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Abstract: An embedding of an interconnection network into another is one of the main issues in
parallel processing and computing systems. Congestion, dilation, expansion and wirelength are some
of the parameters used to analyze the efficiency of an embedding in which resolving the wirelength
problem reduces time and cost in the embedded design. Due to the potential topological properties
of enhanced hypercube, it has become constructive in recent years, and a lot of research work has
been carried out on it. In this paper, we use the edge isoperimetric problem to produce the exact
wirelengths of embedding enhanced hypercube into windmill and necklace graphs.
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1. Introduction

Graph theory is one of the most interesting branches of mathematics, with wide applications in
the domain of computer science, leading to the choice of a network in the development of parallel
computers on a commercial basis. An interconnection network can be modeled by a graph, in which
processors and links between processors are denoted as vertices and edges of a graph, respectively.
Interconnection network has many advantages and inherent applications in the field of system designs
such as scheduling of multiprocessor systems and distributed systems. The problem of efficiently
implementing a parallel algorithm developed for one network into another can be modeled by a
graph-embedding problem [1]. A graph embedding of a guest graph G into a host graph H is defined
by a bijective mapping f : V(G) → V(H) together with a mapping Pf which assigns to each edge
(u, v) of G a path between f (u) and f (v) in H [2].

An edge congestion of an embedding of G into H is the maximum number of edges of a graph G
that are embedded on any single edge of H. Let EC f (e) denote the number of edges (u, v) of graph G
such that e is in a path Pf ((u, v)) between f (u) and f (v) of H [2,3]. In other words,

EC f (e) = |{(u, v) ∈ E(G) : e ∈ Pf ((u, v))}|.

The wirelength of an embedding f of G into H is computed by

WL f (G, H) = ∑
(u,v)∈E(G)

| Pf ((u, v)) | = ∑
e∈E(H)

EC f (e).

The wirelength of G into H is defined as

WL(G, H) = min WL f (G, H)
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where the minimum is taken over all embeddings f of G into H. The wirelength problem of a graph
embedding emerges from VLSI designs [4], networks for parallel computer systems [5] and structural
engineering [6,7].

Wirelength problems have been considered for enhanced hypercube into wounded lobsters [8],
r-rooted complete binary tree [1], complete binary tree [9], caterpillar and path [10]. The wirelength of
hypercubes into necklace, windmill and snake graphs have been examined in [11]. In this paper, we
explore the exact wirelength of enhanced hypercube into necklace and windmill graphs and the main
contributions are presented in Theorems 2, 3 and 4.

The rest of the paper is organized as follows. In Section 2, we study edge isoperimetric problem
and 2-partition lemma. Enhanced hypercube and its properties will be discussed in Section 3. In
Section 4, we compute the minimum wirelength of embedding enhanced hypercube into windmill and
necklace graphs. Finally, Section 5 concludes the paper.

2. Edge Isoperimetric Problem

Consider an interesting NP-complete problem [12] namely combinatorial isoperimetric problem
which optimizes or selects the best structure among several possibilities and arises naturally in
communication engineering, computer science, physical sciences and mathematics [13]. The following
two versions of the EIP of a graph G have been considered in the literature [14–16].

EIP (1): Find a subset of the vertices of a given graph such that the edge cut separating this subset
from its complement has minimal size among all subsets of the same cardinality.

Mathematically, if for a given m, where m = 1, 2, . . . , |V|, θG(m) = min
A⊆V,|A|=m

|θG(A)|, where

θG(A) = {(u, v) ∈ E : u ∈ A, v /∈ A}, then the problem is to find A ⊆ V such that |A| = m and θG(m)

= |θG(A)|. Such subsets are called optimal with respect to EIP (1). If a set of vertices is optimal with
respect to EIP (1), then it is trivial that its complement is also optimal to EIP (1).

EIP (2): Find a subset of the vertices of a given graph such that the number of edges in the
subgraph induced by this subset is maximal among all induced subgraphs with the same number of
vertices.

Mathematically, if for a given m, where m = 1, 2, . . . , |V|, IG(m) = max
A⊆V,|A|=m

|IG(A)|, where

IG(A) = {(u, v) ∈ E : u, v ∈ A}, then the problem is to find A ⊆ V such that |A| = m and IG(m) =
|IG(A)|. Such subsets are called optimal with respect to EIP (2).

Clearly, if a subset of vertices is optimal with respect to EIP (2), then its complement is also an
optimal set only for regular graphs and moreover, if a subset of vertices is optimal with respect to
EIP (2), it is also optimal with respect to EIP (1). In the case of non-regular graphs, if a subset of vertices
is optimal with respect to EIP (2), it need not be optimal to EIP (1) and there is no specific condition to
optimality [16].

We now state the congestion and partition lemmas which will be used to compute the exact
wirelengths in our paper.

Lemma 1. (Congestion Lemma) [3] Let G be an r-regular graph and f be an embedding of G into H. Let S
be an edge cut of H such that the removal of edges of S leaves H into two components H1 and H2 and let G1=
G[ f−1(H1)] and G2= G[ f−1(H2)]. Also S satisfies the following conditions:

(i) For every edge (a, b) ∈ Gi, i = 1, 2, Pf ((a, b)) has no edges in S.

(ii) For every edge (a, b) ∈ G with a ∈ G1 and b ∈ G2, Pf ((a, b)) has exactly one edge in S.

(iii) G1 is an optimal set.

Then EC f (S) is minimum and EC f (S) = r|V(G1)| − 2|E(G1)|.
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Lemma 2. (2-Partition Lemma) [17] Let f : G → H be an embedding. Let [2E(H)] denote a collection of edges
of H repeated exactly 2 times. Let {S1, S2, . . . , Sm} be a partition of [2E(H)] such that each Si is an edge cut of
H. Then

WL f (G, H) =
1
2

m

∑
i=1

EC f (Si).

3. Properties of Enhanced Hypercubes

The hypercube (Qn) has received extensive attention in view of its regular structure, small
diameter and good connection with a relatively small vertex degree [7,18]. As the effort to improve its
efficiency, several variants of Qn have been proposed.

In many variants of hypercube, the topological structure of enhanced hypercube network (Qn,k)

is considered to be a significant topology due mainly to its reliability, efficiency and the fault tolerance
of Qn,k are better than Qn, which shows that the enhanced hypercube is an excellent choice of
network topology to improve traffic distributions, bandwidth capabilities and performance in parallel
processing computer systems [18].

Definition 1 ([19]). The enhanced hypercube Qn,k, 1 ≤ k ≤ n− 1, is an (n + 1)-regular graph with vertex
set V(Qn,k) = V(Qn) labeled as {0, 1 . . . , 2n − 1} and edge set E(Qn,k) = E(Qn) ∪ { (x1x2 . . . xkxk+1 . . . xn,
x1x2 . . . xk−1xkxk+1 . . . xn), xi = 0 or 1, 1 ≤ i ≤ n }. The edges of Qn in Qn,k are called hypercube edges and
the remaining edges of Qn,k are called complementary edges.

Remark 1. |V(Qn,k)| = 2n and |E(Qn,k)| = (n + 1)2n−1.

Theorem 1 ([10]). For 1 ≤ i ≤ 2n, Li = {0, 1, . . . , i− 1} is an optimal set in Qn,k.

Lemma 3 ([10]). For 1 ≤ i ≤ 2n, |E(Qn,k[Li])| = |E(Qn[Li])| +
⌊

i
2n−k+1

⌋
2n−k + [x− 2n−k]+ where x =

i−
⌊

i
2n−k+1

⌋
2n−k+1 and

[x]+ =

{
0 : x < 0

x : x ≥ 0.

4. Computation of Wirelength

In this section, we compute the exact wirelength of enhanced hypercubes into windmill and
necklace graphs. The basic definitions and results to obtain the minimum wirelength are explained
as follows.

Lemma 4. For i = 1, 2, . . . , n− 1, Ncut S2i

i = {2i, 2i + 1, . . . , 2i+1 − 1} is an optimal set in Qn,k.

Proof. Define ϕ : Ncut S2i

i → L2i by ϕ(2i + p)=p. Let the binary representation of 2i + p be α1α2 . . . αn.
Then the binary representation of p is 00 . . . 00︸ ︷︷ ︸

(n−i) times

αn−i+1 . . . αn. To show that Qn,k[Ncut S2i

i ] is isomorphic

to Qn,k[L2i ], we discuss the following cases for (x, y) ∈ E(Qn,k[Ncut S2i

i ]).

Case 1. Let (x, y) be the hypercube edge in Qn,k[Ncut S2i

i ]. Suppose the binary representations of x
and y are

x = α1α2 . . . αn−iβ1β2 . . . βk . . . βi,

y = α1α2 . . . αn−iβ1β2 . . . βk . . . βi.

Then,
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ϕ(x) = 00 . . . 00︸ ︷︷ ︸
(n−i) times

β1β2 . . . βk . . . βi,

ϕ(y) = 00 . . . 00︸ ︷︷ ︸
(n−i) times

β1β2 . . . βk . . . βi.

hence (x, y) ∈ E(Qn,k[Ncut S2i

i ])⇔ the binary representation of x and y differ in exactly one bit⇔ the
binary representation of ϕ(x) and ϕ(y) differ in exactly one bit⇔ (ϕ(x), ϕ(y)) ∈ E(Qn,k[L2i ]).

Case 2. Let (x, y) be the complementary edge in Qn,k[Ncut S2i

i ]. Suppose the binary representations of
x and y are

x = α1α2α3 . . . αn−iαn−i+1 . . . αk−1αkαk+1 . . . αn−1αn,

y = α1α2α3 . . . αn−iαn−i+1 . . . αk−1αkαk+1 . . . αn−1αn.

Then,

ϕ(x) = 00 . . . 00︸ ︷︷ ︸
(n−i) times

αn−i+1 . . . αk−1αkαk+1 . . . αn,

ϕ(y) = 00 . . . 00︸ ︷︷ ︸
(n−i) times

αn−i+1 . . . αk−1αkαk+1 . . . αn.

hence (x, y) ∈ E(Qn,k[Ncut S2i

i ]) ⇔ the binary representations of x and y differ from the kth to nth

bits⇔ the binary representations of ϕ(x) and ϕ(y) differ from the kth to nth bits⇔ (ϕ(x), ϕ(y)) ∈
E(Qn,k[L2i ]). Hence Qn,k[Ncut S2i

i ] and Qn,k[L2i ] are isomorphic.
From the above cases and Theorem 1, we infer that Ncut S2i

i is an optimal set in Qn,k.

The following result is an easy consequence of Lemma 4.

Lemma 5. For i = 1, 2, . . . , n− 1, Ncut S2i−1
i = {2i, 2i + 1, . . . , 2i+1 − 2} is an optimal set in Qn,k.

Definition 2. [11] Let Kti be a complete graph on ti vertices, 1 ≤ i ≤ m. Let t1 = 2r and ti = 2r+i−2 + 1 for

all 2 ≤ i ≤ m such that
m⊎

i=1

Kti has one vertex (s) as common. The resultant graph is called a windmill graph

and is denoted by WM(Kt1 , Kt2 , . . . , Ktm).

Remark 2. We denote wk =
k
∑

i=1
(ti − 1) + 1, 1 ≤ k ≤ m and w0 = t0 = 0. Then the windmill graph has

wm = 2n vertices, see Figure 1.

Theorem 2. The wirelength of Qn,k into WM(Kt1 , Kt2 , . . . , Ktm) is given by WL(Qn,k, WM(Kt1 ,

Kt2 , . . . , Ktm)) =
1
4{(n + 1)(2n+1 + 2m+r − 4)} −

m
∑

i=1
|E(Qn,k[Lti−1])|.

Proof. The proof is divided into three parts A, B, and C comprising of the embedding algorithm, proof
of correctness, and computation of wirelength, respectively.

Part A:

Label the vertices of Qn,k by lexicographic order from 0 to 2n − 1. Label the vertices of Kt1

in WM(Kt1 , Kt2 , . . . , Ktm) as 0, 1, 2, . . . , t1 − 1 such that t1 − 1 is the label of common vertex s. For
2 ≤ i ≤ m, label the vertices of Kti (except s) in WM(Kt1 , Kt2 , . . . , Ktm) as wi−1 + j, j = 0, 1, 2, . . . , ti − 2.
Define an embedding f of Qn,k into WM(Kt1 , Kt2 , . . . , Ktm) given by f (x) = x.
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Part B:

We assume that the labels represent the vertices to which they are assigned. Table 1 gives the
notations for edge cuts of windmill graph as depicted in Figure 1.
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Figure 1. The edge cuts of windmill WM(K4, K5, K9, K17).

Table 1. Edge cuts in windmill graph.

Cut Notation Elements in the Cut Range

Si {(w1 − 1, x) : x ∈ (V(Kti )− {w1 − 1})} 1 ≤ i ≤ m
Sj

i {(wi−1 + j− 1, x) : x ∈ (V(Kti )− {wi−1 + j− 1})} 1 ≤ i ≤ m, 1 ≤ j ≤ ti − 1

Then {Si : 1 ≤ i ≤ m } ∪ { Sj
i :1 ≤ i ≤ m, 1 ≤ j ≤ ti − 1} is a partition of [2E(WM(Kt1 , Kt2 , . . . ,

Ktm))]. The edge cut Si of WM(Kt1 , Kt2 , . . . , Ktm) disconnects WM(Kt1 , Kt2 , . . . , Ktm) into two
components Xi and Xi where V(Xi) = {wi−1, wi−1 + 1, . . . , wi−1 + ti − 2}. Let Gi and Gi be the
preimage of Xi and Xi under f respectively. By Lemmas 4 & 5, Gi is an optimal set and each Si satisfies
conditions (i)–(iii) of the Congestion Lemma. Therefore, EC f (Si) is minimum.

Similarly, the edge cut Sj
i of WM(Kt1 , Kt2 , . . . , Ktm) disconnects WM(Kt1 , Kt2 , . . . , Ktm) into two

components X j
i and X j

i where V(X j
i ) = {wi−1 + j − 1}. Let Gj

i and Gj
i be the preimage of X j

i and

X j
i under f respectively. Since Gj

i is an optimal set and each Sj
i satisfies conditions (i) − (iii) of

the Congestion Lemma. Therefore, EC f (S
j
i) is minimum. The 2-Partition Lemma implies that

WL f (Qn,k, WM(Kt1 , Kt2 , . . . , Ktm)= WL(Qn,k, WM(Kt1 , Kt2 , . . . , Ktm).

Part C:

By Part B, we have EC f (Si) = (n + 1)(ti − 1) − 2|E(Qn,k[Lti−1])|, EC f (S
j
i) = (n + 1) for all

1 ≤ i ≤ m, 1 ≤ j ≤ ti − 1. Therefore, the wirelength of enhanced hypercube into windmill graph is

given by WL(Qn,k, WM(Kt1 , Kt2 , . . . , Ktm) = 1
2

m
∑

i=1
{(n + 1)(ti − 1)− 2|E(Qn,k[Lti−1])|}+ n+1

2 (2n − 1) =

1
4{(n + 1)(2n+1 + 2m+r − 4)} −

m
∑

i=1
|E(Qn,k[Lti−1])|.

Definition 3 ([11]). Let K1,m be a star graph on m + 1 vertices (say v0, v1, . . . , vm) and Kti be complete graphs
on ti vertices, 1 ≤ i ≤ m. Let t1 = 2r, ti = 2r+i−2 for all 2 ≤ i ≤ m− 1 and tm = 2r+m−2 − 1 such that

K1,m ] (
m⋃

i=1
Kti ) has vi as common. The resultant graph is called a complete star necklace and is denoted by

SN(K1,m; Kt1 , Kt2 , . . . , Ktm).
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Remark 3. We denote sk=
k
∑

i=0
ti, 0 ≤ k ≤ m where t0 = 0. Then the complete star necklace has sm + 1 = 2n

vertices, see Figure 2.
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Figure 2. The edge cuts of complete star necklace SN(K1,5; K4, K4, K8, K16, K31).

Theorem 3. WL(Qn,k, SN(K1,m; Kt1 Kt2 , . . . , Ktm)) = 1
4{(n + 1)(2n+1 + 3 · 2m+r − 4m − 8)} −

m
∑

i=1
{2|E(Qn,k[Lti ])|+ |E(Qn,k[Lti−1])|}.

Proof. The proof technique is similar to Theorem 2 as divided into three parts A, B, and C.

Part A:

Label the vertices of Qn,k by lexicographic order from 0 to 2n − 1. For 1 ≤ i ≤ m, label the vertices
of Kti in SN(K1,m; Kt1 , Kt2 , . . . , Ktm) as si−1 + j, j = 0, 1, 2, . . . , ti − 1 such that si − 1 is the label of vi,
and v0 as 2n − 1. Define an embedding f of Qn,k into SN(K1,m; Kt1 , Kt2 , . . . , Ktm) given by f (x) = x.

Part B:

We assume that the labels represent the vertices to which they are assigned. Table 2 gives the
notations for edge cuts of complete star necklace graph as depicted in Figure 2.

Table 2. Edge cuts in complete star necklace graph.

Cut Notation Elements in the Cut Range

Si1 {si − 1, 2n − 1} 1 ≤ i ≤ m
Si2 {si − 1, 2n − 1} 1 ≤ i ≤ m
S
′

i {(si − 1, x) : x ∈ (V(Kti )− {si − 1})} 1 ≤ i ≤ m
Sj

i {(si−1 + j− 1, x) : x ∈ (V(Kti )− {si−1 + j− 1})} 1 ≤ i ≤ m, 1 ≤ j ≤ ti − 1

Then {Si1, Si2, S
′
i :1 ≤ i ≤ m } ∪ {Sj

i :1 ≤ i ≤ m, 1 ≤ j ≤ ti − 2} is a partition
of [2E(SN(K1,m; Kt1 , Kt2 , . . . , Ktm))]. The edge cut Si1 of SN(K1,m; Kt1 , Kt2 , . . . , Ktm) disconnects
SN(K1,m; Kt1 , Kt2 , . . . , Ktm) into two components Xi and Xi where V(Xi) = {si−1, si−1 + 1, . . . , si − 1}.
Let Gi and Gi be the preimage of Xi and Xi under f respectively. By Lemma 4, Gi is an optimal set
and each Si1 satisfies conditions (i)–(iii) of the Congestion Lemma. Therefore, EC f (Si1) is minimum.
Similarly, EC f (Si2) is minimum.
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The edge cut S
′
i of SN(K1,m; Kt1 , Kt2 , . . . , Ktm) disconnects SN(K1,m; Kt1 , Kt2 , . . . , Ktm) into two

components X
′
i and X′i where V(X

′
i) = {si−1, si−1 + 1, . . . , si − 2}. Let G

′
i and G′i be the preimage of X

′
i

and X′i under f respectively. By Lemma 5, G
′
i is an optimal set and each S

′
i satisfies conditions (i)–(iii)

of the Congestion Lemma. Therefore, EC f (S
′
i) is minimum.

The edge cut Sj
i of SN(K1,m; Kt1 , Kt2 , . . . , Ktm) disconnects SN(K1,m; Kt1 , Kt2 , . . . , Ktm) into two

components X j
i and X j

i where V(X j
i ) = {si−1 + j − 1}. Let Gj

i and Gj
i be the preimage of X j

i and

X j
i under f respectively. Since Gj

i is an optimal set and each Sj
i satisfies conditions (i) − (iii) of

the Congestion Lemma. Therefore, EC f (S
′
j) is minimum. The 2-Partition Lemma implies that

WL f (Qn,k, SN(K1,m; Kt1 , Kt2 , . . . , Ktm)) = WL(Qn,k, SN(K1,m; Kt1 , Kt2 , . . . , Ktm)).

Part C:

By Part B, we have EC f (Si1) = EC f (Si2) = (n + 1)ti − 2|E(Qn,k[Lti ])|, EC f (S
′
i) = (n +

1)(ti − 1) − 2|E(Qn,k[Lti−1])|, EC f (S
j
i) = (n + 1) for all 1 ≤ i ≤ m, 1 ≤ j ≤ ti − 1.

Therefore, the wirelength of enhanced hypercube into complete star necklace graph is given by

WL(Qn,k, SN(K1,m; Kt1 , Kt2 , . . . , Ktm)) =
m
∑

i=1
{(n + 1)ti − 2|E(Qn,k[Lti ])|} + 1

2

m
∑

i=1
{(n + 1)(ti − 1) −

2|E(Qn,k[Lti−1])|}+ n+1
2 (2n −m− 1) = 1

4{(n + 1)(2n+1 + 3(2m+r)− 4m− 8)} −
m
∑

i=1
{2|E(Qn,k[Lti ])|+

|E(Qn,k[Lti−1])|}.

Definition 4 ([11]). Let Km be a complete graph on m vertices (say v1, v2, . . . , vm) and Kti be complete graphs

on ti vertices, 1 ≤ i ≤ m. Let t1 = 2r and ti = 2r+i−2 for all 2 ≤ i ≤ m such that Km ] (
m⋃

i=1
Kti ) has vi as

common. The resultant graph is called a circular necklace graph and is denoted by CN(Km; Kt1 , Kt2 , . . . , Ktm).

Remark 4. We denote ck=
k
∑

i=0
ti, 0 ≤ k ≤ m where t0 = 0. Then the circular necklace has cm = 2n vertices,

see Figure 3.
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Figure 3. The edge cuts of circular necklace CN(K4; K4, K4, K8, K16).

Theorem 4. The wirelength of Qn,k into CN(Km; Kt1 , Kt2 , . . . , Ktm) is given by WL(Qn,k, CN

(Km; Kt1 , Kt2 , . . . , Ktm)) =
1
2{(n + 1)(2m+r + 2n − 2m)} −

m
∑

i=1
{|E(Qn,k[Lti ])|+ |E(Qn,k[Lti−1])|}.
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Proof. We label the vertices of Qn,k by lexicographic order from 0 to 2n − 1. For 1 ≤ i ≤ m, label the
vertices of Kti in CN(Km; Kt1 , Kt2 , . . . , Ktm) as ci−1 + j, j = 0, 1, 2, . . . , ti − 1 such that ci − 1 is the label
of vi. Define an embedding f of Qn,k into CN(Km; Kt1 , Kt2 , . . . , Ktm) given by f (x) = x.

We assume that the labels represent the vertices to which they are assigned. Table 3 gives the
notations for edge cuts of circular necklace graph as depicted in Figure 3.

Table 3. Edge cuts in circular necklace graph.

Cut Notation Elements in the Cut Range

Si {(ci − 1, x) : x ∈ (V(Km)− {ci − 1})} 1 ≤ i ≤ m
S
′

i {(ci − 1, x) : x ∈ (V(Kti )− {ci − 1})} 1 ≤ i ≤ m
Sj

i {(ci−1 + j− 1, x) : x ∈ (V(Kti )− {ci−1 + j− 1})} 1 ≤ i ≤ m, 1 ≤ j ≤ ti − 1

Then { Si, S
′
i :1 ≤ i ≤ m } ∪ { Sj

i :1 ≤ i ≤ m, 1 ≤ j ≤ ti − 2 } is a partition
of [2E(CN(Km; Kt1 , Kt2 , . . . , Ktm))]. The edge cut Si of CN(Km; Kt1 , Kt2 , . . . , Ktm) disconnects
CN(Km; Kt1 , Kt2 , . . . , Ktm) into two components Xi and Xi where V(Xi) = {ci−1, ci−1 + 1, . . . , ci − 1}.
Let Gi and Gi be the preimage of Xi and Xi under f respectively. By Lemma 4, Gi is an optimal set and
each Si satisfies conditions (i)− (iii) of the Congestion Lemma. Therefore, EC f (Si) is minimum.

The edge cut S
′
i of CN(Km; Kt1 , Kt2 , . . . , Ktm) disconnects CN(Km; Kt1 , Kt2 , . . . , Ktm) into two

components X
′
i and X′i where V(X

′
i) = {ci−1, ci−1 + 1, . . . , ci − 2}. Let G

′
i and G′i be the preimage

of X
′
i and X′i under f respectively. By Lemma 5, G

′
i is an optimal set and each S

′
i satisfies conditions

(i)–(iii) of the Congestion Lemma. Therefore, EC f (S
′
i) is minimum.

The edge cut Sj
i of CN(Km; Kt1 , Kt2 , . . . , Ktm) disconnects CN(Km; Kt1 , Kt2 , . . . , Ktm) into two

components X j
i and X j

i where V(X j
i ) = {ci−1 + j − 1}. Let Gj

i and Gj
i be the preimage of X j

i

and X j
i under f respectively. Since Gj

i is an optimal set and each Sj
i satisfies conditions (i)–(iii)

of the Congestion Lemma. Therefore EC f (S
′
j) is minimum. The 2-Partition Lemma implies that

WL f (Qn,k, CN(Km; Kt1 , Kt2 , . . . , Ktm)) = WL(Qn,k, CN(Km; Kt1 , Kt2 , . . . , Ktm)).
Now, we have EC f (Si) = (n + 1)ti − 2|E(Qn,k[Lti ])|, EC f (S

′
i) = (n + 1)(ti − 1) −

2|E(Qn,k[Lti−1])|, EC f (S
j
i) = (n + 1) for all 1 ≤ i ≤ m, 1 ≤ j ≤ ti − 1. Therefore, the wirelength

of enhanced hypercube into circular necklace graph is given by WL(Qn,k, CN(Km; Kt1 , Kt2 , . . . , Ktm))

= 1
2

m
∑

i=1
{(n + 1)ti − 2|E(Qn,k[Lti ])|} + 1

2

m
∑

i=1
{(n + 1)(ti − 1) − 2|E(Qn,k[Lti−1])|} + n+1

2 (2n − m) =

1
2{(n + 1)(2m+r + 2n − 2m)} −

m
∑

i=1
{|E(Qn,k[Lti ])|+ |E(Qn,k[Lti−1])|}.

5. Conclusions

In this paper, we have computed the minimum wirelength of embedding enhanced hypercube
into host graph such as windmill and necklace graphs by partitioning the edge set of the host graph.
On comparing with the wirelength of hypercube into windmill and necklace graphs, we found that
the computation varies by degree of enhanced hypercube. The results obtained in this paper would
build a great impact on parallel computing systems. Furthermore, it would be an interesting line of
research to compute the wirelength of general r-regular graph into windmill and necklace graphs.
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