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Abstract: Mann-like iteration methods are significant to deal with convex feasibility problems
in Banach spaces. We focus on a relaxed Mann implicit iteration method to solve a general
system of accretive variational inequalities with an asymptotically nonexpansive mapping in the
intermediate sense and a countable family of uniformly Lipschitzian pseudocontractive mappings.
More convergence theorems are proved under some suitable weak condition in both 2-uniformly
smooth and uniformly convex Banach spaces.
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1. Introduction

Throughout this article, E will be supposed to be a real Banach space and E∗ stands for its
topological dual. Recall the normalized duality mapping J : E→ 2E∗ as follows

Jx := {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖2, ‖ϕ‖ = ‖x‖} ∀x ∈ E.

The duality J will be reduced to the identical operator in setting of Hilbert space. Set USE =

{x ∈ E : ‖x‖ = 1}. E is said to be a smooth space if limt→0(|x/t + y‖ − ‖x‖t ) exists for all x, y ∈ USE.
If E is smooth, then normalized duality is a single-valued operator. For the rest of this paper, we shall
invoke j the normalized duality with the single-valued. E is said to be a uniformly smooth Banach
space if the above limit is uniformly achieved for all x, y ∈ USE.

Let C be a closed nonempty and convex set in E. Invoke that the operator f is said to be
δ-Lipschitzian continuous in the set C if

‖ f (x)− f (y)‖ ≤ δ‖x− y‖, ∀x, y ∈ C,

where δ is a real number in [0,+∞). The existence of solutions of many abstract problems is equivalent
to the existence of a fixed point of a Lipschitzian continuous mapping. Therefore, existence results
of Lipschitzian continuous mappings are significant in mathematical sciences. If f is δ-Lipschitzian
continuous with δ < 1, then f is called a δ-contraction. Each contractive operator equation f : C → C
has a unique solution in C according to the famous Banach contractive mapping principal. Invoke that
the mapping f is said to be a nonexpansive mapping when δ = 1. For the rest of the paper, we use
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Fix( f ) to denote the set of fixed points of f . Invoke that the mapping T is said to be asymptotically
nonexpansive [1] when

‖Tnx− Tny‖ ≤ (θn + 1)‖x− y‖, ∀x, y ∈ C, n ≥ 0.

Here {θn} is in the interval [0,+∞) with limn→∞ θn = 0. If the operator T is continuous
and satisfies

lim sup
n→∞

sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖) ≤ 0, (1)

then the operator T is called an asymptotically nonexpansive operator, which is in the intermediate
sense; see [2]. It is easy to conclude that the family of asymptotically nonexpansive mappings, which
is in the intermediate sense, as special cases, includes the one of contractive operators, the one of
nonexpansive operators and the one of asymptotically nonexpansive operators. For the rest this
paper, set

cn := max{ sup
x,y∈C

(‖Tnx− Tny‖ − ‖x− y‖), 0}. (2)

Then cn ≥ 0 ∀n ≥ 0, cn → 0 (n→ ∞), and (1) become the inequality

‖Tnx− Tny‖ ≤ ‖x− y‖+ cn, ∀x, y ∈ C, ∀n ≥ 0.

Solutions of nonlinear equations containing nonexpansive operators, asymptotically
nonexpansive operators, and asymptotically nonexpansive operators in the intermediate sense recently
attracted much attention from many authors; see [3–14] and the references therein.

Invoke that an operator T with range R(T) and domain D(T) is called a pseudocontractive
operator if

‖x− y‖ ≤ ‖x− y + r((I − T)x− (I − T)y)‖, ∀x, y ∈ D(T), r > 0.

From the result of Kato [15], we know that the definition of pseudocontractive operators is equivalent
to: for each x, y ∈ D(T), 〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2. Here j(x− y) ∈ J(x− y) is the single-valued
normalized duality. One can clearly see the situation the family of pseudocontractive operators is
an important and significant generation of nonexpansive operators. Moreover, methodology shed
on pseudocontractive operator is from their counterpart: accretivity (monotonicity in Hilbert spaces);
see [16–22] and the references therein.

Let the Banach space E be smooth. Let B1, B2 : C → E be two mappings. The general system of
variational inequalities (GSVI) is to find (x∗, y∗) ∈ C× C such that{

〈x∗ − y∗ + µ1B1y∗, j(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈y∗ − x∗ + µ2B2x∗, j(x− y∗)〉 ≥ 0, ∀x ∈ C,

(3)

where µ1 and µ2 are two positive real constants. When E become H the real Hilbert space, the GSVI (3)
becomes the GSVI considered in [23], which includes as special cases the problems arising, especially
from linear or nonlinear complementary problems, and quadratic convex programming. It has no
doubt the system of variational inequalities has played a crucial role on both theoretical and applied
sciences. The literature on the variational inequalities is vast and some efficient methods have received
great development. People extend them in various ways and extended them to develop new iterative
algorithms for solving other relevant problems; see, e.g., [23–26]. It is worth emphasizing that an
important method of solving the variational inequality is to transform it into a fixed-point problem.
In 2017, Cai, Shehu and Iyiola [24] proposed and analyzed a generalized viscosity numerical algorithm
for approximating solutions of the GSVI (3) in uniform spaces.

In the present paper, we introduce a relaxed Mann-like iteration method for the approximation
of solutions of the GSVI (3) in both 2-uniformly smooth and uniformly convex Banach setting. The
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relaxed Mann implicit iteration method presented in this paper is from both the Mann iteration and
the Korpelevich’s extragradient iteration.

2. Preliminaries

Throughout this present paper we get xn ⇀ x (resp., xn → x) to indicate that the sequence {xn}
converges weakly (resp., strongly) to x. We invoke C to be a convex nonempty closed set in E. Invoke
that j(x− y) stands for the single-valued normalized duality for any x, y ∈ E. A mapping A : C → E
is said to be

(a) accretive if 〈Ax− Ay, j(x− y)〉 ≥ 0, ∀x, y ∈ C.
(b) α-strongly accretive if 〈Ax− Ay, j(x− y)〉 ≥ α‖x− y‖2 for some α ∈ (0, 1), ∀x, y ∈ C.
(c) β-inverse-strongly accretive if 〈Ax− Ay, j(x− y)〉 ≥ β‖Ax− Ay‖2 for some β > 0, ∀x, y ∈ C.
(d) λ-strictly pseudocontractive if ‖x − y‖2 − λ‖(I − A)x − (I − A)y‖2 ≥ 〈Ax − Ay, j(x − y)〉 for

some λ ∈ (0, 1), ∀x, y ∈ C.

Definition 1. Fix a convex and closed set C in a space E and {Sn}∞
n=0 : C → C stands for a self-operator

sequence of continuous pseudocontractive. We say {Sn}∞
n=0 : C → C is a family of `-uniformly Lipschitzian

pseudocontractive operators when Sn is `-Lipschitz continuous, where ` > 0 is a real constant.

For a linear operator A, we say it is strongly positive when

〈Ax, j(x)〉
γ̄

≥ ‖x‖2, ‖bA− aI‖ = sup
‖x‖≤1

|〈(bA− aI)x, j(x)〉|, b ∈ [−1, 1], a ∈ [0, 1],

where γ̄ > 0 and j(·) is the single-valued duality mapping.
We say a Banach space E is strictly convex if y 6= x ⇒ ‖y+ x‖ < 2 for any x, y ∈ USE. We say it is

uniformly convex if there exists δ > 0 such that for any x, y ∈ USE, ‖y− x‖ ≥ ε ⇒ ‖y + x‖ ≤ 2− 2δ,
for each ε ∈ (0, 2]. one knows that a uniform space is the reflexive. Also, in the setting of reflexive
spaces, E is strictly convex if and only if E∗ is smooth as well as E is smooth if and only if E∗

is strictly convex. A Banach space E is called to have a Gateaux differentiable norm if the limit
limt→∞ t(‖ 1

t y + x‖ − ‖x‖) exists for each x, y ∈ USE and in this case we call E is smooth; E is called to
have a uniformly Gateaux differentiable norm if the above limit is achieved uniformly for any x ∈ U.
Moreover, it is called to have a uniformly Fréchet differentiable norm if the above limit is attained
uniformly for x, y ∈ USE and in this case we call E uniformly smooth. The norm of E is said to be the
Fréchet differentiable if for each x ∈ U, the above limit is uniformly achieved for y ∈ U. The modulus
of smoothness of E is defined by

$(τ) = sup{‖x + y‖ − 2 + ‖x− y‖
2

: x, y ∈ E, ‖x‖ = 1, τ = ‖y‖},

where the function $ maps [0, ∞) [0, ∞). Invoke that E is uniformly smooth if $(τ)
τ → 0 as τ → 0. Let q

(q > 1 and q ≤ 2) be a fixed real number. E is said to be q-uniformly smooth if cτq ≥ $(τ), ∀τ > 0,
c > 0. One has ‖y + x‖q ≤ 2(‖x‖q + ‖κy‖q)− ‖x − y‖q, where κ > 0 in the setting of q-uniformly
smooth spaces. The best number κ in this inequality is named to be the q-uniformly smooth number of
E; see [26].

For q > 1, one can define the generalized duality mapping Jq by

Jq(x) = {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖q, ‖ϕ‖ = ‖x‖q−1}, ∀x ∈ E.

It is known that ∀p ∈ E, J(p) =
Jq(p)
‖p‖q−2 . If the setting is Hilbert, then J become I, the identity.

Recall that the following statements hold:
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(1) J is norm-to-weak∗ continuous and single-valued in setting of smooth spaces;
(2) J is norm-to-norm uniformly continuous on bounded sets and single-valued in setting of

uniformly smooth spaces;
(3) 2-uniformly smooth spaces are: Hilbert spaces, the Sobolev spaces Wp

m, and Lp spaces, where
p ≥ 2;

(4) Lp with p > 1, is uniformly convex and uniformly smooth.

Proposition 1 ([27]). Fix a convex nonempty closed set C in a Banach space E. Let S0, S1, ... : C → C be
a self-mapping sequence. Suppose that ∑∞

n=1 sup{‖(Sn − Sn−1)x‖ : x ∈ C} is a fixed real number. Then
{Sny}, where y ∈ C, converges in norm. If the mapping is defined by Sy = limn→∞ Sny for all y ∈ C, then
sup{‖Sx− Snx‖ : x ∈ C} → 0 as n→ ∞.

Proposition 2 ([28]). Fix a convex nonempty closed set C in a Banach space E. Every continuous and strong
pseudocontraction self-mapping T : C → C has a fixed point. Furthermore, it has only a unique fixed point.

Fix a set D in the set C and let projective mapping Π map C into D. Then Π is named as a sunny
if Π[t(x−Π(x)) + Π(x)] = Π(x), whenever t(x−Π(x)) + Π(x) ∈ C for all x ∈ C and for all t ≥ 0.
A projective mapping Π of C into itself is named a retraction once ΠΠx = Πx. Set D is called is called
a sunny nonexpansive retract of set C if there is a C-D′s sunny nonexpansive retraction.

In a setting of smooth Banach spaces, J is called a weakly sequentially continuous mapping if
{j(xn)} converges weakly∗ to j(x) for each {xn} ⊂ E, here, xn ⇀ x. From [29], any space with a
weakly continuous duality mapping satisfies the Opial inequality. In addition, if a space with the
Opial inequality and a uniformly Gáteaux differentiable norm, then it enjoys duality mappings are
weakly continuous.

Proposition 3. Fix a convex nonempty and closed set C in a smooth Banach space E, set D as a nonempty
subset of C. If Π : C → D be a retraction, one has (i) Π is both nonexpansive and sunny; (ii) 〈x− y, j(Π(x)−
Π(y))〉 ≥ ‖Π(x)−Π(y)‖2, ∀x, y ∈ C; (iii) for any x ∈ C, y ∈ D, 〈x−Π(x), j(y−Π(x))〉 ≤ 0.

One knows that any sunny nonexpansive retraction coincides with the metric projection in setting
of a Hilbert space.

Proposition 4. Fix a convex nonempty and closed set C in a reflexive Banach space E. If E has a uniformly
Gáteaux differentiable norm and the set D is a nonexpansive retract in C, it is a sunny nonexpansive retract of C.

Proposition 5 ([30]). In the setting of 2-uniformly smooth Banach space,

‖x + y‖2 − 2〈y, j(x)〉 ≤ ‖x‖2 + 2‖κy‖2,

where κ is the 2-uniformly smooth constant of E.

In particular, if the duality pairing 〈·, ·〉 become the inner product, j = I the identity mapping
of E, and κ =

√
2/2 in setting of Hilbert space.

For obtaining our theorem, we need to invoke some lemmas in the sequel. The following lemma
is obvious.

Lemma 1. Let j be the normalized single-valued duality mapping on a real Banach space E. For any given
x, y ∈ E, it holds |x‖2 + 2〈y, j(x + y)〉 ≥ ‖x + y‖2.

Lemma 2 ([31]). Fix a convex nonempty and closed set C in a smooth Banach space E. Let ΠC : E → C be
a nonexpansive sunny retraction and B : C → E be an accretive mapping. Then VI(C, B) = Fix(ΠC(I −



Mathematics 2019, 7, 424 5 of 16

λB)) ∀λ > 0, where VI(C, B) denotes the set of solutions to the VI of approximating x∗ ∈ C such that
〈Bx∗, j(x− x∗)〉 ≥ 0 ∀x ∈ C.

Using Propositions 3 and 5, respectively, we immediately obtain the lemmas.

Lemma 3. Fix a convex nonempty and closed set C in a smooth Banach space E. Let B1, B2 : C → E be two
nonlinear mappings. Let ΠC : E → C be a nonexpansive sunny retraction. For given x∗, y∗ ∈ C, (x∗, y∗)
solves the GSVI (3) iff x∗ ∈ GSVI(C, B1, B2) where GSVI(C, B1, B2) stands for fixed-point set of G :=
ΠC(I − µ1B1)ΠC(I − µ2B2) and y∗ = ΠC(I − µ2B2)x∗.

Lemma 4. Fix a convex nonempty and closed set C in a 2-uniformly smooth Banach space E. Let the accretive
mapping A : C → E be α-inverse-strongly. Then, for any given λ ≥ 0, ‖x − y‖2 + 2λ(κ2λ − α)‖Ay −
Ax‖2 ≥ ‖(I − λA)y− (I − λA)x‖2. In particular, if 0 ≤ λ ≤ α

κ2 , then I − λA is nonexpansive.

Using Lemma 4, we immediately obtain the following lemma.

Lemma 5. Fix a convex nonempty and closed set C in a 2-uniformly smooth Banach space E. Let ΠC : E→ C
be a nonexpansive sunny retraction. Let the accretive mappings B1, B2 : C → E be α-inverse-strongly
and β-inverse-strongly accretive. Let the mapping G : C → C be defined as G := ΠC(ΠC(I − µ2B2) −
µ1B1ΠC(I − µ2B2)). If α ≥ κ2µ1 ≥ 0 and β ≥ κ2µ2 ≥ 0, then G : C → C is a nonexpansive operator.

Proposition 6 ([32]). Fix a convex nonempty and closed set C in a uniformly convex Banach space E and set T
an asymptotically nonexpansive self-mapping in the intermediate sense on C. Given any bounded subset K ⊂ C.
For every ε > 0 and every n ≥ 2 it is an integer Nε ≥ 1 and δε > 0, where both Nε and δε are independent of n,
such that if z1, z2, ..., zn ∈ K, k ≥ Nε, and if ‖zi − zj‖ − ‖Tkzi − Tkzj‖ ≤ δε for 1 ≤ i, j ≤ n, then

‖Tk(
n

∑
i=1

λizi)−
n

∑
i=1

λiTkzi‖ < ε

for all λ := (λ1, λ2, ..., λn) such that λi ≥ 0 for i = 1, 2, ..., n and ∑n
i=1 λi = 1.

One can make use of Proposition 6 to prove the lemmas below. We omit the proof.

Lemma 6. Fix a convex nonempty and closed set C in a uniformly convex Banach space and set T a uniformly
continuous self-mapping on C, which is asymptotically nonexpansive in the intermediate sense. If {xm}∞

m=0
converges in weak topology to x and if ‖xm − Txm‖ → 0 as m→ ∞, then Tx = x.

Lemma 7. Fix a convex nonempty and closed set C in a smooth Banach space E. If the accretive operator
A : C → E is weakly continuous along segments (i.e., A(ty+ x) ⇀ Ax as t→ 0), then the VI of approximating
x∗ ∈ C such that 〈Ax∗, j(x− x∗)〉 ≥ 0 ∀x ∈ C. This is equivalent to the dual VI of approximating x∗ ∈ C
such that 〈Ax, j(x− x∗)〉 ≥ 0 ∀x ∈ C.

Lemma 8 ([33]). Fix two bounded sequences {xn} and {wn} in a Banach space E and set {βn} a sequence in
[0, 1] with 1 ≥ lim supn→∞ βn ≥ lim infn→∞ βn ≥ 0. We suppose xn+1 = βn(xn − wn) + wn, ∀n ≥ 0 and
lim supn→∞(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0. It follows wn − xn → 0 as n→ ∞.

Lemma 9 ([34]). Assume that linear bounded operator F is strongly positive on a smooth Banach space E. If
γ̄ > 0 and ‖F‖−1 ≥ ρ > 0, then, 1− ργ̄ ≥ ‖I − ρF‖.

Lemma 10 ([34]). If Banach space E is a both smooth and uniformly convex, then for r > 0, there exists a convex,
strictly increasing, continuous function g : [0, 2r] → R, g(0) = 0 such that ∀x, y ∈ {x ∈ E : ‖x‖ ≤ r},
g(‖x− y‖) + 2〈x, j(y)〉 ≤ ‖x‖2 + ‖y‖2.
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Lemma 11 ([35]). Fix a convex nonempty and closed set C in a reflexive Banach space E and set T : C → E a
nonexpansive non-self-mapping. Suppose that E enjoys a weakly sequentially continuous duality mapping. If
‖Txn − xn‖ → 0 as n→ ∞ and xn ⇀ x, then x ∈ Fix(T).

Lemma 12 ([36]). Let {an} be a sequence in [0,+∞) such that 0 ≤ an+1 ≤ νn + sntn + (1− sn)an ∀n ≥ 0,
where {sn}, {tn} and {νn} satisfy the assumptions: (i) lim supn→∞ tn ≤ 0; (ii) {sn} ⊂ [0, 1], ∑∞

n=0 sn = ∞;
(iii) νn ≥ 0 ∀n ≥ 0, ∑∞

n=0 νn < ∞. Then limn→∞ an = 0.

3. Main Results

In this part, we analyze a relaxed Mann implicit iteration method for approximating solutions
of the GSVI (3) with the hierarchical variational inequality (HVI) constraint for countable many
uniformly Lipschitzian pseudocontractions and an asymptotically nonexpansive mapping, which is in
the intermediate sense in a real Banach space.

Theorem 1. Fix a convex nonempty and closed set C in a 2-uniformly smooth and uniformly convex Banach
space E. The space is assumed to enjoy a weakly sequentially continuous duality mapping. Let ΠC : E → C
be a nonexpansive sunny retraction. Let the accretive mappings B1, B2 : C → E be α-inverse-strongly and
β-inverse-strongly accretive. Let linear bounded operator F : E → E be strongly positive with coefficient
γ̄ > 0. Let T : C → C be uniformly continuous and asymptotically nonexpansive mapping in the intermediate
sense, and {Sn}∞

n=0 be a countable family of `-uniformly Lipschitzian pseudocontractions on C such that
Ω :=

⋂∞
n=0 Fix(Sn) ∩ GSVI(C, B1, B2) ∩ Fix(T) 6= ∅ where GSVI(C, B1, B2) is the fixed-point set of the

mapping G := ΠC(I − µ1B1)ΠC(I − µ2B2) with 0 < µ1 < α
κ2 and 0 < µ2 < β

κ2 . Suppose ∑∞
n=0 cn < ∞,

where cn is defined by (2). For arbitrarily given x0 ∈ C, let {xn} be the sequence generated by
xn+1 = (1− βn)ΠC(Tnyn − αnFTnyn) + βnxn,
zn = ΠC(un − µ2B2un),
yn = ΠC(zn − µ1B1zn),
un = γnxn + (1− γn)Snun, ∀n ≥ 0,

(4)

where {αn}, {βn} and {γn} are the real sequences in the interval [0, 1] satisfying:

(i) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞;

(ii) lim supn→∞ βn < 1 and lim infn→∞ βn > 0;
(iii) lim supn→∞ γn < 1, lim infn→∞ γn > 0 and limn→∞ |γn − γn+1| = 0.

Suppose ∑∞
n=0 supx∈D ‖Snx − Sn+1x‖ < ∞, where D is a bounded set in C, and let S : C → C be

a noneslf mapping defined by Sx = limn→∞ Snx for all x ∈ C, and assume that Fix(S) =
⋂∞

n=0 Fix(Sn).
Therefore, {xn} strongly converges to x∗ ∈ Ω provided limn→∞ ‖Tnyn − Tn+1yn‖ = 0. In this case,

(a) x∗ ∈ Ω solves the VI: 〈F(x∗), j(x∗ − x)〉 ≤ 0, ∀x ∈ Ω;
(b) (x∗, y∗) solves the GSVI (3) with y∗ = ΠC(x∗ − µ2B2x∗).

Proof. From limn→∞ αn = 0, one may assume αn ≤ ‖F‖−1 ∀n ≥ 0. By Lemma 9 we get 1− αnγ̄ ≥
‖I − αnF‖. Since 1 > lim supn→∞ γn ≥ lim infn→∞ γn > 0, one supposes, without loss of generality,
that {γn} ⊂ [a, b] ⊂ (0, 1) for some a, b ∈ (0, 1). Also, since G : C → C is defined as G := ΠC(ΠC(I −
µ2B2) − µ1B1ΠC(I − µ2B2)), where 0 < µ1κ2 ≤ α and 0 < µ2κ2 ≤ β, according to Lemma 5 G is
nonexpansive. For each n ≥ 0, one has a unique un ∈ C such that

un = γn(xn − Snun) + Snun. (5)

As a matter of fact, we consider Fnx := γn(xn − Snx) + Snx ∀x ∈ C. Since mapping Sn : C → C is
a continuous pseudocontractive, one gets (1− γn)‖x− y‖2 ≥ 〈Fnx− Fny, j(x− y)〉, ∀x, y ∈ C. Also,
from {γn} ⊂ [a, b] ⊂ (0, 1) we get 0 < 1− γn < 1 for all n ≥ 0. Thus, Fn is a continuous and strong
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pseudocontraction of C into itself. By Proposition 2, we know that for each n ≥ 0 there exists a unique
element un ∈ C, satisfying (5). Therefore, it can be readily seen that the relaxed Mann implicit scheme
(4) can be rewritten as

un = γnxn + (1− γn)Snun,
yn = Gun,
xn+1 = (1− βn)ΠC(Tnyn − αnFTnyn) + βnxn, ∀n ≥ 0,

(6)

Next, we divide the rest of the proof into several steps.

Step 1. One proves that {xn}, {yn}, {zn}, {un}, {Tnyn} and {F(Tnyn)} are bounded. Indeed, take an
arbitrary p ∈ Ω =

⋂∞
n=0 Fix(Sn) ∩GSVI(C, B1, B2) ∩ Fix(T). So Sn p = p, Gp = p and Tp = p. Since

each Sn is pseudocontractive on C, it follows that

‖un − p‖2 ≤ γn‖xn − p‖‖p− un‖+ (1− γn)‖un − p‖2,

which hence yields
‖un − p‖ ≤ ‖xn − p‖, ∀n ≥ 0. (7)

Then we observe
‖yn − p‖ = ‖Gun − p‖ ≤ ‖xn − p‖. (8)

Combining (6) and (8), we have

‖xn+1 − p‖ ≤ (1− βn)‖ΠC(I − αnF)Tnyn − p‖+ βn‖xn − p‖
≤ (1− βn)‖(I − αnF)Tnyn − (I − αnF)p‖+ αn(1− βn)‖F(p)‖+ βn‖p− xn‖
≤ cn + [1− αn(1− βn)γ̄]‖xn − p‖+ αn(1− βn)γ̄

‖F(p)‖
γ̄

≤ cn + max{‖p− xn‖, ‖F(p)‖
γ̄ }.

By induction, we obtain 0 ≤ ‖xn − p‖ ≤ ∑∞
n=0 cn + max{ ‖F(p)‖

γ̄ , ‖x0 − p‖}, ∀n ≥ 0. It directly follows
that {xn} is a bounded vector sequence. This is also true for the sequences {yn}, {un}, {Tnyn} and
{F(Tnyn)} (due to (2), (7), (8) and the Lipschitz continuity). Since {Sn} is `-uniformly Lipschitzian,
we easily know that ‖Snun‖ ≤ ‖Snun − p‖ + ‖p‖ ≤ `‖un − p‖ + ‖p‖, which implies that {Snun}
is bounded. Additionally, by using Lemma 3 and p ∈ Ω ⊂ GSVI(C, B1, B2) we know that (p, q)
solves the GSVI (3) where q = ΠC(I − µ2B2)p. Since zn = ΠC(I − µ2B2)un ∀n ≥ 0, by Lemma 4
we get ‖zn‖ ≤ ‖ΠC(I − µ2B2)un −ΠC(I − µ2B2)p‖+ ‖q‖ ≤ ‖un − p‖+ ‖q‖. This shows that {zn}
is bounded.

Step 2. We prove ‖xn − xn+1‖ → 0 and ‖yn − yn+1‖ → 0 as n → ∞. Indeed, one put xn+1 =

(1− βn)wn + βnxn ∀n ≥ 0 with wn = ΠC(I − αnF)Tnyn. From (6) and (2) we get

‖wn+1 − wn‖ ≤ ‖(I − αn+1F)Tn+1yn+1 − (I − αnF)Tnyn‖
≤ ‖Tn+1yn+1 − Tn+1yn‖+ αn+1‖F(Tn+1yn+1)‖+ ‖Tn+1yn − Tnyn‖+ αn‖F(Tnyn)‖
≤ ‖yn+1 − yn‖+ cn+1 + ‖Tn+1yn − Tnyn‖+ αn+1‖F(Tn+1yn+1)‖+ αn‖F(Tnyn)‖
≤ ‖un+1 − un‖+ cn+1 + αn+1‖F(Tn+1yn+1)‖+ ‖Tn+1yn − Tnyn‖+ αn‖F(Tnyn)‖.

(9)

Since simple calculations show that

‖un − un+1‖2

= γn+1〈un+1 − un, xn+1 − xn〉+ (1− γn+1)[〈Sn+1un+1 − Snun+1, un+1 − un〉
+ 〈Snun+1 − Snun, un+1 − un〉] + (γn+1 − γn)〈xn − Snun, un+1 − un〉
≤ γn+1‖xn − xn+1‖‖un+1 − un‖+ (1− γn+1)[‖Sn+1un+1 − Snun+1‖‖un+1 − un‖
+ ‖un+1 − un‖2] + |γn − γn+1|‖Snun − xn‖‖un − un+1‖,

(10)
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it follows from (10) that

‖un+1 − un‖ ≤ ‖xn − xn+1‖+ |γn − γn+1| ‖xn−Snun‖
γn+1

+ 1−γn+1
γn+1

‖Snun+1 − Sn+1un+1‖
≤ 1

a‖Sn+1un+1 − Snun+1‖+ |γn+1 − γn| ‖xn−Snun‖
a + ‖xn − xn+1‖.

(11)

Also, since D := {un : n ≥ 0} ⊂ C is bounded, one gets ∑∞
n=0 supx∈D ‖Sn+1x − Snx‖ < ∞. Hence

we have
∞

∑
n=0
‖Snun+1 − Sn+1un+1‖ < ∞. (12)

Therefore, from (9) and (11) we deduce that

a‖wn − wn+1‖ ≤ a‖xn − xn+1‖+ ‖Sn+1un+1 − Snun+1‖+ a|γn+1 − γn| ‖xn−Snun‖
a

+ acn+1 + ‖Tn+1yn − Tnyn‖+ aαn+1‖F(Tn+1yn+1)‖+ aαn‖F(Tnyn)‖,

which immediately attains

‖wn − wn+1‖ − ‖xn − xn+1‖
≤ 1

a‖Sn+1un+1 − Snun+1‖+ |γn+1 − γn| ‖xn−Snun‖
a + cn+1

+ ‖Tn+1yn − Tnyn‖+ αn‖F(Tnyn)‖+ αn+1‖F(Tn+1yn+1)‖.
(13)

Since limn→∞ cn = 0 (due to (2)) and limn→∞ ‖Tnyn − Tn+1yn‖ = 0 (due to the assumption), from (12)
and conditions (i), (iii) it follows that lim supn→∞(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0. Hence, by
condition (ii) and Lemma 8, we get limn→∞ ‖wn − xn‖ = 0. Consequently,

lim
n→∞

‖xn − xn+1‖ = lim
n→∞

(1− βn)‖xn − wn‖ = 0. (14)

Again from (6) and (11) we conclude that

a‖yn+1 − yn‖ = a‖Gun+1 − Gun‖ ≤ a‖un − un+1‖
≤ ‖Sn+1un+1 − Snun+1‖+ a‖xn+1 − xn‖+ a|γn+1 − γn|‖xn − Snun‖ → 0 (n→ ∞).

(15)

Step 3. One proves limn→∞ ‖xn − Gxn‖ = 0. Indeed, since wn = ΠC(I − αnF)Tnyn, according to
Proposition 3, we have that for each p ∈ Ω,

〈ΠC(I − αnF)Tnyn − (I − αnF)Tnyn, j(p− wn)〉 ≥ 0. (16)

From (16), we have

2‖wn − p‖2 = 2〈ΠC(I − αnF)Tnyn − (I − αnF)Tnyn, j(wn − p)〉
+ 2〈(I − αnF)Tnyn − p, j(wn − p)〉
≤ 2〈(I − αnF)(Tnyn − p), j(wn − p)〉+ 2αn〈F(p), j(p− wn)〉
≤ (1− αnγ̄)2‖Tnyn − p‖2 + ‖p− wn‖2 + 2αn〈F(p), j(p− wn)〉.

It follows from (2) that

‖wn − p‖2 ≤ 2αn〈F(p), j(p− wn)〉+ (1− αnγ̄)2‖Tnyn − p‖2

≤ cn(2‖yn − p‖+ cn) + (1− αnγ̄)‖p− yn‖2 + 2αn〈F(p), j(p− wn)〉.
(17)

From (4) and (17), we get

‖xn+1 − p‖2 ≤ (1− βn)(1− αnγ̄)‖yn − p‖2 + βn‖xn − p‖2

+ cn(2‖yn − p‖+ cn) + 2αn(1− βn)〈F(p), j(p− wn)〉.
(18)
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We now note that q = ΠC(p − µ2B2 p), zn = ΠC(un − µ2B2un) and yn = ΠC(zn − µ1B1zn). Then
yn = Gun. By using the Lemma 4,

‖zn − q‖2 ≤ ‖un − p− µ2(B2un − B2 p)‖2 ≤ ‖un − p‖2 − 2µ2(β− κ2µ2)‖B2un − B2 p‖2, (19)

and

‖yn − p‖2 ≤ ‖zn − q− µ1(B1zn − B1q)‖2 ≤ ‖zn − q‖2 − 2µ1(α− κ2µ1)‖B1zn − B1q‖2. (20)

Substituting (19) for (20), we obtain from (7) that

‖yn − p‖2 + 2µ2(β− κ2µ2)‖B2un − B2 p‖2 + 2µ1(α− κ2µ1)‖B1zn − B1q‖2 ≤ ‖xn − p‖2. (21)

Combining (18) and (21), we get

‖p− xn+1‖2

≤ (1− βn)(1− αnγ̄)[‖xn − p‖2 − 2µ2(β− κ2µ2)‖B2un − B2 p‖2 + βn‖p− xn‖2

+ 2µ1(κ
2µ1 − α)‖B1zn − B1q‖2] + 2αn‖F(p)‖‖p− wn‖+ cn(2‖yn − p‖+ cn)

= [1− αn(1− βn)γ̄]‖p− xn‖2 − 2(1− βn)(1− αnγ̄)[µ2(β− κ2µ2)‖B2un − B2 p‖2

+ µ1(α− κ2µ1)‖B1zn − B1q‖2] + cn(2‖yn − p‖+ cn) + 2αn‖F(p)‖‖p− wn‖,

which immediately yields

2(1− βn)(αnγ̄− 1)[µ2(β− κ2µ2)‖B2un − B2 p‖2 + µ1(α− κ2µ1)‖B1zn − B1q‖2]

≥ ‖xn+1 − p‖2 − ‖xn − p‖2 − cn(2‖yn − p‖+ cn)− 2αn‖F(p)‖‖p− wn‖
≥ −cn(2‖yn − p‖+ cn)− 2αn‖F(p)‖‖p− wn‖ − (p− ‖xn‖+ ‖p− xn+1‖)‖xn − xn+1‖.

Since lim infn→∞(1− βn) > 0 (due to condition (ii)), µ1 ∈ (0, α
κ2 ), µ2 ∈ (0, β

κ2 ), limn→∞ cn = 0 and
limn→∞ αn = 0, we obtain from (14) that

lim
n→∞

‖B2un − B2 p‖ = lim
n→∞

‖B1zn − B1q‖ = 0. (22)

On the other hand, from Lemma 10 and Proposition 3 we have

2‖q− zn‖2 2 ≤ 〈j(zn − q), un − µ2B2un − (p− µ2B2 p)〉
= 2µ2〈B2 p− B2un, j(zn − q)〉+ 〈j(zn − q), un − p〉
≤ [‖un − p‖2 + ‖zn − q‖2 − g1(‖un − zn − (p− q)‖)] + 2µ2‖B2 p− B2un‖‖zn − q‖,

which implies that

‖zn − q‖2 + g1(‖un − zn − (p− q)‖) ≤ ‖un − p‖2 + 2µ2‖B2 p− B2un‖‖zn − q‖. (23)

In the same manner, one reaches

‖yn − p‖2 + g2(‖zn − yn + (p− q)‖) ≤ ‖zn − q‖2 + 2µ1‖B1q− B1zn‖‖yn − p‖. (24)

Substituting (23) for (24), we deduce from (7) that

‖yn − p‖2 + g1(‖un − zn − (p− q)‖) + g2(‖zn − yn + (p− q)‖)
≤ ‖xn − p‖2 + 2µ1‖B1q− B1zn‖‖yn − p‖+ 2µ2‖B2 p− B2un‖‖zn − q‖. (25)
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Combining (18) and (25), we have

‖xn+1 − p‖2 ≤ (1− βn)(1− αnγ̄)[‖xn − p‖2 + βn‖xn − p‖2

− g1(‖un − zn − (p− q)‖)− g2(‖zn − yn + (p− q)‖)
+ 2µ1‖B1q− B1zn‖‖yn − p‖+ 2µ2‖B2 p− B2un‖‖zn − q‖]
+ cn(2‖yn − p‖+ cn) + 2αn‖F(p)‖‖p− wn‖

= [1− αn(1− βn)γ̄]‖xn − p‖2 − (1− βn)(1− αnγ̄)×
× [g1(‖un − zn − (p− q)‖) + g2(‖zn − yn + (p− q)‖)]
+ 2µ2‖B2 p− B2un‖‖zn − q‖+ 2µ1‖B1q− B1zn‖‖yn − p‖
+ cn(2‖yn − p‖+ cn) + 2αn‖F(p)‖‖p− wn‖,

which hence yields

(1− βn)(1− αnγ̄)[g1(‖un − zn − (p− q)‖) + g2(‖zn − yn + (p− q)‖)]
≤ ‖p− xn‖2 − ‖p− xn+1‖2 + 2µ2‖B2 p− B2un‖‖zn − q‖
+ 2µ1‖B1q− B1zn‖‖yn − p‖+ cn(2‖yn − p‖+ cn) + 2αn‖F(p)‖‖p− wn‖
≤ (‖p− xn‖+ ‖p− xn+1‖)‖xn − xn+1‖+ 2µ2‖B2 p− B2un‖‖zn − q‖
+ cn(2‖yn − p‖+ cn) + 2αn‖F(p)‖‖p− wn‖+ 2µ1‖B1q− B1zn‖‖yn − p‖.

Since lim infn→∞(1− βn) > 0 (due to condition (ii)), limn→∞ cn = 0 and limn→∞ αn = 0, we conclude
from (14) and (22) that g1(‖un − zn − (p− q)‖) → 0 as n → ∞ and g2(‖zn − yn + (p− q)‖) → 0 as
n→ ∞. Using the properties of g1 and g2, we obtain

lim
n→∞

‖un − zn − (p− q)‖ = 0 and lim
n→∞

‖zn − yn + (p− q)‖ = 0. (26)

It follows that

‖un − Gun‖ = ‖un − yn‖ ≤ ‖zn − un − (q− p)‖+ ‖zn − yn + (p− q)‖ → 0 (n→ ∞). (27)

Also, according to (5) we have ‖un − p‖2 ≤ γn〈xn − p, j(un − p)〉+ ‖un − p‖2(1− γn), which together
with Lemma 10, yields

2‖un − p‖2 ≤ 2〈xn − p, j(un − p)〉 ≤ ‖p− xn‖2 + ‖p− un‖2 − g(‖xn − un‖).

Therefore, we get ‖p− yn‖2 ≤ ‖p− un‖2 ≤ ‖p− xn‖2− g(‖xn− un‖), which together with (18), yields

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn)(1− αnγ̄)[‖xn − p‖2 − g(‖xn − un‖)]
+ cn(2‖yn − p‖+ cn) + 2αn(1− βn)〈F(p), j(p− wn)〉
≤ [1− αn(1− βn)γ̄]‖xn − p‖2 − (1− βn)(1− αnγ̄)g(‖xn − un‖)
+ cn(2‖yn − p‖+ cn) + 2αn‖F(p)‖‖p− wn‖.

Thus, we have

(1− βn)(1− αnγ̄)g(‖xn − un‖)
≤ ‖p− xn‖2 + cn(2‖p− yn‖+ cn) + 2αn‖F(p)‖‖p− wn‖ − ‖xn+1 − p‖2

≤ (‖p− xn‖+ ‖p− xn+1‖)‖xn − xn+1‖+ 2αn‖F(p)‖‖p− wn‖+ cn(2‖yn − p‖+ cn).

Since lim infn→∞(1− βn) > 0 (due to condition (ii)), limn→∞ cn = 0 and limn→∞ αn = 0, we obtain
from (14) that limn→∞ g(‖xn − un‖) = 0. We obtain

lim
n→∞

‖xn − un‖ = 0. (28)
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From (27) and (28) it follows that ‖xn − yn‖ ≤ ‖xn − un‖+ ‖un − Gun‖ → 0, and

‖xn − Gxn‖ ≤ ‖xn − yn‖+ ‖Gun − Gxn‖ ≤ ‖xn − yn‖+ ‖un − xn‖ → 0 (n→ ∞). (29)

Step 4. One proves that ‖Txn − xn‖ → 0 and ‖Snxn − xn‖ → 0 as n → ∞. By (5) and (28), we
obtain that

0 ≤ ‖Snun − un‖ =
γn

1− γn
‖xn − un‖ ≤

b
1− b

‖xn − un‖ → 0 (n→ ∞). (30)

Since {Sn}∞
n=0 : C → C is `-uniformly Lipschitzian, we deduce from (28) and (30) that

‖Snxn − xn‖ ≤ ‖Snxn − Snun‖+ ‖Snun − un‖+ ‖un − xn‖
≤ (`+ 1)‖xn − un‖+ ‖Snun − un‖ → 0 (n→ ∞).

(31)

Since 1 ≥ lim supn→∞ βn and lim infn→∞ βn ≥ 0, One supposes, without loss of generality, that
{βn} ⊂ [c, d] ⊂ (0, 1) for some c, d ∈ (0, 1). From xn+1 = βnxn + (1− βn)ΠC(I − αnF)Tnyn, we obtain

‖xn−Tnyn‖ ≤ ‖xn− xn+1‖+ ‖xn+1−Tnyn‖ ≤ ‖xn− xn+1‖+ βn‖xn−Tnyn‖+(1− βn)αn‖F(Tnyn)‖.

Then we have (1− d)‖xn − Tnyn‖ ≤ ‖xn − xn+1‖+ (1− d)αn‖F(Tnyn)‖. Hence we get

‖yn − Tnyn‖ ≤ ‖yn − xn‖+ ‖xn − Tnyn‖ ≤ ‖yn − xn‖+
1

1− d
‖xn − xn+1‖+ αn‖F(Tnyn)‖.

Consequently, from (14), (29) and limn→∞ αn = 0, it follows that

lim
n→∞

‖xn − Tnyn‖ = 0 and lim
n→∞

‖yn − Tnyn‖ = 0. (32)

We also note that ‖yn−Tyn‖ ≤ ‖yn−Tnyn‖+ ‖Tnyn−Tn+1yn‖+ ‖Tn+1yn−Tyn‖. By the assumption
limn→∞ ‖Tn+1yn − Tnyn‖ = 0, (32) and the condition that T : C → C is uniformly continuous, we get

lim
n→∞

‖yn − Tyn‖ = 0. (33)

In addition, noticing that ‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖Tyn − Txn‖+ ‖yn − Tyn‖, we deduce from (29),
(33) and the uniform continuity of T that

lim
n→∞

‖xn − Txn‖ = 0. (34)

Step 5. We claim that ‖xn − Sxn‖ → 0 as n → ∞ where S := (I + I − S)−1. Indeed, we first
observe that for all x, y ∈ C, limn→∞ ‖Snx − Sx‖ = 0 and limn→∞ ‖Sny − Sy‖ = 0. Since each
Sn is pseudocontractive, we get 〈Sx − Sy, j(x − y)〉 = limn→∞〈Snx − Sny, j(x − y)〉 ≤ ‖x − y‖2.
Thus, S is pseudocontractive. Also, since {Sn}∞

n=0 is `-uniformly Lipschitzian on C, we get
‖Sx− Sy‖ = limn→∞ ‖Snx− Sny‖ ≤ `‖x− y‖ ∀x, y ∈ C. This means that S is `-Lipschitzian. Noticing
the boundedness of {xn} and putting D := conv{xn : n ≥ 0} (the closure of convex hull of the
set {xn : n ≥ 0}), we have ∑∞

n=1 supx∈D ‖Snx − Sn−1x‖ < ∞. Therefore, by Proposition 1 we get
limn→∞ supx∈D ‖Snx− Sx‖ = 0, which immediately yields

lim
n→∞

‖Snxn − Sxn‖ = 0. (35)

Thus, combining (31) and (35) implies

0 ≤ ‖xn − Sxn‖ ≤ ‖xn − Snxn‖+ ‖Snxn − Sxn‖ → 0 (n→ ∞). (36)
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Next, putting S := (2I − S)−1, one sees that S is nonexpansive, and Fix(S) = Fix(S) =⋂∞
n=0 Fix(Sn) (see [16]).

From (36) it follows that

‖xn − Sxn‖ = ‖SS−1xn − Sxn‖ ≤ ‖S
−1xn − xn‖

= ‖(2I − S)xn − xn‖ = ‖xn − Sxn‖ → 0 (n→ ∞).
(37)

Step 6. One proves that
lim sup

n→∞
〈F(x∗), j(x∗ − wn)〉 ≤ 0, (38)

where x∗ = ΠΩ(I − ρF)(x∗) with ρ ∈ (0, ‖F‖−1). There is a sequence {wni} such that
lim supn→∞〈F(x∗), j(x∗ − wn)〉 = limi→∞〈F(x∗), j(x∗ − wni )〉. Now we show that ΠΩ(I − ρF) is
a contraction. For all x, y ∈ C, we get by Lemma 9

‖ΠΩ(I − ρF)(x)−ΠΩ(I − ρF)(y)‖ ≤ ‖(I − ρF)(x)− (I − ρF)(y)‖ ≤ (1− γ̄ρ)‖x− y‖.

Since 0 < ρ < ‖F‖−1 ≤ γ̄−1, we know that ΠΩ(I − ρF) is a contractive operator with the contractive
coefficient 1− γ̄ρ ∈ (0, 1). Banach’s mapping principle tell us that ΠΩ(I− ρF) has a unique fixed point,
say x∗ ∈ C, i.e., x∗ = ΠΩ(I − ρF)(x∗). Since {wn} ⊂ C is bounded, one supposes that wni ⇀ z ∈ C.
Since limn→∞ ‖xn − Tnyn‖ = 0 (due to (32)) and limn→∞ αn = 0, it follows that

‖xn − wn‖ ≤ ‖xn − Tnyn‖+ ‖Tnyn −ΠC(I − αnF)Tnyn‖
≤ ‖xn − Tnyn‖+ αn‖F(Tnyn)‖ → 0 (n→ ∞).

(39)

Hence, from wni ⇀ z ∈ C it follows that xni ⇀ z ∈ C. Note the situation both G and S are
nonexpansive operators and that T is an asymptotically nonexpansive operator in the intermediate
sense. Since (I − G)xn → 0 and (I − S)xn → 0 (due to (29) and (37)), by Lemma 11 we have
that z ∈ Fix(G) = GSVI(C, B1, B2) and z ∈ Fix(S) = Fix(S) =

⋂∞
n=0 Fix(Sn). From (34), we have

that limi→∞ ‖xni − Txni‖ = 0 for the subsequence {xni} of {xn}. It follows from Lemma 6 that
z ∈ Fix(T). Then, z ∈ Ω =

⋂∞
n=0 Fix(Sn) ∩GSVI(C, B1, B2) ∩ Fix(T). Since duality mapping j(·) is

weakly sequentially continuous and wni ⇀ z, we obtain

lim sup
n→∞

〈F(x∗), j(x∗ − wn)〉 = lim
i→∞
〈F(x∗), j(x∗ − wni )〉 = 〈F(x∗), j(x∗ − z)〉 ≤ 0,

which implies that (38) holds.

Step 7. One proves that xn → x∗ as n→ ∞. Indeed, putting p = x∗ in (18) and using (8), we have

‖x∗ − xn+1‖2 ≤ βn‖x∗ − xn‖2 + (1− βn)(1− αnγ̄)‖x∗ − xn‖2

+ cn(2‖xn − x∗‖+ cn) + 2αn(1− βn)〈F(x∗), j(x∗ − wn)〉
= [1− αn(1− βn)γ̄]‖xn − x∗‖2 + αn(1− βn)γ̄ · 2

γ̄ 〈F(x∗), j(x∗ − wn)〉
+ cn(2‖xn − x∗‖+ cn).

(40)

Since ∑∞
n=0 αn = ∞, lim infn→∞(1− βn) > 0 (due to conditions (i), (ii)), and ∑∞

n=0 cn < ∞ (due to the
assumption), we deduce from (38) that ∑∞

n=0 αn(1− βn)γ̄ = ∞, ∑∞
n=0 cn(2‖xn − x∗‖+ cn) < ∞ and

lim supn→∞
2
γ̄ 〈F(x∗), j(x∗ − wn)〉 ≤ 0. We can employ Lemma 2.12 to the relation (40) and get that

xn → x∗ as n→ ∞. This completes the proof.
From [37], we give an example to illustrate the partial condition of Theorem 1 to be satisfied.
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Example 1. Let H = R with the inner product 〈a, b〉 = ab and induced norm ‖ · ‖ = | · |. Let C = H, and T
be defined as Tx := 3

4 sin x ∀x ∈ C. It is not hard to see that for all x, y ∈ C,

‖Tnx− Tny‖ = 3
4
‖ sin Tn−1x− sin Tn−1y‖

≤ 3
4
‖Tn−1x− Tn−1y‖

≤ · · ·

≤ (
3
4
)n‖x− y‖

= (1 + θn)‖x− y‖,

with θn = ( 3
4 )

n. Then T : C → C is an asymptotically nonexpansive mapping with {θn}. We take Sn := Tn

and obtain
sup
x∈D
‖Snx− Sn−1x‖ = sup

x∈D
‖Tnx− Tn−1x‖

≤ (
3
4
)n−1 · sup

x∈D
‖Tx− x‖ ∀n ≥ 1,

for any bounded subset D of C. Therefore, it follows that

∞

∑
n=1

sup
x∈D
‖Snx− Sn−1x‖ ≤

∞

∑
n=1

(
3
4
)n−1 · sup

x∈D
‖Tx− x‖ < ∞.

In addition, for any sequence {yn} ⊂ C, we get

‖Tn+1yn − Tnyn‖ ≤ (
3
4
)n−1‖T2yn − Tyn‖

= (
3
4
)n‖ sin Tyn − sin yn‖

≤ 2(
3
4
)n → 0 (n→ ∞).

It is easy to see that Fix(T) = {0}. We define Sx := 0 ∀x ∈ C. It is clear that Sx = limn→∞ Snx ∀x ∈ C and
Fix(S) =

⋂∞
n=0 Fix(Sn).

The following results can be easily obtained by virtue of the argument techniques in Theorem 1,
and hence we omit the details.

Theorem 2. Fix a bounded, convex, nonempty, and closed set in a 2-uniformly smooth and uniformly convex
Banach space E. We suppose E has a weakly sequentially continuous duality mapping. Let ΠC : E → C
be a nonexpansive sunny retraction. Let the accretive mappings B1, B2 : C → E be α-inverse-strongly and
β-inverse-strongly. Let linear bounded operator F be a strongly positive on E with coefficient γ̄ > 0. Let T be
an asymptotically nonexpansive self-mapping on C with a sequence {θn} ⊂ [0, ∞) satisfying ∑∞

n=0 θn < ∞,
and {Sn}∞

n=0 : C → C be a countable family of `-uniformly Lipschitzian pseudocontractive mappings such
that Ω :=

⋂∞
n=0 Fix(Sn) ∩GSVI(C, B1, B2) ∩ Fix(T) 6= ∅ where GSVI(C, B1, B2) is the fixed-point set of

the mapping G := ΠC(I − µ1B1)ΠC(I − µ2B2) with 0 < µ1 < α
κ2 and 0 < µ2 < β

κ2 . For arbitrarily given
x0 ∈ C, let {xn} be the sequence given by

un = γn(xn − Snun) + Snun,
zn = ΠC(un − µ2B2un),
yn = ΠC(zn − µ1B1zn),
xn+1 = (1− βn)ΠC(Tnyn − αnFTnyn) + βnxn, ∀n ≥ 0,
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where {αn}, {βn} and {γn} are the sequences in [0, 1] satisfying the following conditions:

(i) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞;

(ii) 1 ≥ lim supn→∞ βn ≥ lim infn→∞ βn ≥ 0;
(iii) 1 ≥ lim supn→∞ γn ≥ lim infn→∞ γn ≥ 0 and limn→∞ |γn+1 − γn| = 0.

Assume that ∑∞
n=0 supx∈C ‖Sn+1x − Snx‖ < ∞, and let S be a mapping of C into itself defined by

Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =
⋂∞

n=0 Fix(Sn). Then {xn} converges strongly to
x∗ ∈ Ω provided Tn+1yn − Tnyn → 0 as n→ ∞. In this case,

(a) x∗ ∈ Ω solves the VI: 〈F(x∗), j(x∗ − x)〉 ≤ 0, ∀x ∈ Ω;
(b) (x∗, y∗) solves the GSVI (3) with y∗ = ΠC(I − µ2B2)x∗.

Proof. Since the set C is bounded, one gets diam(C) = supx,y∈C ‖x− y‖ < ∞. Please note that T is
an asymptotically nonexpansive mapping equipped {θn} ⊂ [0, ∞) satisfying ∑∞

n=0 θn < ∞. Then,
we deduce that for all x, y ∈ C,

‖Tnx− Tny‖ ≤ (1 + θn)‖x− y‖ = ‖x− y‖+ θn‖x− y‖ ≤ ‖x− y‖+ θndiam(C).

Hence, we get cn := max{0, supx,y∈C(‖Tnx − Tny‖ − ‖x − y‖)} ≤ θndiam(C), which immediately
attains ∑∞

n=0 cn < ∞. Therefore, by Theorem 1 we derive the result.

Theorem 3. Fix a convex, nonempty closed set in a real Hilbert space H. Let the monotone mappings
B1, B2 : C → H be α-inverse-strongly and β-inverse-strongly. Set F : C → H a κ-Lipschitzian and
η-strongly monotone with constants κ, η > 0 such that τ = 1−

√
1− ρ(2η − ρκ2) ∈ (0, 1], where 0 <

ρ < 2η

κ2 . Let T be an asymptotically nonexpansive mapping equipped with an asymptotic sequence {θn}. Let
{Sn}∞

n=0 : C → C be a countable family of `-uniformly Lipschitzian pseudocontractions such that Ω :=⋂∞
n=0 Fix(Sn) ∩GSVI(C, B1, B2) ∩ Fix(T) 6= ∅ where GSVI(C, B1, B2) is the fixed-point set of the mapping

G := PC(I − µ1B1)PC(I − µ2B2) with µ1 ∈ (0, 2α) and µ2 ∈ (0, 2β). For any given x0 ∈ C, let {xn} be the
sequence given by 

un = γn(xn − Snun) + Snun,
zn = PC(un − µ2B2un),
yn = PC(zn − µ1B1zn),
xn+1 = (1− βn)PC(Tnyn − αnρFTnyn) + βnxn, ∀n ≥ 0,

where {αn}, {βn} and {γn} are the sequences in (0, 1] satisfying the following conditions:

(i) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞;

(ii) limn→∞
θn
αn

= 0;

(iii) 1 ≥ lim supn→∞ βn ≥ lim infn→∞ βn ≥ 0;
(iv) 1 ≥ lim supn→∞ γn ≥ lim infn→∞ γn ≥ 0 and limn→∞ |γn+1 − γn| = 0.

Assume that ∑∞
n=1 supx∈D ‖Snx− Sn−1x‖ < ∞ for any bounded subset D of C, and let S : C → C be a

mapping defined by Sx = limn→∞ Snx for all x ∈ C, and suppose that Fix(S) =
⋂∞

n=0 Fix(Sn). Then {xn}
converges strongly to x∗ ∈ Ω provided limn→∞ ‖Tn+1yn − Tnyn‖ = 0. In this case,

(a) x∗ ∈ Ω solves the VI: 〈F(x∗), x∗ − x〉 ≤ 0, ∀x ∈ Ω;
(b) (x∗, y∗) solves the GSVI (3) with y∗ = PC(x∗ − µ2B2x∗).

4. Conclusions

In this paper, we studied a relaxed Mann implicit iteration method for the solution of a GSVI.
It deserves mentioning that our iteration involves an infinite family of operators and there is no
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commutative condition to be required. With the aid of the projection, we established a convergence
result in setting of 2-uniformly smooth and uniformly convex spaces.

Author Contributions: These authors contributed equally to this work.

Funding: This paper was supported by the National Natural Science Foundation of China under Grant 11601348.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goebel, K.; Kirk, W.A. A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc.
1972, 35, 171–174. [CrossRef]

2. Kaczor, W.; Kuczumow, T.; Reich, S. A mean ergodic theorem for mappings which are asymptotically
nonexpansive in the intermediate sense. Nonlinear Anal. 2001, 47, 2731–2742. [CrossRef]

3. Takahashi, W.; Wen, C.F.; Yao, J.C. The shrinking projection method for a finite family of demimetric
mappings with variational inequality problems in a Hilbert space. Fixed Point Theory 2018, 19, 407–419.
[CrossRef]

4. Qin, X.; Cho, S.Y.; Wang, L. Iterative algorithms with errors for zero points of m-accretive operators.
Fixed Point Theory Appl. 2013, 2013, 148. [CrossRef]

5. Ceng, L.C.; Lur, Y.Y.; Wen, C.F. Implicit and explicit iterative algorithms for hierarchical variational inequality
in uniformly smooth Banach spaces. J. Inequal. Appl. 2017, 2017, 247. [CrossRef] [PubMed]

6. Wang, Q.W.; Guan, J.L.; Ceng, L.C.; Hu, B. General iterative methods for systems of variational inequalities
with the constraints of generalized mixed equilibria and fixed point problem of pseudocontractions.
J. Inequal. Appl. 2018, 2018, 315. [CrossRef]

7. Ceng, L.C.; Gupta, H.; Ansari, Q.H. Implicit and explicit algorithms for a system of nonlinear variational
inequalities in Banach spaces. J. Nonlinear Convex Anal. 2015, 16, 965–984.

8. Zhao, X.; Ng, K.F.; Li, C.; Yao, J.C. Linear regularity and linear convergence of projection-based methods for
solving convex feasibility problems. Appl. Math. Optim. 2018, 78, 613–641. [CrossRef]

9. Ansari, Q.H.; Babu, F.; Yao, J.C. Regularization of proximal point algorithms in Hadamard manifolds. J. Fixed
Point Theory Appl. 2019, 21, 25. [CrossRef]

10. Guan, J.L.; Ceng, L.C.; Hu, B. Strong convergence theorem for split monotone variational inclusion with
constraints of variational inequalities and fixed point problems. J. Inequal. Appl. 2018, 2018, 311. [CrossRef]

11. Nguyen, L.V.; Qin, X. Some results on strongly pseudomonotone quasi-variational inequalities. Set-Valued
Var. Anal. 2019. [CrossRef]

12. Al-Mezel, S.A.; Ansari, Q.H.; Ceng, L.C. Hybrid viscosity approach for hierarchical fixed-point problems.
Appl. Anal. 2015, 94, 2–23. [CrossRef]

13. Qin, X.; Petrusel, A.; Yao, J.C. CQ iterative algorithms for fixed points of nonexpansive mappings and split
feasibility problems in Hilbert spaces. J. Nonlinear Convex Anal. 2018, 19, 157–165.

14. Qin, X.; Cho, S.Y. Convergence analysis of a monotone projection algorithm in reflexive Banach spaces.
Acta Math. Sci. 2017, 37, 488–502. [CrossRef]

15. Kato, T. Nonlinear semigroups and evolution equations. J. Math. Soc. Jpn. 1967, 19, 508–520. [CrossRef]
16. Ceng, L.C. Convergence analysis of a Mann-like iterative algorithm in reflexive Banach spaces.

Appl. Set-Valued Anal. Optim. 2019, 1, 1–18.
17. Qin, X.; Cho, S.Y.; Wang, L. Strong convergence of an iterative algorithm involving nonlinear mappings of

nonexpansive and accretive type. Optimization 2018, 67, 1377–1388. [CrossRef]
18. Dehaish, B.A.B. Weak and strong convergence of algorithms for the sum of two accretive operators with

applications. J. Nonlinear Convex Anal. 2015, 16, 1321–1336.
19. Qin, X.; Yao, J.C. Projection splitting algorithms for nonself operators. J. Nonlinear Convex Anal. 2017, 18,

925–935.
20. Chang, S.S.; Wen, C.F.; Yao, J.C. Common zero point for a finite family of inclusion problems of accretive

mappings in Banach spaces. Optimization 2018, 67, 1183–1196. [CrossRef]
21. Ceng, L.C.; Petrusel, A.; Yao, J.C.; Yao, Y. Hybrid viscosity extragradient method for systems of variational

inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in Banach spaces.
Fixed Point Theory 2018, 19, 487–501. [CrossRef]

http://dx.doi.org/10.1090/S0002-9939-1972-0298500-3
http://dx.doi.org/10.1016/S0362-546X(01)00392-3
http://dx.doi.org/10.24193/fpt-ro.2018.1.32
http://dx.doi.org/10.1186/1687-1812-2013-148
http://dx.doi.org/10.1186/s13660-017-1523-8
http://www.ncbi.nlm.nih.gov/pubmed/29051694
http://dx.doi.org/10.1186/s13660-018-1899-0
http://dx.doi.org/10.1007/s00245-017-9417-1
http://dx.doi.org/10.1007/s11784-019-0658-2
http://dx.doi.org/10.1186/s13660-018-1905-6
http://dx.doi.org/10.1007/s11228-019-00508-1
http://dx.doi.org/10.1080/00036811.2013.835043
http://dx.doi.org/10.1016/S0252-9602(17)30016-4
http://dx.doi.org/10.2969/jmsj/01940508
http://dx.doi.org/10.1080/02331934.2018.1491973
http://dx.doi.org/10.1080/02331934.2018.1470176
http://dx.doi.org/10.24193/fpt-ro.2018.2.39


Mathematics 2019, 7, 424 16 of 16

22. Qin, X.; Yao, J.C. Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators.
J. Inequal. Appl. 2016, 2016, 232. [CrossRef]

23. Ceng, L.C.; Wang, C.Y.; Yao, J.C. Strong convergence theorems by a relaxed extragradient method for a
general system of variational inequalities. Math. Methods Oper. Res. 2008, 67, 375–390. [CrossRef]

24. Cai, G.; Shehu, Y.; Iyiola, O.S. Samuel Viscosity iterative algorithms for fixed point problems of asymptotically
nonexpansive mappings in the intermediate sense and variational inequality problems in Banach spaces.
Numer. Algorithms 2017, 76, 521–553. [CrossRef]

25. Ceng, L.C.; Petrusel, A.; Yao, J.C.; Yao, Y. Systems of variational inequalities with hierarchical variational
equality constraints for Lipschitzian pseudocontractions. Fixed Point Theory 2019, 20, 113–133. [CrossRef]

26. Liu, L. Iterative methods for fixed points and zero points of nonlinear mappings with applications.
Optimization 2019. [CrossRef]

27. Reich, R. Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl.
1979, 67, 274–276. [CrossRef]

28. Deimling, K. Zeros of accretive operators. Manuscr. Math. 1974, 13, 365–374. [CrossRef]
29. Gossez, J.P.; Dozo, E.L. Some geometric properties related to the fixed point theory for nonexpansive

mappings. Pac. J. Math. 1972, 40, 565–573. [CrossRef]
30. Xu, H.K. Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16, 1127–1138. [CrossRef]
31. Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. Approximation of common fixed points of a countable

family of nonexpansive mappings in a Banach space. Nonlinear Anal. 2007, 67, 2350–2360 [CrossRef]
32. Oka, H. An ergodic theorem for asymptotically nonexpansive mappings in the intermediate sense. Proc. Am.

Math. Soc. 1997, 125, 1693–1703. [CrossRef]
33. Suzuki, T. Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive

semigroups without Bochner integrals. J. Math. Anal. Appl. 2005, 305, 227–239. [CrossRef]
34. Marino, G.; Xu, H.K. A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math.

Anal. Appl. 2006, 318, 43–52. [CrossRef]
35. Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge Studies in Advanced Mathematics;

Cambridge University Press: Cambridge, UK, 1990; Volume 28.
36. Xue, Z.; Zhou, H.; Cho, Y.J. Iterative solutions of nonlinear equations for m-accretive operators in Banach

spaces. J. Nonlinear Convex Anal. 2000, 1, 313–320.
37. Ceng, L.C.; Wen, C.F. Systems of variational inequalities with hierarchical variational inequality conxtraints

for asymptotically nonexpansive and pseudocontractive mappings. RACSAM 2019. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s13660-016-1163-4
http://dx.doi.org/10.1007/s00186-007-0207-4
http://dx.doi.org/10.1007/s11075-017-0269-1
http://dx.doi.org/10.24193/fpt-ro.2019.1.07
http://dx.doi.org/10.1080/02331934.2019.1613404
http://dx.doi.org/10.1016/0022-247X(79)90024-6
http://dx.doi.org/10.1007/BF01171148
http://dx.doi.org/10.2140/pjm.1972.40.565
http://dx.doi.org/10.1016/0362-546X(91)90200-K
http://dx.doi.org/10.1016/j.na.2006.08.032
http://dx.doi.org/10.1090/S0002-9939-97-03745-3
http://dx.doi.org/10.1016/j.jmaa.2004.11.017
http://dx.doi.org/10.1016/j.jmaa.2005.05.028
http://dx.doi.org/10.1007/s13398-019-00631-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Main Results
	Conclusions
	References

