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Abstract

:

In this paper, we propose a generalized viscosity implicit iterative method for asymptotically non-expansive mappings in Banach spaces. The strong convergence theorem of this algorithm is proved, which solves the variational inequality problem. Moreover, we provide some applications to zero-point problems and equilibrium problems. Further, a numerical example is given to illustrate our convergence analysis. The results generalize and improve corresponding results in the literature.
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1. Introduction


Variational inequality theory and fixed point theory are two important fields in non-linear analysis and optimization. Much attention has been given to developing implementable viscosity iterative methods for solving variational inequality problems, due to their applications in many real world problems, such as signal processing, saddle point problems, equilibrium problems, and game theory, in the frameworks of Hilbert spaces or Banach spaces; see [1,2,3,4,5,6,7,8,9] and the references therein.



The implicit midpoint rule is one of the most important numerical methods for solving certain differential algebraic equations. Convergence analysis for viscosity iterative algorithms using the implicit midpoint rule have been introduced by many authors; see [10,11,12,13,14,15,16] and the references therein. More precisely, in 2015, Xu et al. [17] introduced the viscosity implicit midpoint rule for non-expansive mappings in Hilbert spaces, wherein they showed that the sequence {xn} generated by


xn+1=αnf(xn)+(1−αn)T(xn+1+xn2),n≥0,








converges strongly to a fixed point of T, which was also the solution of the following variational inequality (VI):


⟨(I−f)q,x−q⟩≥0,x∈F(T),








where F(T) is the set of fixed points of T. In 2017, Luo et al. [14] extended the work of Xu et al. [17] to uniformly smooth Banach spaces, which contains Hilbert spaces as a special case. They proved a strong convergence theorem for the iterative scheme. In 2015, Ke et al. [18] studied the following generalized viscosity implicit rule for nonexpansive mappings in Hilbert spaces:


xn+1=αnxn+βnf(xn)+γnT(snxn+(1−sn)xn+1),n≥0,








which converges strongly to a fixed point of T under certain assumptions, and is also solved by the variational inequality (VI). In 2017, He et al. [19] considered the generalized viscosity implicit rule of asymptotically non-expansive mappings in Hilbert spaces. They proved that the iterative algorithm, defined by


xn+1=αnf(xn)+(1−αn)Tn(βnxn+(1−βn)xn+1),n≥0,








converges strongly to a fixed point of T, which was also the solution of the variational inequality (VI).



Motivated and inspired by the above works, we present a generalized viscosity implicit iterative method for an asymptotically non-expansive mapping in a Banach space. Then, we prove a strong convergence theorem of this algorithm, which solves the variational inequality problem. Applications to zero-point problems and equilibrium problems are presented. Finally, a numerical example is given, to illustrate our convergence analysis. Therefore, the results in this paper generalize and improve the corresponding results found in [13,14,15,17,18,19].




2. Preliminaries


Throughout this paper, let K be a subset of a real Banach space E and let E* be the dual space of E. Let T:K→K be a mapping, and denote by F(T) the set of fixed points of T. Recall that the duality mapping J:E→2E* is defined by


J(x)={x*∈E*:⟨x,x*⟩=∥x∥2=∥x*∥2},∀x∈E.











A mapping T is said to be contractive on K if there exists a constant ρ∈(0,1) such that ∥Tx−Ty∥≤ρ∥x−y∥ for all x,y∈K. Further, T is said to be nonexpansive if ∥Tx−Ty∥≤∥x−y∥ for all x,y∈K, and T is said to be asymptotically nonexpansive if there exists a sequence {kn}⊂[1,∞): limn→∞kn=1 such that ∥Tnx−Tny∥≤kn∥x−y∥ for all x,y∈K, and {kn} is called an asymptotic coefficient sequence of T.



We need some Lemmas for the proof of our main results.



Lemma 1

([20]). Let {αn} be a sequence of non-negative real numbers satisfying the condition


αn+1≤(1−γn)αn+γnσn,∀n≥0,








where {γn}⊂(0,1) and {σn} satisfy




	(i) 

	
limn→∞γn=0 and ∑n=0∞γn=∞; and




	(ii) 

	
either lim supn→∞σn≤0 or ∑n=0∞|γnσn|<∞.









Then, {αn} converges to zero.





Lemma 2

([15]). Let {xn} and {yn} be bounded sequences in a Banach space E and {βn} be a sequence in [0,1] with 0<lim infn→∞βn≤lim supn→∞βn<1. Suppose that xn+1=(1−βn)xn+βnzn for all n≥0 and lim supn→∞(∥zn+1−zn∥−∥xn+1−xn∥)≤0. Then, limn→∞∥zn−xn∥=0.





Lemma 3

([21]). Let K be a non-empty closed convex subset of a Banach space E, and let T:K→K be an asymptotically non-expansive mapping with a fixed point. Suppose that E admits a weakly sequentially continuous duality mapping. Then, the mapping I−T is demiclosed at zero (i.e., where I is the identity mapping, if xn⇀x and ∥xn−Txn∥→0, then x=Tx).





Lemma 4

([22]). Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E, and T:K→K be a nonexpansive mapping with F(T)≠∅. Let f:K→K be a contractive mapping. Then, the sequence xt defined by xt=tf(xt)+(1−t)Txt,t∈(0,1) converges strongly to a point in F(T). If we define a mapping Q:Πc→F(T) by Q(f)=limt→0xt,f∈Πc, then Q(f) solves the variational inequality


⟨(I−f)Q(f),j(Q(f)−p)⟩≤0,∀p∈F(T).













Lemma 5

([23]). Let E be strictly convex, and T1 and T2 be an attracting non-expansive and a non-expansive mapping, respectively, which have a common fixed point. Then, F(T1T2)=F(T2T1)=F(T1)⋂F(T1).






3. Main Results


Theorem 1.

Let K be a non-empty closed convex subset of a uniformly smooth Banach space E, which has a weakly continuous duality mapping. Let T:K→K be an asymptotically nonexpansive mapping with its asymptotic coefficient sequence {kn}⊂[1,∞): limn→∞kn=1. Assume that F(T)≠∅ and f:K→K is a contraction with coefficient ρ∈(0,1). For a given x0∈K, let {xn} be a sequence generated in the following manner:


xn+1=αnxn+βnf(xn)+γnTn(tnxn+(1−tn)xn+1),



(1)




where {αn},{βn},{γn},{tn}⊂(0,1) satisfy the following conditions:


(i)αn+βn+γn=1,limn→∞βn=0,Σn=0∞βn=∞,kn−1=ϵβn,0<ϵ<1−ρ;(ii)0<lim infn→∞αn≤lim supn→∞αn<1,limn→∞|αn+1−αn|=0,limn→∞|βn+1−βn|=0;(iii)0<tn≤tn+1<1,γn(1−tn)kn<1;and(iv)Tsatisfiestheuniformlyasymptoticregularcondition(i.e.,limn→∞supx∈K∥Tn+1x−Tnx∥=0).








Then, {xn} converges strongly to a fixed point x* of the asymptotically nonexpansive mapping T, which solves the variational inequality:


⟨(I−f)p,j(p−y)⟩≤0,∀y∈F(T).













Proof. 

We divide the proof into five steps.



Step 1: We show that {xn} is bounded. Indeed, if we let p∈F(T), then we have


∥xn+1−p∥=∥αnxn+βnf(xn)+γnTn(tnxn+(1−tn)xn+1)−p∥=∥αn(xn−p)+βn(f(xn)−f(p))+βn(f(p)−p)+γn(Tn(tnxn+(1−tn)xn+1)−p)∥≤αn∥xn−p∥+βn∥f(xn)−f(p)∥+βn∥f(p)−p∥+γn∥Tn(tnxn+(1−tn)xn+1)−p∥≤αn∥xn−p∥+βnρ∥xn−p∥+βn∥f(p)−p∥+γnkn∥(tnxn+(1−tn)xn+1)−p∥≤αn∥xn−p∥+βnρ∥xn−p∥+βn∥f(p)−p∥+γnkntn∥xn−p∥+γnkn(1−tn)∥xn+1−p∥=(αn+ρβn+γnkntn)∥xn−p∥+βn∥f(p)−p∥+γnkn(1−tn)∥xn+1−p∥.








It follows that


[1−γnkn(1−tn)]∥xn+1−p∥≤(αn+ρβn+γnkntn)∥xn−p∥+βn∥f(p)−p∥.



(2)




As kn−1=ϵβn, we can get


∥xn+1−p∥≤αn+ρβn+γnkntn1−γnkn(1−tn)∥xn−p∥+βn1−γnkn(1−tn)∥f(p)−p∥=[1−1−αn−ρβn−γnkn1−γnkn(1−tn)]∥xn−p∥+βn1−γnkn(1−tn)∥f(p)−p∥=[1−βn(1−ρ)−γn(kn−1)1−γnkn(1−tn)]∥xn−p∥+βn1−γnkn(1−tn)∥f(p)−p∥≤[1−βn[1−ρ−ϵ]1−γnkn(1−tn)]∥xn−p∥+βn[1−ρ−ϵ]1−γnkn(1−tn)∥f(p)−p∥1−ρ−ϵ.








We deduce that


∥xn+1−p∥≤max{∥xn−p∥,11−ρ−ϵ∥f(p)−p∥},∀n≥0.








By induction, we get


∥xn−p∥≤max{∥x0−p∥,11−ρ−ϵ∥f(p)−p∥},∀n≥0.








Then, we obtain that xn is bounded, and so are f(xn), Tn(tnxn+(1−tn)xn+1).



Step 2: Show that ∥xn+1−xn∥→0,n→∞. Setting zn=xn+1−αnxn1−αn,foralln≥0, we have


zn+1−zn=xn+2−αn+1xn+11−αn+1−xn+1−αnxn1−αn=βn+1f(xn+1)+γn+1Tn+1(tn+1xn+1+(1−tn+1)xn+2)1−αn+1−βnf(xn)+γnTn(tnxn+(1−tn)xn+1)1−αn=βn+1f(xn+1)+(1−αn+1−βn+1)Tn+1(tn+1xn+1+(1−tn+1)xn+2)1−αn+1−βnf(xn)+(1−αn−βn)Tn(tnxn+(1−tn)xn+1)1−αn=βn+11−αn+1[f(xn+1)−f(xn)]+(βn+11−αn+1−βn1−αn)f(xn)−(βn+11−αn+1−βn1−αn)Tn(tnxn+(1−tn)xn+1)−βn+11−αn+1[Tn+1(tn+1xn+1+(1−tn+1)xn+2)−Tn(tnxn+(1−tn)xn+1)]+[Tn+1(tn+1xn+1+(1−tn+1)xn+2)−Tn(tnxn+(1−tn)xn+1)]=βn+11−αn+1[f(xn+1)−f(xn)]+(βn+11−αn+1−βn1−αn)[f(xn)−Tn(tnxn+(1−tn)xn+1)]−βn+11−αn+1[Tn+1(tn+1xn+1+(1−tn+1)xn+2)−Tn(tnxn+(1−tn)xn+1)]+[Tn+1(tn+1xn+1+(1−tn+1)xn+2)−Tn(tnxn+(1−tn)xn+1)]=βn+11−αn+1[f(xn+1)−f(xn)]+(βn+11−αn+1−βn1−αn)[f(xn)−Tn(tnxn+(1−tn)xn+1)]+(1−βn+11−αn+1)[Tn+1(tn+1xn+1+(1−tn+1)xn+2)−Tn+1(tnxn+(1−tn)xn+1)]+(1−βn+11−αn+1)[Tn+1(tnxn+(1−tn)xn+1)−Tn(tnxn+(1−tn)xn+1)],








which implies that


∥zn+1−zn∥≤ρβn+11−αn+1∥xn+1−xn∥+|βn+11−αn+1−βn1−αn|C+γn+11−αn+1supx∈K∥Tn+1x−Tnx∥+(1−βn+11−αn+1)kn+1∥tn+1xn+1+(1−tn+1)xn+2−(tnxn+(1−tn)xn+1)∥≤ρβn+11−αn+1∥xn+1−xn∥+|βn+11−αn+1−βn1−αn|C+γn+11−αn+1supx∈K∥Tn+1x−Tnx∥+(1−βn+11−αn+1)kn+1∥tn(xn+1−xn)+(1−tn+1)(xn+2−xn+1)∥≤ρβn+11−αn+1∥xn+1−xn∥+|βn+11−αn+1−βn1−αn|C+γn+11−αn+1supx∈K∥Tn+1x−Tnx∥+(1−βn+11−αn+1)kn+1[tn∥xn+1−xn∥+(1−tn+1)∥xn+2−xn+1∥],



(3)




where C>0 is a constant that satisfies:


C≥{supn≥0∥xn−Tn+1(tnxn+(1−tn)xn+1)∥,supn≥0∥f(xn)−Tn+1(tnxn+(1−tn)xn+1)∥,supn≥0∥f(xn)−Tn(tnxn+(1−tn)xn+1∥}.








By (1), we can get


∥xn+2−xn+1∥=∥αn+1xn+1+βn+1f(xn+1)+γn+1Tn+1(tn+1xn+1+(1−tn+1)xn+2)−αnxn−βnf(xn)−γnTn(tnxn+(1−tn)xn+1)∥=∥αn+1(xn+1−xn)+(αn+1−αn)xn+βn+1(f(xn+1)−f(xn))+(βn+1−βn)f(xn)+γn+1[Tn+1(tn+1xn+1+(1−tn+1)xn+2)−Tn+1(tnxn+(1−tn)xn+1)]+(γn+1−γn)Tn+1(tnxn+(1−tn)xn+1)+γn[Tn+1(tnxn+(1−tn)xn+1)−Tn(tnxn+(1−tn)xn+1)]∥=∥αn+1(xn+1−xn)+(αn+1−αn)xn+βn+1(f(xn+1)−f(xn))+(βn+1−βn)f(xn)+γn+1[Tn+1(tn+1xn+1+(1−tn+1)xn+2)−Tn+1(tnxn+(1−tn)xn+1)]−[(αn+1−αn)+(βn+1−βn)]Tn+1(tnxn+(1−tn)xn+1)+γn[Tn+1(tnxn+(1−tn)xn+1)−Tn(tnxn+(1−tn)xn+1)]∥=∥αn+1(xn+1−xn)+(αn+1−αn)[xn−Tn+1(tnxn+(1−tn)xn+1)]+(βn+1−βn)[f(xn)−Tn+1(tnxn+(1−tn)xn+1)]+βn+1(f(xn+1)−f(xn))+γn+1[Tn+1(tn+1xn+1+(1−tn+1)xn+2)−Tn+1(tnxn+(1−tn)xn+1)]+γn[Tn+1(tnxn+(1−tn)xn+1)−Tn(tnxn+(1−tn)xn+1)]∥≤αn+1∥xn+1−xn∥+|αn+1−αn|∥xn−Tn+1(tnxn+(1−tn)xn+1)∥+|βn+1−βn|∥f(xn)−Tn+1(tnxn+(1−tn)xn+1)∥+ρβn+1∥xn+1−xn∥+γn∥Tn+1(tnxn+(1−tn)xn+1)−Tn(tnxn+(1−tn)xn+1)∥+γn+1kn+1∥tn+1xn+1+(1−tn+1)xn+2−tnxn−(1−tn)xn+1∥≤αn+1∥xn+1−xn∥+|αn+1−αn|C+|βn+1−βn|C+ρβn+1∥xn+1−xn∥+γn+1kn+1∥(1−tn+1)(xn+2−xn+1)+tn(xn+1−xn)∥+γn∥Tn+1(tnxn+(1−tn)xn+1)−Tn(tnxn+(1−tn)xn+1)∥≤(αn+1+ρβn+1+γn+1kn+1tn)∥xn+1−xn∥+γn+1kn+1(1−tn+1)∥xn+2−xn+1∥+(|αn+1−αn|+|βn+1−βn|)C+γn∥Tn+1(tnxn+(1−tn)xn+1)−Tn(tnxn+(1−tn)xn+1)∥≤(αn+1+ρβn+1+γn+1kn+1tn)∥xn+1−xn∥+γn+1kn+1(1−tn+1)∥xn+2−xn+1∥+(|αn+1−αn|+|βn+1−βn|)C+γnsupx∈K∥Tn+1x−Tnx∥.








This implies that


[1−γn+1kn+1(1−tn+1)]∥xn+2−xn+1∥≤(αn+1+ρβn+1+γn+1kn+1tn)∥xn+1−xn∥+(|αn+1−αn|+|βn+1−βn|)C+γnsupx∈K∥Tn+1x−Tnx∥.








Then,


∥xn+2−xn+1∥≤αn+1+ρβn+1+γn+1kn+1tn1−γn+1kn+1(1−tn+1)∥xn+1−xn∥+C1−γn+1kn+1(1−tn+1)(|αn+1−αn|+|βn+1−βn|)+γn1−γn+1kn+1(1−tn+1)supx∈K∥Tn+1x−Tnx∥=[1−βn+1(1−ρ)+γn+1kn+1(tn+1−tn)−γn+1(kn+1−1)1−γn+1kn+1(1−tn+1)]∥xn+1−xn∥+C1−γn+1kn+1(1−tn+1)(|αn+1−αn|+|βn+1−βn|)+γn1−γn+1kn+1(1−tn+1)supx∈K∥Tn+1x−Tnx∥≤[1−βn+1[1−ρ−ϵ]+γn+1kn+1(tn+1−tn)1−γnkn+1(1−tn+1)]∥xn+1−xn∥+C1−γn+1kn+1(1−tn+1)(|αn+1−αn|+|βn+1−βn|)+γn1−γn+1kn+1(1−tn+1)supx∈K∥Tn+1x−Tnx∥.



(4)




Substituting (4) into (3), we have


∥zn+1−zn∥≤[ρβn+11−αn+1+(1−βn+11−αn+1)kn+1tn+(1−βn+11−αn+1)kn+1(1−tn+1)]∥xn+1−xn∥+γn+1kn+1(1−tn+1)C(1−αn+1)[1−γn+1kn+1(1−tn+1)](|αn+1−αn|+|βn+1−βn|)+γn+11−αn+1supx∈K∥Tn+1x−Tnx∥+γnγn+1kn+1(1−tn+1)(1−αn+1)[1−γn+1kn+1(1−tn+1)]supx∈K∥Tn+1x−Tnx∥+|βn+11−αn+1−βn1−αn|C≤ρβn+1+γn+1kn+1tn+γn+1kn+1(1−tn+1)1−αn+1∥xn+1−xn∥+|βn+11−αn+1−βn1−αn|C+1(1−αn+1)[1−γn+1kn+1(1−tn+1)]supx∈K∥Tn+1x−Tnx∥+γn+1kn+1(1−tn+1)C(1−αn+1)[1−γn+1kn+1(1−tn+1)](|αn+1−αn|+|βn+1−βn|)≤ρβn+1+γn+1kn+11−αn+1∥xn+1−xn∥+|βn+11−αn+1−βn1−αn|C+1(1−αn+1)[1−γn+1kn+1(1−tn+1)]supx∈K∥Tn+1x−Tnx∥+γn+1kn+1(1−tn+1)C(1−αn+1)[1−γn+1kn+1(1−tn+1)](|αn+1−αn|+|βn+1−βn|)=[1−(1−ρ)βn+1−γn+1(kn+1−1)1−αn+1]∥xn+1−xn∥+|βn+11−αn+1−βn1−αn|C+1(1−αn+1)[1−γn+1kn+1(1−tn+1)]supx∈K∥Tn+1x−Tnx∥+γn+1kn+1(1−tn+1)C(1−αn+1)[1−γn+1kn+1(1−tn+1)](|αn+1−αn|+|βn+1−βn|)≤[1−[1−ρ−ϵ]βn+11−αn+1]∥xn+1−xn∥+|βn+11−αn+1−βn1−αn|C+1(1−αn+1)[1−γn+1kn+1(1−tn+1)]supx∈K∥Tn+1x−Tnx∥+γn+1kn+1(1−tn+1)C(1−αn+1)[1−γn+1kn+1(1−tn+1)](|αn+1−αn|+|βn+1−βn|).








By conditions (i), (ii), and (iv), we have


lim supn→∞(∥zn+1−zn∥−∥xn+1−xn∥)≤0.








Applying Lemma 2, we can get


limn→∞∥zn−xn∥=0.








Note that


zn−xn=xn+1−xn1−αn,








and so we have


limn→∞∥xn+1−xn∥=0.








Step 3: We show that limn→∞∥xn−Txn∥=0.


∥xn+1−Tn(tnxn+(1−tn)xn+1)∥=∥αnxn+βnf(xn)−αnTn(tnxn+(1−tn)xn+1)−βnTn(tnxn+(1−tn)xn+1)∥=∥αn[xn−Tn(tnxn+(1−tn)xn+1)]+βn[f(xn)−Tn(tnxn+(1−tn)xn+1)]∥≤αn∥xn−xn+1∥+αn∥xn+1−Tn(tnxn+(1−tn)xn+1)∥+βn∥f(xn)−Tn(tnxn+(1−tn)xn+1)∥.








Moreover, we know that


(1−αn)∥xn+1−Tn(tnxn+(1−tn)xn+1)∥≤αn∥xn−xn+1∥+βn∥f(xn)−Tn(tnxn+(1−tn)xn+1)∥.








That is,


∥xn+1−Tn(tnxn+(1−tn)xn+1)∥≤αn1−αn∥xn−xn+1∥+βn1−αn∥f(xn)−Tn(tnxn+(1−tn)xn+1)∥.








From conditions (i) and (ii), and Step 2, we obtain


∥xn+1−Tn(tnxn+(1−tn)xn+1)∥→0,(n→∞).



(5)




Then,


∥xn−Tnxn∥=∥xn−xn+1+xn+1−Tn(tnxn+(1−tn)xn+1)+Tn(tnxn+(1−tn)xn+1)−Tnxn∥≤∥xn−xn+1∥+∥xn+1−Tn(tnxn+(1−tn)xn+1)∥+∥Tn(tnxn+(1−tn)xn+1)−Tnxn∥≤∥xn−xn+1∥+∥xn+1−Tn(tnxn+(1−tn)xn+1)∥+kn∥tnxn+(1−tn)xn+1−xn∥=∥xn−xn+1∥+∥xn+1−Tn(tnxn+(1−tn)xn+1)∥+kn(1−tn)∥xn+1−xn∥=(1+kn(1−tn))∥xn−xn+1∥+∥xn+1−Tn(tnxn+(1−tn)xn+1)∥.








By (5) and Step 2, we have


∥xn−Tnxn∥→0,n→∞.



(6)




We know that T is an asymptotically non-expansive mapping, and so we have


∥xn−Txn∥=∥xn−xn+1+xn+1−Tn+1xn+1+Tn+1xn+1−Tn+1xn+Tn+1xn−Txn∥≤∥xn−xn+1∥+∥xn+1−Tn+1xn+1∥+∥Tn+1xn+1−Tn+1xn∥+∥Tn+1xn−Txn∥≤∥xn−xn+1∥+∥xn+1−Tn+1xn+1∥+kn+1∥xn+1−xn∥+k1∥Tnxn−xn∥≤(1+kn+1)∥xn−xn+1∥+∥xn+1−Tn+1xn+1∥+k1∥Tnxn−xn∥.








By Step 2 and (6), we can get


∥xn−Txn∥→0,n→∞.








Step 4: We prove that lim supn→∞⟨(I−f)p,j(p−xn)⟩≤0.



As K is a uniformly smooth Banach space and xn is bounded, then there exists a subsequence of xn which converges weakly to y. Further,


limk→∞⟨(I−f)p,j(p−xnk)⟩=lim supn→∞⟨(I−f)p,j(p−xn)⟩.








It follows from Step 3 and Lemma 3, we can get y∈F(T). Then, p∈F(T) satisfies


⟨(I−f)p,j(p−y)⟩≤0,∀y∈F(T),








by the weakly sequential continuous duality mapping and Lemma 4, we have


lim supn→∞⟨(I−f)p,j(p−xn)⟩=limk→∞⟨(I−f)p,j(p−xnk)⟩=⟨(I−f)p,j(p−y)⟩≤0.








Step 5: Finally, we prove that xn converges strongly to p∈F(T).


∥xn+1−p∥2=⟨αnxn+βnf(xn)+γnTn(tnxn+(1−tn)xn+1)−p,j(xn+1−p)⟩=αn⟨xn−p,j(xn+1−p)⟩+βn⟨f(xn)−p,j(xn+1−p)⟩+γn⟨Tn(tnxn+(1−tn)xn+1)−p,j(xn+1−p)⟩≤αn⟨xn−p,j(xn+1−p)⟩+βn⟨f(xn)−f(p),j(xn+1−p)⟩+βn⟨f(p)−p,j(xn+1−p)⟩+γn⟨Tn(tnxn+(1−tn)xn+1)−p,j(xn+1−p)⟩≤αn∥xn−p∥∥xn+1−p∥+βnρ∥xn−p∥∥xn+1−p∥+βn⟨f(p)−p,j(xn+1−p)⟩+γnkn∥tnxn+(1−tn)xn+1−p∥∥xn+1−p∥≤αn∥xn−p∥∥xn+1−p∥+βnρ∥xn−p∥∥xn+1−p∥+βn⟨f(p)−p,j(xn+1−p)⟩+γnkntn∥xn−p∥∥xn+1−p∥+γnkn(1−tn)∥xn+1−p∥2=[αn+βnρ+γnkntn]∥xn−p∥∥xn+1−p∥+γnkn(1−tn)∥xn+1−p∥2+βn⟨f(p)−p,j(xn+1−p)⟩≤αn+βnρ+γnkntn2∥xn−p∥2+αn+βnρ+γnkntn2∥xn+1−p∥2+γnkn(1−tn)∥xn+1−p∥2+βn⟨f(p)−p,j(xn+1−p)⟩=αn+βnρ+γnkntn2∥xn−p∥2+αn+βnρ+γnkn(2−tn)2∥xn+1−p∥2+βn⟨f(p)−p,j(xn+1−p)⟩,








which implies taht


[1−αn+βnρ+γnkn(2−tn)2]∥xn+1−p∥2≤αn+βnρ+γnkntn2∥xn−p∥2+βn⟨f(p)−p,j(xn+1−p)⟩.








That is,


∥xn+1−p∥2≤αn+βnρ+γnkntn2−αn−ρβn−γnkn(2−tn)∥xn+1−p∥2+2βn2−αn−ρβn−γnkn(2−tn)⟨f(p)−p,j(xn+1−p)⟩=[1−2(1−αn−ρβn−γnkn)2−αn−ρβn−γnkn(2−tn)]∥xn+1−p∥2+2βn2−αn−ρβn−γnkn(2−tn)⟨f(p)−p,j(xn+1−p)⟩≤[1−2((1−ρ)βn−γn(kn−1)2−αn−ρβn−γnkn(2−tn)]∥xn+1−p∥2+2βn2−αn−ρβn−γnkn(2−tn)⟨f(p)−p,j(xn+1−p)⟩≤[1−2((1−ρ−ϵ)βn2−αn−ρβn−γnkn(2−tn)]∥xn+1−p∥2+2βn2−αn−ρβn−γnkn(2−tn)⟨f(p)−p,j(xn+1−p)⟩;



(7)




we note that


2−αn−ρβn−γnkn(2−tn)=1−αn−ρβn−γnkn+[1−γnkn(1−tn)]=βn(1−ρ)−γn(kn−1)+[1−γnkn(1−tn)]=βn(1−ρ−ϵγn)+[1−γnkn(1−tn)]>βn(1−ρ)(1−γn)+[1−γnkn(1−tn)]>0.








By Step 4, we have ⟨(I−f)p,j(p−y)⟩≤0,∀y∈F(T). Thus, by condition (i) and applying Lemma 1 to (7), we conclude that limn→∞∥xn−p∥=0. This completes the proof. □





Theorem 2.

Let K be a nonempty closed convex subset of a uniformly smooth Banach space E, which has a weakly continuous duality mapping. Let T:K→K be a non-expansive mapping. Assume that F(T)≠∅ and f:K→K is a contraction. For a given x0∈K, let {xn} be a sequence generated in the following manner:


xn+1=αnxn+βnf(xn)+γnT(tnxn+(1−tn)xn+1),








where {αn},{βn},{γn},{tn}⊂(0,1), satisfy the following conditions:


(i)αn+βn+γn=1,limn→∞βn=0,Σn=0∞βn=∞;(ii)0<lim infn→∞αn≤lim supn→∞αn<1,limn→∞|αn+1−αn|=0,limn→∞|βn+1−βn|=0;and(iii)0<tn≤tn+1<1.








Then, {xn} converges strongly to a fixed point x* of the nonexpansive mapping T, which solves the variational inequality:


⟨(I−f)p,j(p−y)⟩≤0,∀y∈F(T).













Remark 1.

The aim of this paper is to study the general viscosity implicit midpoint rule for asymptotically non-expansive mappings in Banach spaces. In Theorem 1, if tn=12 in a Hilbert space, this is the main result of Yan et al. [24]. We know that every non-expansive mapping is an asymptotically non-expansive mapping. In Theorem 1, if kn≡1, then T is a non-expansive mapping. Thus, we extend and generalize the Hilbert space results to Banach spaces, the non-expansive mapping to asymptotically non-expansive mapping, and the implicit midpoint rule to the generalized viscosity implicit midpoint rule, which includes some corresponding recent results (see, for example, [13,14,17,18,19]) as special cases.






4. Applications


4.1. Application to Zero-Point Problems


Consider the zero-point problem: Find x∈E, such that


0∈Ax,








where A⊂E×E is an accretive operator: An operator is accretive if, for ∀x,y∈E, there exists j(x−y)∈J(x−y) such that ⟨Ax−Ay,j(x−y)⟩≥0. Further, Jr:R(I+rA)→D(A) is called the resolvent of A, which we define by Jr=(I+rA)−1. It is well-known that Jr is a non-expansive mapping and that A−1(0)=F(Jr), where A−1(0)={x∈E:0∈Ax} is the set of zeros of A and F(Jr) is the fixed point set of Jr. Thus, we can apply the our results by taking T=Jr.



Corollary 1.

Let K be a nonempty closed convex subset of a uniformly smooth Banach space E, which has a weakly continuous duality mapping. Let A be a m-accretive operator in E, such that A−1(0)≠∅ and f:K→K is a contraction. For a given x0∈K, let {xn} be a sequence generated in the following manner:


xn+1=αnxn+βnf(xn)+γnJr(tnxn+(1−tn)xn+1),








where {αn},{βn},{γn},{tn}⊂(0,1), satisfy the following conditions:


(i)αn+βn+γn=1,limn→∞βn=0,Σn=0∞βn=∞;(ii)0<lim infn→∞αn≤lim supn→∞αn<1,limn→∞|αn+1−αn|=0,limn→∞|βn+1−βn|=0;and(iii)0<tn≤tn+1<1.








Then, {xn} converges strongly to x*∈A−1(0), which solves the variational inequality:


⟨(I−f)p,j(p−y)⟩≤0,∀y∈A−1(0).














4.2. Application to Equilibrium Problems


Let B be a non-empty, closed, and convex subset of a Hilbert space H. Consider the equilibrium problem: Find x∈B, such that


G(x,y)≥0,forally∈B,








where G:B×B→R is a bi-function satisfying the following conditions:




	(H1)

	
G(x,x)=0 for all x∈B;




	(H2)

	
G(x,y)+G(y,x)≤0, for all x,y∈B;




	(H3)

	
for each x,y,z,∈B,limt→∞G(tz+(1−t)x,y)≤G(x,y); and




	(H4)

	
for all x∈B, G(x,y) is convex and weakly lower semi-continuous.









Assume that G satisfies H(1)–H(4). For r>0 and x∈H, we define Tr:H→B by Tr={u∈B:G(u,y)+1r⟨y−u,u−x⟩≥0,∀y∈B}, and the set of solutions of the equilibrium problem is denoted by EP. It is well-known that the single-valued mapping Tr is firmly non-expansive and that EP(G)=F(Tr), where EP(G) is a closed and convex set. Thus, we can apply our results by Lemma 5.



Corollary 2.

Let B be a non-empty, closed, and convex subset of a real Hilbert space H and G:B×B→R be a bi-function satisfying the conditions (H1)–(H4). Let T:B→B be a non-expansive mapping such that Ω=F(T)⋂EP(G)≠∅ and f:B→B is a contraction. For a given x0∈B, let {xn} be a sequence generated in the following manner:


xn+1=αnxn+βnf(xn)+γnTTr(tnxn+(1−tn)xn+1),








where {αn},{βn},{γn},{tn}⊂(0,1), satisfy the following conditions:


(i)αn+βn+γn=1,limn→∞βn=0,Σn=0∞βn=∞;(ii)0<lim infn→∞αn≤lim supn→∞αn<1,limn→∞|αn+1−αn|=0,limn→∞|βn+1−βn|=0;and(iii)0<tn≤tn+1<1.








Then, {xn} converges strongly to x*∈Ω, which solves the variational inequality:


⟨(I−f)p,p−y⟩≤0,∀y∈Ω.















5. Numerical Examples


Example 1.

Let the inner product ⟨.,.⟩:R3×R3→R be ⟨x,y⟩=x1y1+x2y2+x3y3. We set Tnx=(1+13n)x and f(x)=14x, where x=(x1,x2,x3)∈R3. We take αn=13+1n, βn=1n, γn=2(13−1n), and tn=1−13n, for all n∈N. It is easy to see that kn=1+13n, ϵ=13, and ρ=14 satisfy the conditions (i)–(iv) in Theorem 1. Then, we get


xn+1=108n3−81n2−8n+24108n3−24n2+64n+24xn.








Starting with x1=(1,2,3) and using the algorithm in Theorem 1, we get the following numerical results, as shown in Figure 1 and Figure 2.
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Figure 1. Two dimensions. 






Figure 1. Two dimensions.
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Figure 2. Three dimensions. 






Figure 2. Three dimensions.
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