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Abstract

:

In this paper, the Hyers–Ulam stability of linear Caputo–Fabrizio fractional differential equation is established using the Laplace transform method. We also derive a generalized Hyers–Ulam stability result via the Gronwall inequality. In addition, we establish existence and uniqueness of solutions for nonlinear Caputo–Fabrizio fractional differential equations using the generalized Banach fixed point theorem and Schaefer’s fixed point theorem. Finally, two examples are given to illustrate our main results.
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1. Introduction


Fractional differential operators describe mechanical and physical processes with historical memory and spatial global correlation and for the basic theory—see [1,2,3]. Results on existence, stability and controllability for differential equations with Caputo, Riemann–Liouville and Hilfer type fractional derivatives can be found, for example, in [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]. Caputo and Fabrizio [20] introduced a new nonlocal derivative without a singular kernel and Atangana and Nieto [21] studied the numerical approximation of this new fractional derivative and established a modified resistance loop capacitance (RLC) circuit model. Losada and Nieto [22] presented a fractional integral corresponding to the Caputo–Fabrizio fractional derivative and introduced Caputo–Fabrizio fractional differential equations and established existence and uniqueness results. Baleanu et al. [23] extended the study to Caputo–Fabrizio fractional integro-differential equations and obtained the approximate solution. Franc and Goufo [24] established a new Korteweg–de Vries–Burgers equation involving the Caputo–Fabrizio fractional derivative with no singular kernel and presented existence and uniqueness results and also gave numerical approximations.



Hyers–Ulam stability is a concept that provides an approximate solution for the exact solution in a simple form for differential equations. A Laplace transform method is applied to show the Hyers–Ulam stability for integer order differential equations in [25,26] and Wang and Li [27] adopted the idea and applied a Laplace transform method to show the Hyers–Ulam stability for fractional order differential equations involving Caputo derivatives. There are many papers on differential equations involving fractional derivatives–see, for example, [28,29,30,31,32,33,34,35,36]. However, there are only a few papers on the Hyers–Ulam stability for differential equations with the Caputo–Fabrizio fractional derivative. In [37], Wang et al. offered the Ulam stability for the fractional differential equations with the Caputo derivative.



First, we recall the well-known Caputo fractional derivative [2] of order β, given by


(Dβy)(x)=1Γ(1−β)∫axf˙(s)(x−s)βds,0<β<1,








where f∈C1(a,b),b>a. By changing the kernel (x−s)−β with the function exp(−β1−β(x−s)) and 1Γ(1−β) by 12π(1−α2), we obtain the new definition of fractional derivative without a singular kernel (CFDαy)(x)—see Definition 1 for details.



In this paper, we study Hyers–Ulam stability and existence and uniqueness of solutions for the following Caputo–Fabrizio fractional derivative equations:


(CFDαy)(x)−λ(CFDβy)(x)=u(x),x∈[0,T],0<α,β<1,



(1)




and


(CFDαy)(x)=f(x,y(x)),x∈[0,T],0<α<1,



(2)




where (CFDγy)(·) denotes the Caputo–Fabrizio derivative for y with the order 0<γ<1 (see Definition 1), λ∈R, u:[0,T]→R and f:[0,T]×R→R will be specified later.



The main contributions are as follows: we obtain a simple result to check whether the approximate solution is near the exact solution for linear Equation (1), which implies Hyers–Ulam stability and generalized Hyers–Ulam stability on the finite time interval. In addition, we present a condition to derive existence and uniqueness of solutions for nonlinear Equation (2) using the generalized Banach fixed point theorem (this improves the result in (Theorem 1, [22])). In addition, we establish sufficient conditions to guarantee the existence of solutions for nonlinear Equation (2) using Schaefer’s fixed point theorem. Based on the existence and uniqueness result, we prove the Hyers–Ulam stability of (2) via the Gronwall inequality.




2. Preliminaries


Let C(I,R) be the Banach space of all continuous functions from I into R with the norm ∥y∥C:=sup{|y(x)|:x∈I}.



Definition 1

(see [22]). Let 0<α<1, h∈C1[0,b) and b>0. The Caputo–Fabrizio fractional derivative for a function h of order α is defined by


CFDαh(τ)=(2−α)M(α)2(1−α)∫0τexp(−α1−α(τ−x))h′(x)dx,τ≥0,








where M(α) is a normalization constant depending on α. Note that (CFDα)(h)=0 if and only if h is a constant function.





Definition 2

(see Definition 1, [22]). Let 0<α<1. The Caputo–Fabrizio fractional integral for a function h of order α is defined by


CFIαh(τ)=2(1−α)(2−α)M(α)h(τ)+2α(2−α)M(α)∫0τh(x)dx,τ≥0.













Theorem 1

(see [20,22]). Let α∈(0,1). Then,


L[CFDαh(τ)](s)=(2−α)M(α)2(s+α(1−s)(sL[h(τ)](s)−h(0)),s>0.













Motivated by (Definition 2.3, [37]), we introduce the following definition.



Definition 3.

Let 0<α,β<1 and u:[0,T]→R be a continuous function. Then, (1) is Hyers–Ulam stable if there exists K>0 and ϵ>0 such that, for each solution y∈C([0,T],R) of (1),


|CFDαy(x)−λCFDβy(x)−u(x)|≤ϵ,∀x∈[0,T],



(3)




and there exists a solution z∈C([0,T),R) of (2) with


|y(x)−z(x)|≤Kϵ,∀x∈[0,T].













Definition 4.

Let 0<α,β<1, u:[0,T]→R be a continuous function and G:[0,T]→R+ be continuous functions. Then, (1) is generalized Hyers–Ulam–Rassias stable with respect to G if there exists a constant cf,G>0 such that for each solution y∈C([0,T],R) of (1),


|CFDαy(x)−λCFDβy(x)−u(x))|≤G(x),∀x∈[0,T],



(4)




and there exists a solution z∈C([0,T],R) of (2) with


|y(x)−z(x)|≤cf,GG(x),∀x∈[0,T].













Definition 5.

Let f:[0,T]×R→R be a continuous function. Then, (2) is Hyers–Ulam stable if there exists K>0 and ϵ>0 such that for each solution y∈C([0,T],R) of (2),


|CFDαy(x)−f(x,y(x))|≤ϵ,∀x∈[0,T],



(5)




and there exists a solution z∈C([0,T),R) of (2) with


|y(x)−z(x)|≤Kϵ,∀x∈[0,T].













Definition 6.

Let f:[0,T]×R→R and G:[0,T]→R+ be continuous functions. Then, (2) is generalized Hyers–Ulam–Rassias stable with respect to G if there exists a constant cf,G>0 such that, for each solution y∈C([0,T],R) of (2),


|CFDαy(x)−f(x,y(x))|≤G(x),∀x∈[0,T],



(6)




and there exists a solution z∈C([0,T],R) of (2) with


|y(x)−z(x)|≤cf,GG(x),∀x∈[0,T].














3. Stability Results for the Linear Equation


In this section, we study Hyers–Ulam and generalized Hyers–Ulam-Rassias stability of (1).



Theorem 2.

Let 0<β,α<1, λ∈R, and u(x) be a given real function on [0,T]. If a function y:[0,T]→R satisfies the inequality


|(CFDαy)(x)−λ(CFDβy)(x)−u(x)|≤ε



(7)




for each x∈[0,T] and ε>0, then there exists a solution ya:[0,T]→R of (1) such that


|y(x)−ya(x)|≤2|CA|ε+2|AD−BCA2−αβB|max{1,exp(−BAT)}xε+2|αβB|xε,



(8)




where


A=(1−β)(2−α)M(α)−λ(2−β)M(β)(1−α),B=(2−α)M(α)β−λ(2−β)M(β)α,C=(1−β)(1−α),D=α+β−2αβ.



(9)









Proof. 

Let


F(x)=(CFDαy)(x)−λ(CFDβy)(x)−u(x),x∈[0,T].



(10)




Taking the Laplace transform of (10) via Theorem 1, and we have


L{F(x)}(s)=L{(CFDαy)(x)−λ(CFDβy)(x)−u(x)}(s)=L{(CFDαy)(x)}(s)−λL{(CFDβy)(x)}(s)−L{u(x)}(s)=[(2−α)M(α)2(s+α(1−s))−λ(2−β)M(β)2(s+β(1−s))]sL{y(x)}(s)+[−(2−α)M(α)2(s+α(1−s))+λ(2−β)M(β)2(s+β(1−s))]y(0)−L{u(x)}(s),



(11)




where L{F} denotes the Laplace transform of the function F. From (11), one has


L{y(x)}(s)=1sy(0)+1s2(s+α(1−s))(s+β(1−s))(2−α)M(α)(s+β(1−s))−λ(2−β)M(β)(s+α(1−s))×L{u(x)}(s)+L{F(x)}(s)=1sy(0)+2CA+AD−BCA21s+BA+αβB1s−αβB1s+BA(L{u(x)}(s)+L{F(x)}(s)),



(12)




where A,B,C,D are defined as in (9). Set


ya(x)=y(0)+2CAu(x)+2AD−BCA2−αβB∫0xexp(−BAt)u(x−t)dt+2αβB∫0xu(x−t)dt.



(13)







Taking the Laplace transform of (13), one has


L{ya(x)}(s)=1sy(0)+2CAL{u(x)}(s)+2AD−BCA2−αβB1s+BAL{u(x)}(s)+2αβB1sL{u(x)}(s)=1sy(0)+2CA+AD−BCA21s+BA+αβB1s−αβB1s+BAL{u(x)}(s).



(14)







Note that


L{(CFDαya)(x)−λ(CFDβya)(x)}(s)=(2−α)M(α)(s+β(1−s))−λ(2−β)M(β)(s+α(1−s))2(s+α(1−s))(s+β(1−s))(sL{ya(x)}(s)−y(0)).



(15)




Substituting (14) into (15), we obtain


L{(CFDαya)(x)−λ(CFDβya)(x)}(s)=L{u(x)},








which yields that ya(x) is a solution of Equation (1) since L is one-to-one. From (12) and (14), we have


L{y(x)−ya(x)}(s)=2CA+AD−BCA21s+BA+αβB1s−αβB1s+BAL{F(x)}.








This implies that


y(x)−ya(x)=2CAF(x)+2(AD−BCA2−αβB)(exp(−BAx)∗F(x)+2αβB(1∗F(x)),








so


|y(x)−ya(x)|=|2CAF(x)+2(AD−BCA2−αβB)(exp(−BAx)∗F(x)+2αβB(1∗F(x))|≤2|CAF(x)|+2|AD−BCA2−αβB||exp(−BAx)∗F(x)|+2|αβB‖1∗F(x)|≤2|CA‖F(x)|+2|AD−BCA2−αβB|∫0x|exp(−BAt)‖F(x−t)|dt+2|αβB|∫0x|F(x−t)|dt)≤2|CA‖F(x)|+2|AD−BCA2−αβB|ε∫0xmax{1,exp(−BA(T))}dt+2|αβB|ε∫0x1dt)≤2|CA|ε+2|AD−BCA2−αβB|xmax{1,exp(−BAT)}ε+2|αβB|xε.








The proof is complete. □





Remark 1.

If T<∞, then (1) is Hyers–Ulam stable with the constant


K=2|CA|+2|AD−BCA2−αβB|max{1,exp(−BAT)}T+2|αβB|T.













Remark 2.

Let 0<β,α<1, λ∈R, and u(x) be a given real function on [0,T]. If a function y:[0,T]→R satisfies the inequality


|(CFDαy)(x)−λ(CFDβy)(x)−u(x)|≤G(x),



(16)




this implies that


|F(x)|≤G(x)








for each x∈[0,T] and some function G(x)>0, where F is defined in (10).



From Theorem 2, then there exists a solution ya:[0,T]→R of (1) such that


y(x)−ya(x)=2CAF(x)+2(AD−BCA2−αβB)(exp(−BAx)∗F(x)+2αβB(1∗F(x)),








and


|y(x)−ya(x)|≤2|CAF(x)|+2|AD−BCA2−αβB||exp(−BAx)∗F(x)|+2|αβB‖1∗F(x)|≤2|CA‖F(x)|+2|AD−BCA2−αβB|max{1,exp(−BAT)}|∫0xF(x−t)dt|+2|αβB‖∫0xF(x−t)dt|≤2|CA‖F(x)|+2|AD−BCA2−αβB|max{1,exp(−BAT)}|F(x)|+2|αβB‖F(x)|≤2|CA|+|AD−BCA2−αβB|max{1,exp(−BA(T))}+|αβB|G(x)








provided that


∫0xF(t)dt≤F(x)








for any x∈[0,T], where F is defined in (10) and A,B,C,D are defined as in (9). Thus, (2) is generalized Hyers–Ulam stable with respect to G on [0,T].






4. Existence and Stability Results for the Nonlinear Equation


We introduce the following conditions:

	
[A1]:f:[0,T]×R→R is continuous.



	
[A2]: There exists a kf>0 such that


|f(x,y)−f(x,g)|≤kf|y−g|,∀y,g∈R,x∈[0,T].











	
[A3]: There exists a constant L>0 such that


|f(x,y)|≤L(1+|y|)








for each x∈[0,T] and all y∈R.








Let aα=2(1−α)2−αM(α), bα=2α2−αM(α), y(0)=y0 and C0=−aαf(0,y0)+y0.



Theorem 3.

Let 0<α<1. Assume that [A1] and [A2] hold. If aαkf<1, then (2) with y(0)=y0 has a unique solution.





Proof. 

Consider P:C([0,T],R)→C([0,T],R) as follows:


(Py)(x)=C0+aαf(x,y(x))+bα∫0xf(s,y(s))ds.



(17)




Note P is well defined because of [A1]. For all y1,y2∈C([0,T],R) and all x∈[0,T], using [A2], we have


|(Py1)(x)−(Py2)(x)|≤aα|f(x,y1(x))−f(x,y2(x))|+bα∫0x|f(s,y1(s))−f(x,y2(x))|ds≤aαkf|y1(x)−y2(x)|+bα∫0xkf|y1(s)−y2(s)|ds=aαkf∥y1−y2∥C+bαkfx∥y1−y2∥C.











Denote Cni=n!(n−i)!i!. Next,


|(P2y1)(x)−(P2y2)(x)|≤aα|f(x,(Py1)(x))−f(x,(Py2)(x))|+bα∫0x|f(s,(Py1)(s))−f(x,(Py2)(x))|ds≤aαkf|Py1(x)−Py2(x)|+bα∫0xkf|Py1(s)−Py2(s)|ds≤aαkf(aαkf∥y1−y2∥C+bαkfx∥y1−y2∥C)+bαkf∫0x(aαkf∥y1−y2∥C+bαkfx∥y1−y2∥C)ds≤(kfaα)2+2kfaα(kfbαx)+(kfbαx)22!∥y1−y2∥C=∑i=02C2i(kfaα)2−i(kfbαx)ii!∥y1−y2∥C.











For any m∈N+, suppose the following inequality hold


|(Pmy1)(x)−(Pmy2)(x)|≤∑i=0mCmi(kfaα)m−i(kfbαx)ii!∥y1−y2∥C.








Then,


|(Pm+1y1)(x)−(Pm+1y2)(x)|≤aα|f(x,(Pmy1)(x))−f(x,(Pmy2)(x))|+bα∫0x|f(x,(Pmy1)(s))−f(x,(Pmy2)(s))|ds≤kfaα∑i=0mCmi(kfaα)m−i(kfbαx)ii!+kfbα∫0x∑i=0mCmi(kfaα)m−i(kfbαs)ii!ds∥y1−y2∥C=∑i=0m+1Cm+1i(kfaα)m+1−i(kfbαx)ii!∥y1−y2∥C≤S(m)∥y1−y2∥C,








where S(m):=∑i=0m+1Cm+1i(kfaα)m+1−i(kfbαT)ii!. Thus, for any m∈N+,


∥Pm+1y1−Pm+1y2∥C≤S(m)∥y1−y2∥C.











From the condition kfaα<1 via (Theorem 2.9, [38]), one has S(m)→0 as m→∞. This implies that for any large enough m∈N+, S(m)<1. Thus, Pm is a contraction mapping. As a result, P has a fixed point. Thus, (2) with y(0)=y0 has a unique solution. This proof is complete. □





Remark 3.

In (Theorem 1, [22]), an existence and uniqueness result for (2) with y(0)=y0 is established by imposing a uniformly Lipschitz condition and applying Banach’s fixed point theorem with the condition aαkf+bαTkf<1, where kf denotes the Lipschitz constant. Here, we use the generalized Banach fixed point theorem and we weaken the condition aαkf+bαTkf<1 in (Theorem 1, [22]) to aαkf<1.





Next, we show that the existence of solutions for (2) via Schaefer’s fixed point theorem.



Theorem 4.

Assume that [A1] and [A3] hold. If aαL<1, then (2) with y(0)=y0 has at least one solution.





Proof. 

Consider P as in (17). We divide our proof into several steps.



Step 1.P is continuous.



Let yn be a sequence such that yn→y in C([0,T],R). For all x∈[0,T], we get


|Pyn(x)−Py(x)|=|aαf(x,yn(x))+bα∫0xf(s,yn(s))ds−aαf(x,y(x))−bα∫0xf(s,y(s))ds|≤aα|f(x,yn(x))−f(x,y(x))|+bα|∫0xf(s,yn(s))ds−∫0xf(s,y(s))ds|≤aα|f(x,yn(x))−f(x,y(x))|+bα∫0x|f(s,yn(s))−f(s,y(s))|ds.≤(aα+bαT)∥f(·,yn)−f(·,y)∥C.








This shows that P is continuous since ∥fyn−fy∥C→0 when n→∞.



Step 2.P maps bounded sets into bounded sets of C([0,T],R).



Indeed, we prove that for all r>0, there exists a k>0 such that for every y∈Br={y∈C([0,T],R):∥y∥C≤r}, we have ∥Py∥C≤k. In fact, for any x∈[0,T], from [A3], we have


|Py(x)|≤|C0|+aα|f(x,y(x))|+bα∫0x|f(s,y(s))|ds≤|C0|+aαL(1+|y|)+bαL∫0x(1+|y(s)|)ds≤|C0|+aαL(1+∥y∥C)+bαTL|(1+∥y∥C)≤|C0|+aαL(1+r)+bαTL(1+r)=|C0|+(aα+bαT)L(1+r),








which implies that


∥Py∥≤|C0|+(aα+bαT)L(1+r):=k.











Step 3.P maps bounded sets into equicontinuous sets in C([0,T],R).



Let x1,x2∈[0,T], with 0≤x1<x2≤T,y∈Br. From [A3], we have


|Py(x1)−Py(x2)|=|aαf(x1,y(x1))+bα∫0x1f(s,y(s))ds−aαf(x2,y(x2))−bα∫0x2f(s,y(s))ds|≤aα|f(x1,y(x1))−f(x2,y(x2))|+bα|∫0x1f(s,y(s))ds−∫0x2f(s,y(s))ds|≤aα|f(x1,y(x1))−f(x1,y(x2))|+aα|f(x1,y(x2))−f(x2,y(x2))|+bα|∫x1x2f(s,y(s))ds|≤aα|f(x1,y(x1))−f(x1,y(x2))|+aα|f(x1,y(x2))−f(x2,y(x2))|+bαL(1+r)(x2−x1).








Then, as x1 approaches x2, the right-hand side of the above inequality tends to zero (because of [A1]) as x1→x2. Thus, P is equicontinuous.



We can conclude that P is completely continuous from Step 1–Step 3 with the Arzela–Ascoli theorem.



Step 4. A priori bounds.



Now, we show that the set E(P)={y∈C([0,T],R):y=λPy for some λ∈(0,1)} is bounded.



Let y∈E(P). Then, y=λPy for some λ∈(0,1). For each x∈[0,T], we have


|y(x)|≤|C0|+aα|f(x,y(x))|+bα∫0x|f(s,y(s))|ds≤|C0|+aαL(1+|y(x)|)+bαL∫0x(1+|y(s)|)ds≤K+aαL|y(x)|+bαL∫0x|y(s)|ds(K=|C0|+aαL+bαLT).








Using the condition 1−aαL>0, one has


|y(x)|≤K1−aαL+bαL1−aαL∫0x|y(s)|ds,








and Gronwall’s inequality yields


|y(x)|≤K1−aαLexpbαLT1−aαL<∞.








Then, the set E(P) is bounded.



Schaefer’s fixed point theorem guarantees that P has a fixed point, which is a solution of (2). The proof is finished. □





In the following, we consider (2) and (6) to discuss the generalized Ulam–Hyers–Rassias stability.



We need the following condition.



[A4]: Let G∈C([0,T],R+) be an increasing function and there exists λG>0 such that


∫0xG(s)ds≤λGG(x),∀x∈[0,T].











Theorem 5.

Assumptions [A1], [A2] and [A4] hold. If aαkf<1, then (2) is generalized Ulam–Hyers–Rassias stable with respect to G on [0,T](T<∞).





Proof. 

Let g∈C([0,T],R) be a solution of (6). From Theorem 3,


CFDαy(x)=f(x,y(x)),0<α<1,t∈[0,T),y(0)=C0,



(18)




has the unique solution


y(x)=C0+aαf(x,y(x))+bα∫0xf(s,y(s))ds,x∈[0,T].











From (6), we have


|g(x)−C0−aαf(x,g(x))−bα∫0xf(s,g(s))ds|≤aαG(x)+bα∫0xG(s)ds≤(aα+bαλG)G(x),x∈[0,T].








Thus,


|g(x)−y(x)|≤|g(x)−C0−aαf(x,y(x))−bα∫0xf(s,y(s))ds|≤|g(x)−C0−aαf(x,g(x))−bα∫0xf(s,g(s))ds+aαf(x,y(x))+bα∫axf(s,y(s))ds−aαf(x,y(x))−bα∫0xf(s,y(s))ds|≤|g(x)−C0−aαf(x,g(x))−bα∫0xf(s,g(s))ds|+aα|f(x,y(x))−f(x,g(x))|+bα∫0x|f(s,y(s))−f(s,g(s))|ds≤(aα+bαλG)G(x)+aαkf|y(x)−g(x)|+bαkf∫0x|y(s)−g(s)|ds.











Note that aαkf<1, and so,


|y(x)−g(x)|≤(aα+bαλG)G(x)1−aαkf+bαkf1−aαkf∫0x|y(s)−g(s)|ds.








From Gronwall’s inequality, we have


|y(x)−g(x)|≤(aα+bαλG)1−aαkfexp(x)G(x),x∈[0,T].



(19)







Set K*=aα+bαλG1−aαkfexp(T). Note that one has


|y(x)−g(x)|≤K*G(x),x∈[0,T].








From Definition 6, (2) is generalized Ulam–Hyers–Rassias stable with respect to G on [0,T]. The proof is complete. □






5. Examples


In this section, two examples are given to illustrate our main results.



For convenience in calculating, we suppose that M(·) in Definition 2 is the roots of the following equation:


2(1−·)(2−·)M(·)+2·(2−·)M(·)=1.








Then, one can derive an explicit formula M(α)=22−α and M(β)=22−β (see (p. 89, [22])).



Example 1.

Consider


(CFD12y)(x)−13(CFD23y)(x)=23ex+13e−2x−23,x∈[0,T].



(20)




Set α=12, β=23, u(x)=23ex+13e−2x−23 and λ=13. From (Definition 1, [22]), M(12)=43 and M(23)=32.



Let y1(x)=ex, and we have


(CFD12y1)(x)=2∫0xet−xetdt=ex−e−x,










(CFD23y1)(x)=3∫0xe−2(x−t)etdt=ex−e−2x.











Choose ε=23. Note y1(x)=ex satisfies


|(CFD12y1)(x)−13(CFD23y1)(x)−23ex−13e−2x+23|=|ex−e−x−13ex+13e−2x−23ex−13e−2x+23|=|23−e−x|≤23.











Note y1(0)=1 and with the formulas of A,B,C,D in (9) and (13), we obtain an exact solution of Equation (1) as


ya(x)=y(0)+2CAu(x)+2AD−BCA2−αβB∫0xexp(−BAt)u(x−t)dt+2αβB∫0xu(x−t)dt=1+23ex−13e−2x−23−49∫0xe−3t(ex−t+e−2(x−t)2−1)dt+49∫0x(ex−t+e−2(x−t)2−1)dt=ex+427+527e−3x−23e−2x−49x.











Clearly,


|y1(x)−ya(x)|=|ex+427+527e−3x−23e−2x−49x−ex|=|427+527e−3x−23e−2x−49x|≤|427−49x|≤23+89x=(1+43x)23.








Note in Theorem 2 (see Remark 1) that we have K=2|CA|+2|AD−BCA2−αβB|max{1,exp(−BAT)}T+2|αβB|T=1+43T and ε=23. Thus, Equation (20) is Hyers–Ulam stable when T<∞.





Example 2.

We consider the following fractional problem:


(CFD13y)(x)=e−2x1+ex|y|1+|y|,x∈[0,2],



(21)




and the inequality


|(CFD13y)(x)−e−2x1+ex|y|1+|y||≤G(x),x∈[0,2].



(22)







Set α=13, T=2 and f(x,y)=e−2x1+ex|y|1+|y|,(x,y)∈[0,2]×R. Clearly, [A1] holds. Then, M(13)=65, a13=2425, b13=1225. Let G(x)=ex∈C([0,2],R) and ∫0xG(s)ds=∫0xesds=ex−1≤ex. Here, λG=1>0.



For any x∈[0,2] and y1,y2∈R,


|f(x,y1)−f(x,y2)|=e−2x1+ex||y1|1+|y1|−|y2|1+|y2||≤e−2x|y1−y2|(1+ex)(1+|y1|)(1+|y2|)≤e−2x(1+ex)|y1−y2|≤e−2x2|y1−y2|≤12|y1−y2|.








For all x∈[0,2] and y∈R,


|f(x,y)|=e−2x1+ex|y|1+|y|≤e−2x1+ex|y|≤e−2x2|y|≤12|y|≤12(1+|y|).








Thus, [A2] and [A3] hold.



Set L=12=kf. Then aαkf=2425×12=1225<1. From Theorem 3, (21) has an unique solution.



Thus, all the assumptions in Theorem 4 are satisfied, so our results can be applied to (21).



Let g∈C([0,2],R) be a solution of (22). We have


|(CFD13g)(x)−f(x,g(x))|=|(CFD13g)(x)−e−2x1+ex|g|1+|g||≤G(x),x∈[0,2].



(23)







From Theorem 3, we see (21) with y(0)=C0 has the unique solution


y(x)=C0+a13f(x,y(x))+b13∫0xf(s,y(s))ds=C0+2425e−2x1+ex|y|1+|y|+1225∫0xe−2s1+es|y|1+|y|ds.











Applying the fractional integrating operator CFIα(·) on both sides of (23), we have


|g(x)−C0−a13f(x,g(x))−b13∫0xf(s,g(s))ds|≤a13G(x)+b13∫0xG(s)ds≤(a13+b13λG)G(x),x∈[0,2].








In addition,


|y(x)−g(x)|≤(a13+b13λG)1−a13kfexp(x)G(x),x∈[0,2].











Set K*=a13+b13λG1−a13kfexp(2)=2425+1225×11−2425×12e2=36e213. Note that one has


|y(x)−g(x)|≤K*G(x),x∈[0,2].














6. Conclusions


By applying the well-known Gronwall inequality and fixed point theorems, we obtain the Hyers–Ulam stability of linear and semilinear Caputo–Fabrizio fractional differential equations. Existence and uniqueness theorems of solution are established. In a forthcoming work, we shall consider the impulsive Cauchy problem with Caputo–Fabrizio fractional derivative.
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