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Abstract

:

In this paper, we study an iteration process introduced by Thakur et al. for Suzuki mappings in Banach spaces, in the new context of modular vector spaces. We establish existence results for a more recent version of Suzuki generalized non-expansive mappings. The stability and data dependence of the scheme for ρ-contractions is studied as well.
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1. Introduction


Iterative processes are very important tools for finding numerical solutions of certain classes of problems of nonlinear analysis, which can be formulated in the language of fixed point theory and which cannot be tackled with analytical methods. Notable examples include the problem of finding the roots of polynomials with complex coefficients, the study of variational inequalities and equilibrium problems, algorithms for signal and image processing, etc. Perhaps the best known, due to its key role in the proof of the Banach Contraction Principle, is the Picard iteration process.



Meanwhile, the study of non-expansive mappings stimulated the search of new iteration processes. This was motivated in part by the fact that, unlike the case of contraction mappings, the successive application of a non-expansive mapping does not necessarily lead to a fixed point. The earliest results in this direction were obtained by Krasnosel’skii [1], Mann [2], Halpern [3], Berinde [4], for one-step iterations; Ishikawa [5], etc., for two-step iterations; Noor [6], Agrawal et al. [7], Abbas and Nazir [8], Gürsoy and Karakaya [9], Sintunavarat and Pitea [10], Thakur et al. [11,12], for three-step iterations; and the search for new iteration schemes has remained active ever since.



The iterative processes studied in the above-mentioned works are defined for certain classes of mappings, mainly on Banach spaces with a suitable geometric structure, most often on uniformly convex spaces. While the literature on the subject is becoming quite vast, we believe that it is also important to study iterative processes on modular vector spaces. This is due to the fact that they provide a unified approach to many important spaces which appear in various branches of mathematics, such as Orlicz spaces or Lebesgue spaces. That is why our goal is to study a iterative scheme introduced by Thakur et al. [13] for Suzuki mappings [14] on Banach spaces, in the framework of modular vector spaces. The mappings under consideration are required to satisfy a modular counterpart of the condition (E) from Garcia-Falset et al. [15], which is weaker than Suzuki’s condition (C). Recent results in a similar direction have been obtained by Khan [16] and Mitrinović et al. [17].



Modular spaces have been extensively studied by Nakano in his classical monograph [18]. The first examples can be traced back to the early works of Orlicz [19], who introduced what is called now Orlicz spaces. These function spaces are generalizations of Lp spaces where, instead of a p-norm, one works with N-functions (for example N1t=et−t−1, N2(t)=et2−1) thus, allowing growth properties more general than power type growth (for details, see for instance [20,21]). These include notable examples such as variable exponent spaces and provide, as well.



The paper is organized as follows. In the first section, we recall the definition of modular vector spaces and their properties needed throughout the paper. In Section 2, we define the mappings satisfying the modular version of the condition (E), providing an example of such a mapping. In Section 3, we study convergence of the iterative scheme introduced by Takur et al. in [13]. The main results of the section are Lemma 3, Theorem 1 and Theorem 2, which give sufficient conditions of convergence and fixed point existence results for ρE-type mappings. The fourth section is dedicated to the study of stability and data dependence with respect to ρ-contractive mappings. The main results are Theorem 3 and Theorem 4, respectively.




2. Modular Vector Spaces


Definition 1

([21]). Let X be a real (or complex) vector space. A function ρ:X→[0,∞] is called a modular if it satisfies:




	(1)

	
ρ(x)=0 if and only if x=0,




	(2)

	
ρ(αx)=ρ(x), for |α|=1,




	(3)

	
ραx+1−αy≤ρx+ρy, where α∈0,1,









for any x,y∈X. If we replace condition (3) with the following condition


ραx+1−αy≤αρx+1−αρy,








for any α∈0,1 and any x,y∈X, then ρ is called a convex modular.





Unless otherwise specified, throughout this paper, we shall assume that ρ is a convex modular.



Example 1.

Let ρ:R2→0,∞, ρx1,x2=x12+|x2|. It is clear that ρx1,x2=x12+|x2|=0 if and only if x1,x2=0,0. The last two conditions of the definition are satisfied since both square function and absolute value function are even and convex. Thus, ρ is a convex modular. Notice that this modular does not satisfy the triangle axiom. Take for instance ρ2,1+1,1=11>7=ρ2,1+ρ1,1.





A convex modular ρ on a vector space X defines naturally a vector subspace as follows.



Definition 2

([21]). Let ρ be a convex modular function defined on a vector space X. The vector subspace


Xρ={x∈X:limα→0ραx=0}








is called a modular space.





The modular vector space Xρ can be endowed with a topology associated with the modular ρ by analogy with the metric topology.



Definition 3

([22]). Let ρ be a modular function defined on a vector space X




	(a) 

	
A sequence {xn}⊂Xρ is called ρ-convergent to some x∈Xρ if and only if limn→∞ρxn−x=0.




	(b) 

	
A sequence {xn}⊂Xρ is called ρ-Cauchy if limm,n→∞ρxm−xn=0.




	(c) 

	
We say that Xρ is ρ-complete if any ρ-Cauchy sequence in Xρ is ρ-convergent.




	(d) 

	
A set C⊂Xρ is called ρ-closed if for any sequence {xn}⊂C which ρ-converges to some point x; it implies that x∈C.




	(e) 

	
A set C⊂Xρ is called ρ-bounded if δρC=supρx−y;x,y∈C<∞.




	(f) 

	
A set K⊂Xρ is called ρ-compact if any sequence {xn} in K has a subsequence which ρ-converges to a point in K.




	(g) 

	
ρ is said to satisfy the Fatou property if ρx−y≤lim infn→∞ρx−yn whenever {yn}ρ-converges to y, for any x,y,yn in Xρ.











The property of uniform convexity plays a crucial role while proving results in the framework of normed spaces. The same is true in the context of modular spaces.



Definition 4

(Definition 3.1, [22]). The uniform convexity type properties of the modular ρ are defined for every r>0 and every ε>0 as follows:




	(a) 

	
Define


D1r,ε=x,y:x,y∈Xρ,ρx≤r,ρy≤r,ρx−y≥εr.








If D1r,ε≠∅, let


δ1r,ε=inf1−1rρx+y2:x,y∈D1r,ε.








If D1r,ε=∅, set δ1r,ε=1.



We say that ρ satisfies UUC1 if for every s≥0 and ε>0, there exists η1(s,ε)>0, depending on s and ε, such that


δ1r,ε>η1s,ε>0,forr>s.












	(b) 

	
Define


D2r,ε=x,y:x,y∈Xρ,ρx≤r,ρy≤r,ρx−y2≥εr.








If D2r,ε≠∅, let


δ2r,ε=inf1−1rρx+y2:x,y∈D2r,ε.








If D1r,ε=∅, set δ1r,ε=1.



We say that ρ satisfies UUC2 if for every s≥0 and ε>0, there exists η2s,ε>0 depending on s and ε, such that


δ2r,ε>η2s,ε>0,forr>s.



















The following technical result, whose proof is similar to its modular function spaces counterpart (Lemma 4.2, [23]), will play an important role in the sequel.



Lemma 1.

Let ρ be a convex modular which is UUC1 and let {tn}∈0,1 be a sequence bounded away from 0 and 1. If there exists r>0 such that


lim supn→∞ρxn≤r,lim supn→∞ρyn≤r,limn→∞ρtnxn+1−tnyn=r,








where {xn} and {yn} are sequences in Xρ, then limn→∞ρxn−yn=0.





Definition 5.

Let {xn} be a sequence in Xρ. Let C be a nonempty subset of Xρ. The function


τ:C→[0,∞],τ(x)=lim supn→∞ρx−xn








is called a ρ-type function. A sequence {cn} in C is called a minimizing sequence of τ if limn→∞τcn=infx∈Cτx.





For example, take the set of real numbers R as a modular space with the modular ρx=|x|. Consider that C is the subset of the rational numbers Q⊂R and the sequence xn=1n, n≥1. The ρ-type function in this case is


τx=lim supn→∞|x−1n|=|x|,








which is obviously unbounded. As a corresponding minimizing sequence, take for instance the sequence cn, cn=1n, n≥1.



Lemma 2

(Proposition 3.7 [22]). Assume that the modular space Xρ is ρ-complete and ρ satisfies the Fatou property. Let C be a nonempty convex and ρ-closed subset of Xρ. Consider the ρ-type function τ:C→[0,∞] generated by a sequence {xn} in Xρ. Assume that τ0=infx∈Cτx<∞.




	a)

	
If ρ is UUC1, then all minimizing sequences of τ are ρ-convergent to the same limit.




	b)

	
If ρ is UUC2 and {cn} is a minimizing sequence of τ, then the sequence {cn/2}ρ-converges to a point which is independent of {cn}.











We end this section by recalling a crucial property of the modular.



Definition 6.

Let Xρ be a modular space. It is said that the modular ρ satisfies the Δ2-condition if there exists a constant K≥0 such that


ρ2x≤Kρx,



(1)




for any x∈Xρ. The smallest such constant K will be denoted by ω2.





For example, the modular ρ:R→0,∞, ρx=a|x|α, a>0, α>1, satisfies the Δ2-condition with K=2α. As a counterexample, one may consider the modular ρ:R→0,∞, ρx=e|x|−|x|−1, which does not satisfy the Δ2-condition (for details, see [20]).




3. Mappings Satisfying the (ρE)-Condition


In 2008, Suzuki [14] introduced a new class of mappings, on normed spaces, which he called generalized non-expansive mappings. Soon after, García-Falset et al. [15] provided two kinds of generalizations, one of which is of interest in this paper. Below, we adapt the definition from [15] to the context of modular spaces.



Definition 7.

Let C be a nonempty subset of the modular space Xρ. A mapping T:C→Xρ is said to satisfy the ρEμ condition on C, if there exists μ≥1 such that


ρx−Ty≤μρx−Tx+ρx−y,



(2)




for all x,y∈Xρ. One says that T satisfies condition ρE whenever T satisfies ρEμ for some μ≥1.





Example 2.

The modular ρ introduced in Example 1 endows R2 with a modular space structure. Take the subset −1,1×−1,1⊂R2 and define a mapping T:−1,1×−1,1→−1,1×−1,1 by the rule


Tx1,x2=x1,13|x2|,x1,x2∈−1,1×−1,1x1,−13,x1,x2∈−1,1×1.








Taking x1,x2=1,34 and y1,y2=1,1, we see that


ρT1,34−T1,1=712>14=ρ1,34−1,1,








meaning that T is not a ρ-non-expansive mapping (see Definition 4.1, [22]).



Let us now verify that T satisfies the ρE condition.



Case I: Let x1,x2∈−1,1×−1,1 and y1,y2∈−1,1×−1,1. We have


ρx1,x2−Tx1,x2=|x2−13|x2|≥23|x2|,ρx1,x2−y1,y2=x1−y12+|x2−y2|,ρx1,x2−Ty1,y2≤x1−y12+|x2|+13|y2|.








To prove that Condition ρE is satisfied in this case, it is enough to show that the inequality


|x2|+13|y2|≤μ23|x2|+|x2−y2|








holds for some μ≥1. Indeed, taking μ=2 and noticing that |y2|≤|x2|+|x2−y2|, the conclusion follows.



Case II: Let now x1,x2∈−1,1×1 and y1,y2∈−1,1×−1,1. For this case, we see that


ρx1,x2−Tx1,x2=43,ρx1,x2−y1,y2=x1−y12+|1−y2|,ρx1,x2−Ty1,y2≤x1−y12+1+13|y2|.











Similarly as above, it is enough that the inequality


1+13|y2|≤μ43+|1−y2|








holds for some μ≥1, which is true since |y2|≤1.



In conclusion, the mapping T satisfies the ρE condition for μ=3.






4. Convergence Analysis


As before, let C be a subset of a modular space Xρ. Consider the iterative scheme [13], which we shall call the TTP scheme, defined as follows:


x1∈C,xn+1=Tyn,yn=T1−αnxn+αnzn,zn=1−βnxn+βnTxn,



(3)




for all n≥1, where {αn} and {βn} are sequences in 0,1.



The following results are useful for our purpose.



Lemma 3.

Let C be a nonempty ρ-closed convex subset of Xρ and let T:C→C be a mapping satisfying ρE with F(T)≠∅. For arbitrary chosen x1∈C, let the sequence {xn} be generated by the iterative process (3) and suppose ρxk−p<∞ for some k≥1. Then, limn→∞ρxn−p exists for any p∈F(T).





Proof. 

Let p∈F(T). As T satisfies condition (ρE), we have


ρTx−p=ρp−Tx≤μρp−Tp+ρx−p=ρx−p,foranyx∈C.



(4)







By (4) it follows that ρTx−p≤ρx−p, for any x∈C, and using this one and the convexity of ρ, one has


ρzn−p=ρ1−βnxn+βnTxn−p≤1−βnρxn−p+βnρTxn−p≤1−βnρxn−p+βnρxn−p=ρxn−p.



(5)







Similarly, taking into account relation (5), we get


ρyn−p=ρT1−αnxn+αnzn−p≤ρ1−αnxn+αnzn−p≤1−αnρxn−p+αnρzn−p≤1−αnρxn−p+αnρxn−p=ρxn−p.



(6)







Now, using (4) and (6) it follows


ρxn+1−p=ρTyn−p≤ρyn−p≤ρxn−p,



(7)




implying that the sequence {ρxn−p}n≥k is bounded and nonincreasing for any p∈F(T). Thus, the limit limn→∞ρxn−p exists. □





Lemma 4.

Let C be a nonempty subset of Xρ and let T:C→C be a mapping which satisfies condition (ρE). Suppose there exists a bounded sequence {xn} in C such that limn→∞ρxn−Txn=0 and let τ be the ρ-type generated by {xn}. Then, T leaves the minimizing sequences invariant, i.e., if {cn} is a minimizing sequence for τ, then so is {Tcn}.





Proof. 

Let {xn} be such that limn→∞ρxn−Txn=0. For arbitrary x∈C, we have


ρxn−Tx≤μρxn−Txn+ρxn−x,



(8)




which implies that


τTx=lim supn→∞ρxn−Tx≤lim supn→∞ρxn−x=τx.



(9)







Let now {cn} be a minimizing sequence. Applying (9), we get


infx∈Cτx≤limn→∞τTcn≤limn→∞τcn=infx∈Cτx,



(10)




which implies that limn→∞τTcn=infx∈Cτx, i.e., {Tcn} is a minimizing sequence for τ. □





Proposition 1.

Let C be a nonempty, convex and ρ-closed subset of Xρ, where Xρ is ρ-complete and ρ satisfies the Δ2-condition, is (UUC1), and satisfies the Fatou property. Consider the ρ-type function τ:C→[0,∞] generated by a sequence {xn} in Xρ and suppose τ0=infx∈Cτx<∞. Let {cn} and {dn} be two minimizing sequences for τ. Then,




	(i) 

	
any convex combination of {cn} and {dn} is a minimizing sequence for τ as well;




	(ii) 

	
limn→∞ρcn−dn=0.











Proof. 

(i) Let en=λcn+1−λdn, λ∈0,1, n≥1. For any x∈C, we have


ρen−x≤λρcn−x+1−λρdn−x,n≥1,








which implies


lim supm→∞ρen−xm≤λlim supm→∞ρcn−xm+1−λlim supm→∞ρdn−xm,n≥1,








i.e.,


τen≤λτcn+1−λτdn.








Passing to the limit and keeping in mind that {cn} and {dn} are minimizing sequences, we obtain


τ0=infx∈Cτx≤limn→∞τen≤λτ0+1−λτ0=τ0,



(11)




which gives the conclusion.



(ii) Let us notice that, since en=12cn+12dn, n≥1, we have cn−dn=2en−dn, n≥1. According to (i), {en} is a minimizing sequence and, according to Lemma 2, all minimizing sequences ρ-converge to the same point, which we denote by z. Thus,


ρen−dn=ρcn−dn2≤12ρcn−z+12ρdn−z,n≥1.








Thus, on account of (i), we get limn→∞ρen−dn=0. Similarly, limn→∞ρen−cn=0. The Δ2-condition implies the inequality


ρcn−dn≤ω22ρen−cn+ρen−dn,








which gives the conclusion of (ii) by taking n→∞. □





Theorem 1.

Let Xρ be a ρ-complete modular space and C be a nonempty convex ρ-closed and ρ-bounded subset Xρ. Suppose ρ satisfies the Fatou property, is UUC1 and satisfies the Δ2-condition. Let T:C→C be a mapping satisfying condition ρE and let the sequence {xn} be generated by the iterative process (3) with {αn} and {βn} bounded away from 0 and 1. Then, FT≠∅ if and only if limn→∞ρxn−Txn=0





Proof. 

Suppose FT≠∅ and take p∈FT. According to Lemma 3, the limit


r:=limn→∞ρxn−p








exists. Using the relations (5) and (4) respectively, we have


limn→∞ρzn−p≤limn→∞ρxn−p=r,



(12)






lim supn→∞ρTxn−p≤limn→∞ρxn−p=r.



(13)




On the other hand, using the inequalities (4) and (7), together with the convexity of ρ, we obtain


ρxn+1−p≤ρyn−p=ρT1−αnxn+αnzn−p≤ρ1−αnxn+αnzn−p≤1−αnρxn−p+αnρzn−p=ρxn−p−αnρxn−p+αnρzn−p,








which implies


ρxn+1−p−ρxn−pαn≤ρzn−p−ρxn−p.








Thus,


ρxn+1−p−ρxn−p≤ρzn−p−ρxn−p,








i.e.,


ρxn+1−p≤ρzn−p.








We also have, from condition (4), that ρzn−p≤ρxn−p, which implies that


r=limn→∞ρzn−p.



(14)




It follows


limn→∞ρβnTxn−p+1−βnxn−p=limn→∞ρzn−p=r.



(15)




Thus, the conditions of Lemma 1 are satisfied yielding limn→∞ρTxn−xn=0.



Conversely, assume that {xn} is bounded and limn→∞ρTxn−xn=0. Let τ:C→[0,∞] be the ρ-type function generated by {xn} and let {cn} be a minimizing sequence for τ converging to a point z∈C. By Lemma 4, {Tcn} is a minimizing sequence as well and by Proposition 1limn→∞ρcn−Tcn=0. On the other hand, condition (ρE) gives


ρcn−Tz≤μρcn−Tcn+ρcn−z,n≥1.








Taking n→∞, one obtains limn→∞ρcn−Tz=0, i.e., cnρ-converges to Tz. By the uniqueness of the limit, we have Tz=z. □





Theorem 2.

Let C be a nonempty ρ-compact and convex subset of Xρ and let ρ, T and {xn} be as in Theorem 1. Suppose that limn→∞ρTxn−xn=0. Then, the sequence {xn} ρ-converges to a fixed point of T.





Proof. 

The ρ-compactness of C implies the existence of a subsequence {xnk} of {xn} which ρ-converges to a point z in C. On the other hand, since T satisfies condition ρE, we have


ρxnk−Tz≤μρxnk−Txnk+ρxnk−z,μ≥1.








Noticing that subsequence {xnk} is an a.f.p.s. In addition, we get limk→∞ρxnk−Tz=0 and, by the uniqueness of the limit, we have Tz=z, i.e., z∈FT. According to Lemma 3, the limit limn→∞ρxn−z exists and thus {xn}ρ-converges to z. □






5. Stability and Data Dependence


In this section, our goal is to study the stability and data dependence of the TTP scheme (3) for ρ-contractions on modular spaces.



Definition 8.

Let C be a nonempty set of a modular space Xρ. A mapping T:C→C is called ρ-contraction if there exists a constant 0≤θ<1 such that


ρTx−Ty≤θρx−y,forallx,y∈C.













The Banach Contraction Principle is valid for ρ-contractions on modular spaces (see [22], Theorem 4.2). Thus, the existence of fixed points for ρ-contractions is guaranteed. It is also straightforward to see that the iteration scheme (3), applied to ρ-contractions, yields the inequality ρxn+1−p≤θρxn−p, where p∈FT, which implies its convergence to a fixed point.



The following two lemmas will be instrumental in the proofs of the following theorems.



Lemma 5

([24]). Let ψnn=0∞ and φnn=0∞ be nonnegative real sequences satisfying


ψn+1≤1−τnψn+φn,








where τn∈0,1 for all n∈N, ∑n=0∞τn=∞ and φnτn→0 as n→∞, then limn→∞ψn=0.





Lemma 6

([25]). Let ψnn=0∞ be a nonnegative real sequence for which one supposes there exists n0∈N, such that, for all n≥n0, the following inequality is satisfied:


ψn+1≤1−τnψn+τnφn,








where τn∈0,1, φn≥0∀n∈N, ∑n=1∞τn=∞. Then,


0≤lim supn→∞ψn≤lim supn→∞φn.



(16)









The notion of stability of an iteration process is usually defined for metric spaces (see, for instance, [26,27]). A natural analogue, in the context of modular spaces, is defined as follows.



Definition 9.

Let C be a nonempty set of a modular space Xρ and let tnn=0∞ an arbitrary sequence in C. We say that an iteration process xn+1=fT,xn, which converges to a fixed point p, is T-stable if


limn→∞εn=0ifandonlyiflimn→∞ρtn−p=0,








where εn=ρtn+1−fT,tn, n=0,1,2,⋯.





Theorem 3.

Let C be a nonempty ρ-closed set of a modular space Xρ which is ρ-complete and let T:C→C be a ρ-contraction with a ρ-bounded orbit. Consider the iterative process (3) with {αn} and {βn} bounded away from 0 and 1 and satisfying δ≤αnβn for some δ>0. Suppose the modular ρ satisfies the Δ2 condition. If ω2θ2≤2, then the iterative process (3) is T-stable.





Proof. 

Let p∈C be a fixed point for the mapping T and let tnn=0∞ be a sequence in C. Consider the sequence generated by the iterative process (3) xn+1=fT,xn, converging to p. Denote εn=ρtn+1−fT,tn and suppose limn→∞εn=0. Using the Δ2 property, the convexity of the modular, as well as the assumption that ω2θ2≤2, we have


ρtn+1−p=ρ212tn+1−fT,tn+12fT,tn−p≤ω22ρtn+1−fT,tn+ρfT,tn−p≤ω22εn+ρTT1−αntn+αn1−βntn+βnTtn−p≤ω22εn+θρT1−αntn+αn1−βntn+βnTtn−p≤ω22εn+θ2ρ1−αntn+αn1−βntn+βnTtn−p≤ω22εn+θ21−αnβn+αnβnθρtn−p=ω22εn+ω22θ21−αnβn1−θρtn−p≤1−αnβn1−θρtn−p+ω22εn.








Applying Lemma 5 for ψn=ρtn−p, τn=αnβn1−θ and φn=ω22εn, we conclude that limn→∞ρtn−p=0.



Conversely, suppose limn→∞=ρtn−p. We have


εn=ρtn+1−fT,tn≤ω22ρtn+1−p+ρfT,tn−p≤ω22ρtn+1−p+θ21−αnβn1−θρtn−p,








implying that limn→∞εn=0, which completes the proof. □





Definition 10.

Let T,T˜:Xρ→Xρ two operators. We say that T˜ approximates the operator T if, for some ε>0, we have


∥Tx−T˜x∥≤ε,








for all x∈Xρ.





Theorem 4.

Let T˜ be an approximate operator of a ρ-contraction T such that ω2θ<2. Let xnn=1∞ be an iterative sequence generated by (3), corresponding to T, and let x˜nn=1∞ be a iterative sequence generated by the iterative scheme


x˜1∈C,x˜n+1=T˜y˜n,y˜n=T˜1−αnx˜n+αnz˜n,z˜n=1−βnx˜n+βnT˜x˜n,



(17)




for all n≥1, where {αn} and {βn} are sequences in 0,1 satisfying 12≤αnβn∀n∈N. If Tp=p and T˜p˜=p˜ such that limn→∞x˜n=p˜, then


ρp−p˜≤7ω22ε22−ω2θ.













Proof. 

Using the convexity and the Δ2 property of the modular, we have


ρzn−z˜n=ρ1−βnxn+βnTxn−1−βnx˜n−βnT˜x˜n≤1−βnρxn−x˜n+βnρTxn−T˜x˜n≤1−βnρxn−x˜n+βnω22ρTxn−Tx˜n+ρTx˜n−T˜x˜n≤1−βn1−ω22θρxn−x˜n+βnω22ε.








Similarly, one gets


ρyn−y˜n=ρT1−αnTxn+αnTzn−T˜1−αnT˜x˜n+αnT˜z˜n≤ω22ρT1−αnTxn+αnTzn−T1−αnT˜x˜n+αnT˜z˜n+ω22ρT1−αnT˜x˜n+αnT˜z˜n−T˜1−αnT˜x˜n+αnT˜z˜n≤ω22θ1−αnρTxn−T˜x˜n+αnρTzn−T˜z˜n+ω22ε≤ω222θ1−αnρTxn−Tx˜n+ρTx˜n−T˜x˜n+ω222θαnρTzn−Tz˜n+ρTz˜n−T˜z˜n+ω22ε≤ω222θ1−αnθρxn−x˜n+ε+αnθρzn−z˜n+ε+ω22ε≤ω222θ21−αnρxn−x˜n+αnρzn−z˜n+ω222θε+ω22ε≤ω222θ21−αnβn1−ω22θρxn−x˜n+εαnβnω223θ2+ω222θ+ω22.








Thus, we obtain


ρxn+1−x˜n+1=ρTyn−T˜y˜n≤ω22ρTyn−Ty˜n+ρTy˜n−T˜y˜n≤ω22θρyn−y˜n+ε≤ω223θ31−αnβn1−ω22θρxn−x˜n+αnβnω224θ3+ω223θ2+ω222θ+ω22ε≤1−αnβn1−ω22θρxn−x˜n+7ω22αnβnε.








Applying now Lemma 6 with ψn=ρxn−x˜n, τn=αnβn1−ω22θ and φn=7ω2ε2−ω2θ, respectively, we get


0≤lim supn→∞ρxn−x˜n≤lim supn→∞7ω2ε2−ω2θ.



(18)




On the other hand, we have the inequality


ρp−p˜≤ω22ρxn−x˜n+ω222ρxn−p+ρx˜n−p˜,








in which passing to the limit and using the inequality (18) yields


ρp−p˜≤7ω22ε22−ω2θ,








which completes the proof. □






6. Conclusions


In this paper, we have studied the iterative process introduced by Thakur et. al. in [13], in the framework of modular spaces. Sufficient conditions of convergence of the iterative process to fixed points of ρE-type mappings were established in Lemma 3, Theorem 1 and Theorem 2, respectively. We have also established conditions for stability and studied the data dependence of the new iterative process with respect to ρ-contractive mappings in Theorem 3 and Theorem 4, respectively.
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