.)
∂P∂k

∂2 JTEC(.)
∂P∂Q

∂2 JTEC(.)
∂k∂I

∂2 JTEC(.)
∂k∂θ

∂2 JTEC(.)
∂k∂Av

∂2 JTEC(.)
∂k∂P

∂2 JTEC(.)
∂k2

∂2 JTEC(.)
∂k∂Q

∂2 JTEC(.)
∂Q∂I

∂2 JTEC(.)
∂Q∂θ

∂2 JTEC(.)
∂Q∂Av

∂2 JTEC(.)
∂Q∂P

∂2 JTEC(.)
∂Q∂k

∂2 JTEC(.)
∂Q2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∂2 JTEC(.)

∂I2 ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2 JTEC(.)
∂θ2

∂2 JTEC(.)
∂θ∂Av

∂2 JTEC(.)
∂θ∂P

∂2 JTEC(.)
∂θ∂k

∂2 JTEC(.)
∂θ∂Q

∂2 JTEC(.)
∂Av∂θ

∂2 JTEC(.)
∂A2

v

∂2 JTEC(.)
∂Av∂P

∂2 JTEC(.)
∂Av∂k

∂2 JTEC(.)
∂Av∂Q

∂2 JTEC(.)
∂P∂θ

∂2 JTEC(.)
∂P∂Av

∂2 JTEC(.)
∂P2

∂2 JTEC(.)
∂P∂k

∂2 JTEC(.)
∂P∂Q

∂2 JTEC(.)
∂k∂θ

∂2 JTEC(.)
∂k∂Av

∂2 JTEC(.)
∂k∂P

∂2 JTEC(.)
∂k2

∂2 JTEC(.)
∂k∂Q

∂2 JTEC(.)
∂Q∂θ

∂2 JTEC(.)
∂Q∂Av

∂2 JTEC(.)
∂Q∂P

∂2 JTEC(.)
∂Q∂k

∂2 JTEC(.)
∂Q2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− ∂2 JTEC(.)

∂I∂Q
× |H55|.
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Now, one have to calculate

∂2 JTEC(.)
∂I2 × ∂2 JTEC(.)

∂θ2 ×

∣∣∣∣∣∣∣∣∣∣∣

∂2 JTEC(.)
∂A2

v

∂2 JTEC(.)
∂Av∂P

∂2 JTEC(.)
∂Av∂k

∂2 JTEC(.)
∂Av∂Q

∂2 JTEC(.)
∂P∂Av

∂2 JTEC(.)
∂P2

∂2 JTEC(.)
∂P∂k

∂2 JTEC(.)
∂P∂Q

∂2 JTEC(.)
∂k∂Av

∂2 JTEC(.)
∂k∂P

∂2 JTEC(.)
∂k2

∂2 JTEC(.)
∂k∂Q

∂2 JTEC(.)
∂Q∂Av

∂2 JTEC(.)
∂Q∂P

∂2 JTEC(.)
∂Q∂k

∂2 JTEC(.)
∂Q2

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

∂2 JTEC(.)
∂A2

v

∂2 JTEC(.)
∂Av∂P

∂2 JTEC(.)
∂Av∂k

∂2 JTEC(.)
∂Av∂Q

∂2 JTEC(.)
∂P∂Av

∂2 JTEC(.)
∂P2

∂2 JTEC(.)
∂P∂k

∂2 JTEC(.)
∂P∂Q

∂2 JTEC(.)
∂k∂Av

∂2 JTEC(.)
∂k∂P

∂2 JTEC(.)
∂k2

∂2 JTEC(.)
∂k∂Q

∂2 JTEC(.)
∂Q∂Av

∂2 JTEC(.)
∂Q∂P

∂2 JTEC(.)
∂Q∂k

∂2 JTEC(.)
∂Q2

∣∣∣∣∣∣∣∣∣∣∣
=

∂2 JTEC(.)
∂A2

v
×

∣∣∣∣∣∣∣∣
∂2 JTEC(.)

∂P2
∂2 JTEC(.)

∂P∂k
∂2 JTEC(.)

∂P∂Q
∂2 JTEC(.)

∂k∂P
∂2 JTEC(.)

∂k2
∂2 JTEC(.)

∂k∂Q
∂2 JTEC(.)

∂Q∂P
∂2 JTEC(.)

∂Q∂k
∂2 JTEC(.)

∂Q2

∣∣∣∣∣∣∣∣

+
D

mQ2 ×

∣∣∣∣∣∣∣∣
∂2 JTEC(.)

∂P∂Av

∂2 JTEC(.)
∂P2

∂2 JTEC(.)
∂P∂k

∂2 JTEC(.)
∂k∂Av

∂2 JTEC(.)
∂k∂P

∂2 JTEC(.)
∂k2

∂2 JTEC(.)
∂Q∂Av

∂2 JTEC(.)
∂Q∂P

∂2 JTEC(.)
∂Q∂k .

∣∣∣∣∣∣∣∣
Now, from the previous argument one can find that∣∣∣∣∣∣∣∣

∂2 JTEC(.)
∂P2

∂2 JTEC(.)
∂P∂k

∂2 JTEC(.)
∂P∂Q

∂2 JTEC(.)
∂k∂P

∂2 JTEC(.)
∂k2

∂2 JTEC(.)
∂k∂Q

∂2 JTEC(.)
∂Q∂P

∂2 JTEC(.)
∂Q∂k

∂2 JTEC(.)
∂Q2

∣∣∣∣∣∣∣∣ > 0 and,

∣∣∣∣∣∣∣∣
∂2 JTEC(.)

∂P∂Av

∂2 JTEC(.)
∂P2

∂2 JTEC(.)
∂P∂k

∂2 JTEC(.)
∂k∂Av

∂2 JTEC(.)
∂k∂P

∂2 JTEC(.)
∂k2

∂2 JTEC(.)
∂Q∂Av

∂2 JTEC(.)
∂Q∂P

∂2 JTEC(.)
∂Q∂k

∣∣∣∣∣∣∣∣ > 0.

Hence |H66| > 0, since ∂2 JTEC(.)
∂I2 > 0, ∂2 JTEC(.)

∂I∂Q < 0, and |H55| > 0. Thus, sixth principal minor
|H66| is greater then zero as this is the sum of positive terms.

Hence one can state that all principal minor that is |H11|, |H22|, |H33|, |H44|, |H55|, |H66| are grater
than zero for the optimal values of the decision variables, which is the sufficient condition for the
global optimum result of this model.

Hence the Lemma 1 is proved.
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