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Abstract

:

A new two-stage model for assessing the effect of basic control measures, quarantine and isolation, on a general disease transmission dynamic in a population is designed and rigorously analyzed. The model uses the Holling II incidence function for the infection rate. First, the basic reproduction number (R0) is determined. The model has both locally and globally asymptotically stable disease-free equilibrium whenever R0<1. If R0>1, then the disease is shown to be uniformly persistent. The model has a unique endemic equilibrium when R0>1. A nonlinear Lyapunov function is used in conjunction with LaSalle Invariance Principle to show that the endemic equilibrium is globally asymptotically stable for a special case.
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1. Introduction


Over the decades, quarantine (of individuals suspected of being exposed to a communicable disease) and isolation (of individuals with disease symptoms) have been widely used to control the spread of numerous communicable diseases, such as pandemic influenza, cholera, Ebola, Severe Acute Respiratory Syndrome (SARS), and most recently swine influenza pandemic [1,2,3,4,5,6,7,8,9]. Numerous mathematical models have been studying the effect of quarantine and isolation in combatting the spread of the diseases (see, for instance, refs. [1,2,4,5,6,7,8,10,11,12,13] and the references therein). In the aforementioned studies, mass action or standard incidence functions were used in the modeling of the transmission dynamics of the diseases. In this study, another nonlinear incidence function (called the Holling type II incidence function) will be used in the modeling of the transmission dynamics of a general disease. The Holling type II incidence function is given by g(I)=βI1+αI, with α>0, where I is the number of infectious individuals and β is the effective contact rate (the average number of contacts sufficient for transmitting infection). The incidence function g(I) was first used in the study of the cholera epidemic in Bari, Italy by Capasso and Serio [14]. The reason for using the Holling type II incidence functional comes from the information that the number of effective contacts between susceptible individuals and infective individuals may saturate at very high levels due to behavioral changes or due to crowding of infective people taken by the people in reaction to the severity of the disease [15,16]. It is well known that some infectious diseases, such as influenza [17] and HIV [18], have multiple disease (infection) stages in their transmission dynamics.



The main purpose of this study is to offer a deep qualitative analysis of a new two-stage model for the transmission dynamics of a disease that can be controlled by using quarantine and isolation, where the Holling type II incidence function is used.



The paper is organized as follows. The formulation of the model is given in Section 2. The local and global asymptotic stability of the disease-free equilibrium (DFE) is analyzed in Section 3. The existence of the endemic equilibrium is provided in Section 4. Global stability proof for the endemic equilibrium for the special case is also analyzed using a nonlinear Lyapunov function.




2. Model Formulation


The total population at time t, denoted by N(t) is sub-divided into ten compartments of susceptible (S(t)), exposed (with two stages (E1(t)E2(t)), infectious individuals (with two stages (I1(t)I2(t)), Isolated individuals (with two stages H1(t)H2(t)), and recovered (R(t)) individuals, so that


N(t)=S(t)+E1(t)+E2(t)+Q1(t)+Q2(t)+I1(t)+I2(t)+H1(t)+H2(t)+R(t).











The model is given by the following system of nonlinear differential equations


dSdt=Π−(λ(t)+μ)S(t),dE1dt=λ(t)S(t)−(a1+b1+μ)E1(t),dE2dt=a1E1−(a2+b2+μ)E2(t),dQ1dt=b1E1−(c1+μ)Q1,dQ2dt=c1Q1+b2E2−(c2+μ)Q2,dI1dt=a2E2(t)−(d1+e1+δ1+μ)I1(t),dI2dt=d1I1(t)−(e2+γ1+δ2+μ)I2(t),dH1dt=c2Q2+e1I1−(f1+δ3+μ)H1,dH2dt=f1H1+e2I2−(γ2+δ4+μ)H2,dRdlt=γ1I2(t)+γ2H2(t)−μR(t),



(1)




where λ(t) is the infection rate given by


λ(t)=βI11+α1I1+ηI21+α2I2.



(2)







In (2), β represents the effective contact rate, where 0<η<1 is a parameter that accounts for the reduction in disease transmission given by infectious individuals (I1) in comparison to infectious individuals in the I2 stage.



Susceptible people (S) is increased by the recruitment of individuals into the population, at a rate Π. This class is decreased by infection (with the rate of λ). Furthermore, this population is decreased by natural death (at a rate μ; populations in all classes are assumed to have the same natural death rate).



Exposed individuals in stage 1 (E1) are generated with the rate of λ and reduced by progression to the next exposed stage (E2; at a rate a1) and quarantine (at a rate b1). Exposed individuals in stage 2 are generated at the rate a1. This population is decreased by the development of clinical symptoms of the disease (at a rate a2) and quarantine (at a rate b2).



The class of quarantined individuals in stage 1 is increased by quarantine of exposed people in stage E1 (at the rate b1) and it is reduced by progression to the second quarantined stage (at a rate c1). Similarly, quarantined people in stage 2 are increased by the quarantine of exposed people in the second stage (at the rate b2) and the progression of quarantined people from the first stage into the second stage (at the rate c1). It is decreased by hospitalization (at a rate c2).



The infectious people in stage 1 are increased when exposed people in the second stage develop symptoms (at the rate a2). It is reduced by progression to the second infectious stage (at a rate d1), hospitalization (isolation) (at a rate e1) and disease-induced death (at a rate δ1). The population of infectious class in the second stage is generated by progression of individuals in the first stage (at a rate d1). It is reduced by isolation (at a rate e2), recovery (at a rate γ1) and disease-induced death (at a rate δ2).



The population of Isolated individuals in the first stage is increased by the hospitalization of infectious people in stage 1 (at the rate e1) and quarantined individuals in the second stage (at the rate c2). It is decreased by progression to the second Isolated stage (at a rate f1), and disease-induced death (at a rate δ3). The population of Isolated individuals in the second stage is generated by the progression of Isolated individuals from the first stage into the second one (at the rate f1). It is decreased by recovery (a rate γ2) and disease-induced death (at a rate δ4).



Finally, the recovered individuals is increased by the recovery of infectious individuals and hospitalization individuals (at the rates γ1 and γ2, respectively). It is reduced by natural death (at the rate μ). (A flow diagram of the model is depicted in Figure 1. The associated variables and parameters are described in Table 1):



It should be noted the model (1) is different by the basic model considered in [19] by

	(a)

	
Using a Holling type incidence function to model the infection rate (the standard incidence function was used in [19])




	(b)

	
Considering two stages for the infectious compartments (Exposed, infected, quarantined, and isolated compartments)









2.1. Preliminaries and Basic Properties


Since the model (1) for human populations, all its parameters are non-negative. Furthermore, the following non-negativity result holds.



Theorem 1.

All variables of the model (1) are non-negative for all t>0. This mean, the solutions of system (1) with positive initial conditions will remain positive for all time t>0.





Proof. 

Let


t1=sup{t>0:S>0,E1>0,E2>0,Q1>0,Q2>0,I1>0,I2>0,H1>0,H2>0,R>0∈[0,t]}.











Hence, t1>0. From the first equation of the system (1) it follows that


ddtS(t)expμt+∫0tλ(τ)dτ=Πexpμt+∫0tλ(τ)dτ.








which gives,


S(t1)expμt1+∫0t1λ(τ)dτ−S(0)=∫0t1Πexpμy+∫0yλ(τ)dτdy,








hence,


S(t)=S(0)exp−μt1−∫0t1λ(τ)dτexp−μt1−∫0t1λ(τ)dτ∫0t1Πexpμy+∫0yλ(τ)dτdy>0.











In the same way, it can be shown that E1>0,E2>0,Q1>0,Q2>0,I1>0,I2>0,H1>0,H2>0 and R>0 for all time t>0. □





Lemma 1.

The closed set


D=(S,E1,E2,Q1,Q2,I1,I2,H1,H2,R)∈R+10:S+E1+E2+Q1+Q2+I1+I2+H1+H2+R≤Πμ








is positively invariant.





Proof. 

Adding all the equations of the model (1) gives,


dNdt=Π−μN−(δ1I1+δ2I2+δ3H1+δ4H2).



(3)







It follows that dNdt≤Π−μN, thus dNdt≤0 provided that N≥Πμ. By using standard comparison theorem [20] it can be shown that N≤N(0)e−μt+Πμ(1−e−μt). In particular, N(t)≤Πμ if N(0)≤Πμ. Thus, the region D is positively invariant. Furthermore, if N(0)>Πμ, then either the solution enters D in finite time, or N(t) approaches Πμ asymptotically. Hence, the region D attracts all solutions in R+10. □





Since the region D is positively invariant, it is sufficient to consider the dynamics of the flow generated by the model (1) in D, where the usual existence, uniqueness, continuation results hold for the system [21].



Next-Generation Method


Suppose that the population is divided into n compartments, with m<n infected compartments. At time t, let xi(t) be the number of infected individuals in the ith infected class such that


dxidt=Fi(x)−Vi(x),withVi=Vi−(x)−Vi+(x)fori=1,2,…,m,



(4)




where Fi(x) represents the rate of appearance of new infections in class i, Vi+(x) represents the rate of transfer of individuals into class i by all other means, and Vi−(x) represents the rate of transfer of individuals out of class i. System can be rewritten as follows


X˙=F(X)−V(X),



(5)




with, F(X)=(F1,F2,…,Fm)T and V(X)=(V1,V2,…,Vm)T.



Lemma 2.

(van den Driessche and Watmough [22]). If x¯ is a DFE of (5), then the derivatives DF(x¯) and DV(x¯) are partitioned as


DF(x¯)=F000, DV(x¯)=V0J3J4,








where F and V are the m×m matrices defined by,


F=∂Fi∂xj(x¯) and V=∂Vi∂xj(x¯) with 1≤i, j≤m.








Furthermore, F is non-negative, V is a non-singular M−matrix and J3,J4 are matrices associated with the transition terms of the model, and all eigenvalues of J4 have positive real parts.





Now, the next-generation matrix is given by FV−1 and the spectral radius (the largest eigenvalue) of FV−1 is the basic reproduction number of the model (5) [22].






3. Stability of DFE


3.1. Local Stability


The DFE of the model (1) is given by


E0=(S*,E1*,E2*,Q1*,Q2*,I1*,I2*,H1*,H2*,R*)=(Π/μ,0,0,0,0,0,0,0,0,0).



(6)







The next-generation operator method [22,23] will be used to analyze the stability of E0. Using the same notation in the previous section, the non-negative matrix, F and the M-matrix, V are given by


F=0000βΠμηβΠμ0000000000000000000000000000000000000000000000000000000000,








and,


V=k10000000−a1k2000000−b10k3000000−b2−c1k400000−a200k50000000−d1k600000−c2−e10k7000000−e2−f1k8.











The control reproduction number [24,25], denoted by R0=ρ(FV−1) is given by


R0=βΠa1a2(k6+ηd1)μk1k2k5k6,








where,


k1=μ+a1+b1,k2=μ+a2+b2,k3=μ+c1,k4=μ+c2,k5=μ+δ1+d1+e1,k6=μ+δ2+γ1+e2,k7=μ+δ3+f1,k8=μ+δ4+γ2.











The following result is established by using Theorem 2 in [22].



Lemma 3.

The model (1) has a locally asymptotically stable (LAS) DFE whenever R0<1. Moreover, the DFE of this model is unstable if R0>1.





The average number of new infections generated by a single infectious individual in a population is measured by the quantity R0. The epidemiological implication of Lemma 3 is that the disease dies out from the population (when R0<1) if the initial sizes of the sub-populations of the model are in the basin of attraction of the DFE (E0). To make sure that disease dies out form the population regardless of the initial sizes of sub-populations, it is necessary to show that the DFE is globally asymptotically stable (GAS) if R0<1. This is established below.




3.2. Global Stability of DFE


Theorem 2.

The model (1) has GAS DFE, given by (6), in D whenever R0≤1.





Proof. 

Define the following Lyapunov function:


F=a1a2(k6+ηd1)ηk1k2k5E1+a1(k6+ηd1)ηk2k5E2+k6+ηd1ηk5I1+I2,








differentiate F with respect to t gives


F˙=a1a2(k6+ηd1)ηk1k2k5E˙1+a2(k6+ηd1)ηk2k5E˙2+k6+ηd1ηk5I˙1+I˙2=a1a2(k6+ηd1)ηk1k2k5βSI11+α1I1+ηI21+α2I2−k1E1+a2(k6+ηd1)ηk2k5a1E1−k2E2+k6+ηd1ηk5a2E2−k5I1+d1I1−k6I2≤a1a2(k6+ηd1)ηk1k2k5βΠμ(I1+ηI2)−k1E1+a2(k6+ηd1)ηk2k5a1E1−k2E2+k6+ηd1ηk5a2E2−k5I1+d1I1−k6I2=βΠa1a2(k6+ηd1)μηk1k2k5(I1+ηI2)+d1−k6+ηd1ηI1−k6I2=k6η(R0−1)(I1+ηI2)











Since all the variables and the parameters of the model (1) are non-negative, it follows that F˙≤0 for R0≤1 with F˙=0 if and only if E=Iu=Ie=0. Thus, F defined a Lyapunov function on D. Hence,


(E1,E2,I1,I2)→(0,0,0,0)ast→∞.



(7)







It can be easily shown that (Q1,Q2,H1,H2,R)→(0,0,0,0,0) and S→Πμ as t→∞. Furthermore, the region D is an invariant and attracting set of R+10, and the largest compact invariant set in (S,E1,E2,Q1,Q2,I1,I2,H1,H2,R)∈D:F=0 is the singleton {E0}. Thus, by Invariance Principle [26], every solution of the system (1), and initial conditions in R+10, approaches the DFE (E0) as t→∞ whenever R0<1. □





The above result shows that the disease dies out from the population if the reproduction number of the model is less than one. The epidemiological implication of the above theorem is that the use of isolation and quarantine can lead to elimination of the disease if both controls can keep the threshold quantity, R0, to a value less than unity (i.e., The condition R0<1 is sufficient and necessary for the elimination of the disease ). Figure 2 illustrate numerical results obtained by simulating the model (1) using various initial conditions for the case R0<1. Its clear that the solutions are converged to the DFE.





4. Existence and Stability for Endemic Equilibrium Point


4.1. Persistence of the Disease


The persistence of the disease in the population will be investigated below. The model system (1) is said to be uniformly persistent if there exists a constant c such that any solution (S(t),E1(t),E2(t),Q1(t),Q2(t),I1(t),I2(t),H1(t),H2(t),R(t)) satisfies ([27,28]):


lim inft→∞S(t)≥c,lim inft→∞E1(t)≥c,lim inft→∞E2(t)≥c,lim inft→∞Q1(t)≥c,lim inft→∞Q2(t)≥c,lim inft→∞I1(t)≥c,lim inft→∞I2(t)≥c,lim inft→∞H1(t)≥c,lim inft→∞H2(t)≥c,lim inft→∞R(t)≥c,








provided that (S(0),E1(0),E2(0),Q1(0),Q2(0),I1(0),I2(0),H1(0),H2(0),R(0))∈D.



Theorem 3.

The model (1) is uniformly persistent in D if and only if R0>1.





Proof. 

The proof of the above theorem follows from using the same approach given in [29] to prove Proposition 3.3 of [29], which is applying a uniform persistence theorem in [27] and noting that the DFE of the model (1) is unstable whenever R0>1 (Lemma 3). □





Whenever R0>1 its clear (from Theorem (3)) that the model (1) is uniformly persistent. Moreover using Theorem 2.8.6 in [30] and Theorem D.3 in [20] gives the model (1) has at least one endemic equilibrium in D. Hence, the following Lemma is concluded.



Lemma 4.

System (1) has at least one endemic equilibrium provided that R0>1.





The uniqueness of this equilibrium will be analyzed in the coming subsection.




4.2. Uniqueness of Endemic Equilibrium Point (EEP)


Let,


E1=(S**,E1**,E2**,Q1**,Q2**,I1**,I2**,H1**,H2**,R**)








represents any arbitrary EEP of the model (1). Furthermore, define


λ**=βI1**1+α1I1**+βηI2**1+α2I2**



(8)




(the force of infection of the model (1) at steady-state). It follows, by solving the equations in (1) at steady-state that


S**=Πλ**+μ,E1**=Πλ**(λ**+μ)k1,E2**=a1Πλ**(λ**+μ)k1k2,Q1**=b1Πλ**(λ**+μ)k1k3,Q2**=(a1b2k3+b1c1k2)Πλ**(λ**+μ)k1k2k3k4,I1**=a1a2Πλ**(λ**+μ)k1k2k5,I2**=a1a2d1Πλ**(λ**+μ)k1k2k5k6.



(9)







Substituting I1** and I2** in (9) into (8) gives the following quadratic equation (in terms of λ**):


M0(λ**)2+M1λ**+M2=0,



(10)




with,


M0=(Πa1a2α1+k1k2k5)(Πa1a2d1α2+k1k2k5k6),M1=−Π2a12a22α1d1ηβ−Π2a12a22α2d1β−Πa1a2k1k2k5k6β−Πa1a2d1k1k2k5ηβ+Πa1a2k1k2k5k6α1μ+Πa1a2d1k1k2k5α2μ+2μk12k22k52k6,M2=μ2k12k22k52k6(1−R0).











By solving for λ** in (10) and substituting the positive values of λ** into the expressions in (9) the endemic equilibria of the model (1) can then be obtained. It should be noted that M0>0 and M2<0 whenever R0>1. Thus, by using the Descartes Rule of Signs on the quadratic Equation (10), the following result is established.



Lemma 5.

The model (1) has a unique endemic (positive) equilibrium, given by E1 whenever R0>1.






4.3. Global Stability for Endemic Equilibrium


In this section, the global stability of the endemic equilibrium of the model (1) is given for the special case where the associated disease-induced mortality in all classes is negligible (so that δ1=δ2=δ3=δ4=0).



Define


Rs=R0|δ1=δ2=δ3=δ4=0










D0=(S,E1,E2,Q1,Q2,I1,I2,H1,H2,R)∈D:E1=E2=I1=I2=H1=H2=R=0.











We claim the following result,



Theorem 4.

The endemic equilibrium of the model (1) with δ1=δ2=δ3=δ4=0 is GAS in D\D0 if Rs>1.





Proof. 

Let Rs>1, such that the endemic equilibrium exists. Furthermore, define the following Lyapunov function:


F=12(S−S**)+(E1−E1**)+(E1−E1**)+(Q1−Q1**)+(Q2−Q2**)+(I1−I1**)+(I2−I2**)+(H1−H1**)+(H2−H2**)+(R−R**)2








with Lyapunov derivative


F˙=(S−S**)+(E1−E1**)+(E2−E2**)+(Q1−Q1**)+(Q2−Q2**)+(I1−I1**)+(I2−I2**)+(H1−H1**)+(H2−H2**)+(R−R**)N˙(t).











Since S**+E1**+E2**+Q1**+Q2**+I1**+I2**+H1**+H2**+R**=Πμ and N˙(t)=Π−μN(t) it follows that


F˙=N(t)−ΠμΠ−μN(t)=1μμN(t)−ΠΠ−μN(t)=−1μΠ−μN(t)2.








□





It follows that F˙≤0 for Rs>1 with F˙=0 if and only if S=S**,E1=E1**,E2=E2**,Q1=Q1**,Q2=Q2**,I1=I1**,I2=I2**,H1=H1**,H2=H2**, and R=R**. Hence, F is a Lyapunov function on D\D0. Thus, S(t)→S**,E1(t)→E1**,E2(t)→E2**,Q1(t)→Q1**,Q2(t)→Q2**,I1(t)→I1**,I2(t)→I2**,H1(t)→H1**,H2(t)→H2**, and R(t)→R** as t→∞. The proof is concluded as in the proof of Theorem 2. Thus, the unique endemic equilibrium of the model (1) with δ1=δ2=δ3=δ4=0 is GAS in D\D0 whenever Rs>1. The epidemiological implication of the above result is that the disease will persist in the community (with the use of isolation and quarantine) if threshold quantity (Rs) exceeds unity. Numerical simulation results, done in Figure 3 show convergence to the EEP for the case when R0>1.





5. Conclusions


In this paper, a new two stages quarantine/isolation model with a nonlinear incidence rate is designed and rigorously analyzed. The model, which consists of ten mutually exclusive epidemiological compartments, uses the Holling type II incidence function for the infection rate. Some of the theoretical findings of the study are the following:

	(i)

	
The model (1) has a locally asymptotically stable DFE if the associated reproduction number (R0) is less than one.




	(ii)

	
The model (1) has a GAS whenever R0<1.




	(iii)

	
System (1) is uniformly persistent in D if and only if the reproduction number exceeds unity.




	(iv)

	
The model has a unique endemic equilibrium whenever R0>1.




	(v)

	
The unique endemic equilibrium of the model is shown to be GAS for a special case.
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Figure 1. Flow diagram of the model (1). 
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Figure 2. Numerical simulation of the model (1). showing the total number of infected individuals as a function of time for R0<1. Parameter values used are as in Table 2 with β=0.000035 (such that R0=0.1092). 
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Figure 3. Numerical simulation of the model (1). showing the total number of infected individuals as a function of time for R0>1. Parameter values used are as in Table 2 with β=0.00035 (such that R0=1.092). 
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Table 1. Description of variables and parameters of the model (1).
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	Variable
	Description





	S(t)
	Population of susceptible individuals



	E1(t)
	Population of exposed individuals on the first exposed stage



	E2(t)
	Population of exposed individuals on the second exposed stage



	Q1(t)
	Population of quarantined individuals on the first quarantined stage



	Q2(t)
	Population of quarantined individuals on the second quarantined stage



	I1(t)
	Population of infected individuals on the first infectious stage



	I2(t)
	Population of infected individuals on the second infectious stage



	H1(t)
	Population of Isolated individuals on the first Isolated stage



	H2(t)
	Population of Isolated individuals on the second Isolated stage



	R(t)
	Population of recovered individuals



	Parameter
	Description



	Π
	Recruitment rate



	β
	Effective contact rate



	a1
	Progression rate from the first exposed stage to the second one



	a2
	Progression rate to first infectious class from exposed individuals



	
	in the second stage



	b1
	Quarantine rate of exposed individuals on the first exposed stage



	b2
	Quarantine rate of exposed individuals on the second exposed stage



	c1
	Progression rate from the first quarantined stage to the second one



	c2
	Progression rate to first Isolated class from quarantined individuals



	
	in the second stage



	d1
	Progression rate from the first infectious stage to the second one



	e1
	Hospitalization rate of infectious individuals on the first infectious



	e2
	Hospitalization rate of infectious individuals on the second infectious



	f1
	Progression rate from the first Isolated stage to the second one



	γ1
	Recovery rate of infectious individuals in the second stage



	γ2
	Recovery rate of Isolated individuals in the second stage



	δ1
	Disease-induced death rate of the first infectious stage



	δ2
	Disease-induced death rate of the second infectious stage



	δ3
	Disease-induced death rate of the first Isolated stage



	δ4
	Disease-induced death rate of the second Isolated stage



	μ
	Natural death rate
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Table 2. Numerical values of the parameters of the model (1).
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	Parameter(s)
	Numerical Value





	Π
	0.136



	a1,a2
	0.2



	b1,b2
	0.1



	c1,c2
	0.1



	d1,d2
	0.2



	e1,e2
	0.15



	f1,f2
	0.11



	γ1
	0.0337



	γ2
	0.0386



	δ1,δ2,δ2,δ3,δ4
	0.0068



	μ
	0.000034











© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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