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Abstract: Each industry prefers to sell perfect products in order to maintain its brand image. However,
due to a long-run single-stage production system, the industry generally obtains obstacles. To solve
this issue, a single-stage manufacturing model is formulated to make a perfect production system
without defective items. For this, the industry decides to stop selling any products until whole
products are ready to fulfill the order quantity. Furthermore, manufacturing managers prefer product
qualification from the inspection station especially when processes are imperfect. The purpose of
the proposed manufacturing model considers that the customer demands are not fulfilled during
the production phase due to imperfection in the process, however customers are satisfied either
at the end of the inspection process or after reworking the imperfect products. Rework operation,
inspection process, and planned backordering are incorporated in the proposed model. An analytical
approach is utilized to optimize the lot size and planned backorder quantities based on the minimum
average cost. Numerical examples are used to illustrate and compare the proposed model with
previously developed models. The proposed model is considered more beneficial in comparison with
the existing models as it incorporates imperfection, rework, inspection rate, and planned backorders.

Keywords: imperfect manufacturing system; backordering; defective products; rework; inspection

1. Introduction

Economic and production order quantity models have been extensively used in real industrial
life for calculation of the optimum lot size. However, these models are based on the assumption that
production processes result in perfect quality products always. There are various factors, which affect
the manufacturing processes to make that assumption highly unrealistic. Engineers and technical
experts reprocess these imperfect products and deliver them as per customer requirements after
its qualification from the quality control section. For example, manufacturing processes involved
in ultra-precision manufacturing industries including the automobile sector, ship manufacturing,
defense and aerospace related products manufacturing industries, and tool manufacturing industries
are a few of the common areas where the production of reworked and non-reworked products
cannot be eliminated at all. Such products need qualification from the quality control department of
the said organization in order to ensure that the product has been manufacturing as per customer
requirements. In such setups, it is very rare that the product is delivered without its confirmation
from inspection stations, i.e., demands fulfillment during the production stage. This proposed model
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re-considers the concept of Cárdenas-Barrón [1] to develop rework and backordering for the single-stage
manufacturing setup.

Jamal et al. [2] introduced the rework operation to develop an optimal batch size for a single-stage
production system. Two models were developed with the assumption that the rework operation can be
performed either immediately or at the end of N-cycles. The optimal batch size was calculated based
on the average minimum cost function. In the model, it is assumed that customer demands are met
during the production process where demands are fulfilling during the production stage although the
process is imperfect. Later, Cárdenas-Barrón [1] extended this model by incorporating the concept of
planned backorders for a single-stage manufacturing setup. The rework operation was performed
immediately at the end of the production process. Cárdenas-Barrón [1] obtained a closed-form solution
for this model based on the average system cost. The optimum lot size and backorder quantity
was calculated. Recently, Sarkar et al. [3] assumed that defective items may follow three kinds of
distribution functions, i.e., uniform, triangular, and beta distribution. The analytical method has
been used to calculate the optimal lot size and backorder quantity. These models assume imperfect
processes during the production phase on one side and customer demands fulfillment on the other side.
Therefore, inventory modeling in most of the models is based on (p(1 − γ) − d). The production model
based on (p(1 − γ) − d) is based on the assumption that processes deviate from ideal conditions and
are unable to produce quality products each and every time. This deviation from the ideal situation
results in imperfection in processes that ultimately affect the products produced (p) by these processes.
This imperfection results in the production of γ that need rectification / rework. Therefore, this number
of items cannot be added to the total inventory buildup rather they need rectification. Hence, the net
inventory is (p(1 − γ) − d) instead of (p − d), which is applicable in the case of the perfect manufacturing
environment. Whereas simultaneous demands fulfillment during the production phase is relatively
unrealistic. Products need qualification from an inspection station before they are delivered to the
customer or warehouse especially when processes are imperfect. Optimum lot sizes were calculated for
real life scenarios, resulting in extension to the basic economic order quantity (EOQ) and production
quantity models. Lee and Rosenblatt [4] introduced an idea of larger investment in quality control
approaches to obtain the benefit of lower defective rate, reduced setup, and holding costs. Ben-Daya
and Hariga [5] developed an economic lot size model with an important realistic assumption that
perfect production processes deviate at random rate and results in some non-conforming products.
Salameh and Jaber [6] extended the EOQ model for electronic industry items in particular with the
assumption that 100% screening is performed of all incoming units. They assumed that low quality
products could be sold out at the reduced price in a single batch. Later, Goyal and Cárdenas-Barrón [7]
used a simple algebraic approach for optimum lot size calculation. The results were almost similar
when other approaches were utilized in an imperfect production environment.

Biswas and Sarker [8] developed an optimal lot size for a lean manufacturing system where scrap
items were identified ‘before’, ‘during’ and ‘after’ the rework process. Shortages in the production
process were met through a buffer station of the qualified finish products. Chiu et al. [9] initiated
a random defective rate within an imperfect production system. Pal et al. [10] worked on the
production model with a stochastic demand not a stochastic defective rate. Ojha et al. [11] considered
Chiu et al.’s [9] model with a quality assurance and rework. Chiu et al. [12] made their own model [9]
with service level constraint. Rahim and Al-Hajailan [13] worked on Ojha et al.’s [11] model with
a time-varying defective rate. Sarkar [14] considers delay-in-payments and stock-dependent demand.
Sarkar et al. [15] converted a single-stage production system into a multi-stage production system
when the defective item’s reworking would be after n cycles or in each cycle that would be decided,
whereas they considered a constant defective rate. Sarkar et al. [16] incorporated lead-time demand
in the integrated production model. Ullah and Kang [17] mathematically managed the rejections
of defective products and inspection on work-in-process lot-size. Cárdenas-Barrón et al. [18–20]
covered three production models with discrete deliveries, multiple shipments, and partial reworks.
Wee et al. [21] proposed an alternative solution approach of the production model. Sarkar [22] worked
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on the improved production model with the concept of reliability without any defective products.
Tayyab and Sarkar [23] extended Sarkar et al.’s [3] model with multi-stage but with constant defective
products. Sarkar and Moon [24] introduced the model the under inflation and time value of money.
Sarkar et al. [25] extended Sarkar’s [22] model with time-dependent demand under the reliable
production system. Sarkar et al. [26] developed an optimal reliable model with defective products.
However, none of the researchers consider the demand after production and full inspection to fulfill the
customer’s demand. Wee et al. [27] used the renewal reward theorem (RRT) to calculate the average
total profit for optimization of the economic production quantity lot size by considering the imperfect
production environment and screening constraint. Researchers (Sana [28,29] and Chaudhuri [30])
concluded that imperfect quality items can be reworked for their practical utilization and significance.

The basic objective of the study is to convert and model the imperfect production system into
a mathematical form. The purpose of the proposed production model considers the scenario where the
customer demands are not fulfilled during the production phase due to imperfection in the process,
and customers are satisfied either at the end of the inspection process or after reworking the imperfect
products. The rework operation, inspection process, and planned backordering are incorporated in the
proposed model. An analytical approach is utilized to optimize the lot size and planned backorder
quantities based on the minimum average cost. The introduction has been given in this section. The rest
of the paper is modeled as follows: The next section is related to the past and current research studies
related to the imperfection in the production model. Section 3 describes the model development with
notation, assumptions, and equations required for optimal solutions. In Section 4, numerical examples
are used to evaluate and discuss the proposed model’s results. Section 5 includes the results and
discussion of the numerical experiments performed using the proposed methodology. The sensitivity
analysis has been given in detailed form in Section 6. Conclusions and future directions of the research
are presented in the last section.

2. Literature Review

Most of the research carried out in the past concentrated on the production process itself.
Defective products are produced in an out-of-control status of the process. These products are either
scrapped or reworked in most of the research literature. One major aspect of the production setup
is the product qualification via the inspection process. Industries including aerospace, automobile,
and pharmaceutical cannot deliver the product until and unless it is qualified by the inspection
stage. Inspection is considered as a process that consumes resources (time, material, techniques) in
a similar way as are consumed by other processes. Relatively less attention has been given to the
inspection rate in conjunction with the manufacturing process. However, in most of the inventory
related literature, it is assumed that inspection takes either minimal time or is performed in parallel to
the manufacturing processes. Whereas inspection rate importance is much required in environments
where production processes are imperfect as the probability of non-conforming products increases.
Ben-Salem et al. [31,32] considered an environmental issue and sub-control issues within two alternative
production maintenance systems where the production degradation is considered without stopping
the demanded products for the market. Purohit et al. [33] extended a basic production model with
maintenance planning within an integrated approach, even though they considered production and
demand in parallel. Ullah et al. [34] explained the inspection errors within the inspection system within
a tradition production system. Shin et al. [35] extended Ullah et al.’s [34] model with trade-credit
financing. Kim and Sarkar [36] converted the basic single-stage production system to the multi-stage
production system where they did not consider initial production and then demand. Diabat et al. [37]
extended the basic production model with partial downstream down payment. Kang et al. [38]
explained the effect of smart manufacturing technology based on the human quality control system.
Sarkar et al. [39] extended the field of the imperfect production with a distribution free approach
to calculate shortages during lead-time demand. Omair et al. [40] and Sarkar et al. [41] extended
the production model by considering the imperfect production with the inspection process, rework,



Mathematics 2019, 7, 446 4 of 18

and rejected products. Kang et al. [42] extended Cárdenas-Barrón’s [1] model with safety stock and
planned backorders whereas they did not think about imperfect products.

Researchers highlighted the impact of the inspection process on the optimum lot size during the
last few decades. Zhang and Gerchak [43] introduced a model based on the joint lot size in addition
with the inspection policy. The single period manufacturing problem was considered with uncertainty
in demand and inconstant yield. Inspection errors effect on total cost and lot size was highlighted by
Ben-Daya and Rahim [44] in a multistage production setup. They assumed that inspection is performed
at the end of every stage. Ben-Daya et al. [45] developed models for an integrated system highlighting
the impact of different inspection policies including ‘no inspection’, ‘sample based inspection’, and
100 percent inspection. Khan et al. [46] presented an extensive review of EOQ models focusing on the
model developed by the Salameh and Jaber model [6]. The review classified various extended models
based on imperfect items, shortages backordering, quality, and supply chain. Razaei [47] incorporated
backorder into the inventory model for an imperfect manufacturing setup. Analytical approaches
were used to get the optimal lot size and shortages level. Wee et al. [48] extended Salameh and Jaber’s
model [6] for the imperfect production setup incorporating the backorders. Taleizadeh et al. [49]
developed an economic production order quantity model with disturbance in processes that result in
scrap and rework. They considered the backorder with cycle length and optimal backorder quantity as
the decision variable. Hu et al. [50] introduced an inventory model that highlighted that the backorder
cost per unit is increasing linearly with shortage time. Ganguly et al. [51] considered partial backorders
in supply chain management to meet the demand in the market.

Table 1 highlights contributions made during the last several years in the field of inventory
management focusing on imperfect production processes. It can be observed in Table 1 that the
literature assumes imperfect production processes for a production quantity model along with rework
operation, inspection process, and backorder process. Most of the considered research works focuses
on the objective to minimize the cost of the production system under the optimization process except
the work of Wee et al. [27] (maximizing total profit of the production system). All these extended
models assume that customer demands are fulfilled in the production phase. However, products need
qualification from an inspection station before they are delivered to the customer especially when
the process is imperfect. Therefore, it is possible that demands fulfillment during the production
phase is not appropriate as the probability of delivering imperfect quality products to the customer
rises. Research gap exists in the available literature, to the best of our knowledge, to ensure qualified
products delivery to the end user while working in random imperfect production setup. This paper is
an approach towards fulfillment of this gap in the existing literature. From Table 1, it is found that
several authors considered production and supply in parallel when imperfect products are in the
system, which is impractical to maintain the brand image of the industry. The most benefitted way is
that during production, the products supply should not be allowed to meet the demand as imperfect
products are there. This is a major research gap within all studies in this direction. Thus, this proposed
model is considered to solve this issue.

This model assumes that products can only be consumed at a demand rate when they are
either qualified or processes are perfect. The management delivers the manufactured products to the
inspection station where products are classified as either qualified, rejected or to be reworked. It is
assumed that imperfect products are rewardable. However, the probability of rejected products is low
and can be ignored. It may further be added that the backordering process has also been taken into
consideration to calculate the optimum backorder quantity in an imperfect manufacturing environment.
It is hoped that this model integrates all major aspects (rework, inspection rate and backordering) of the
production setup to help managers in making decisions regarding the inventory level and backorder
quantity for an imperfect production setup focusing on qualified products delivery to the customer.
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Table 1. Author contribution in the production model on the basis of process, rework, inspection, backordering and demand.

Author (s)
Process Rework Process Inspection Process Backordering Process Demands Fulfillment (d)

Imperfect Re-Workable Scrap Perfect Not
Allowed Imperfect No Sampling 100% No Back-

Ordering
Lost
Sale Back-Ordering During Production

Phase
After

Inspection

Cárdenas-Barrón [1]
√ √ √ √ √ √ √

Salameh and Jaber [6]
√ √ √ √ √

Ojha et al. [11]
√ √ √ √ √

Chiu et al. [12]
√ √ √ √ √ √ √

Sarkar et al. [15]
√ √ √ √ √ √

Wee et al. [27]
√ √ √ √ √ √

Sana [29]
√ √ √ √ √

Ben-Daya and Rahim [44]
√ √ √ √ √ √

Ben-Salem et al. [31]
√ √ √

Ullah et al. [34]
√ √ √ √ √

Kim and Sarkar [36]
√ √ √ √

Kang et al. [38]
√ √ √ √ √

Sarkar et al. [39]
√ √ √ √ √ √ √ √ √ √ √ √ √

This Paper
√ √ √ √ √ √ √
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3. Mathematical Model

The problem starts with the assumption that the optimal lot size and backorder quantity are
derived for an imperfect manufacturing environment. Lot size Q arrives at the manufacturing station
during each cycle. Due to process imperfection, the γ percent of total products needs rectification
as the process goes out-of-control status during the production phase. All these imperfect products
are reworkable. Due to imperfection in the process, manufactured products are not delivered to the
customer directly, rather these products are processed through an inspection stage with a known
inspection rate (M) in order to know about product qualification. On the other side, all reworkable
products are re-processed after the inspection process. It is assumed that reworked products are
qualified after reprocessing and no re-inspection is required.

Other assumptions are as follows:

1. Demand and production rates are known and constant. During production, no product is to be
sold. After production completion, the demand is started as the production system contains the
defective product.

2. Production rate is higher than the demand rate.
3. Reworkable products produced during the manufacturing phase are known in percentage.
4. Imperfect products produced during the production processes are re-processed on the same

machine with 100% qualification.
5. Customer receives qualified perfect products only to maintain the good brand image of

the industry.
6. Qualified products are delivered to the customer after the inspection process.
7. Planned backordering is allowed and the inventory storage space is unlimited.

The following notation has been used to develop the model.

Parameters
d demand rate (units/unit time)
p production rate (units/unit time)
h inventory holding cost per unit time ($/unit/unit time)

t1
time required for planned backorder units to be fulfilled when process starts
again.

t2 time required by machining station to manufacture lot size Q
t3 time required to inspect manufactured units
t4 time required to rework imperfect units
t5 time required to consume on hand inventory
t6 time required to build the backorder inventory
I1 average inventory developed during machining of lot size Q (units/unit time)
I2 average inventory produced during rework operation (units/unit time)
Imax maximum average inventory produced during one cycle time (units/unit time)
γ percentage of imperfect products produced during the production phase (%)
Z backorder cost per unit product per unit time ($/unit backorder/ unit time)
c cost of manufacturing per unit product ($/unit)
k setup cost per lot size ($/setup)
Ci inventory holding cost per unit of time ($/unit time)
Cb backorder cost per unit time ($/unit time)
Cs setup cost per unit time ($/unit time)
Cm manufacturing cost per unit time ($/unit time)
TC(Q,B) total cost per unit time ($/unit time)
Variables
Q lot size (units)
B backorder quantity (units)
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The inventory over time for an economic order production quantity model for a complete cycle
is shown below in Figure 1. The process considers planned backorders, manufacturing of lot size,
inspection process, and rework process of imperfect products. As stated earlier, customer demands are
not fulfilled during the production phase due to the process imperfection. The objective is to ensure
qualified products for delivery to the customer. The inventory builds up during the production phase.
Demands are not fulfilled in the production phase. Customer demands are fulfilled at the rate d during
the rework process only. Some percentages of products are qualified at the rework stage and can be
delivered to the customer in order to minimize inventory cost.
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planned backordering.

Considering Figure 1, it is found that the time required to produce lot size Q at the production rate
p is the sum of the time required by different processes to produce Q units. These processes include
the time required for planned backorder units to be fulfilled when the process starts again (t1), time
required to manufacture lot size Q (t2), time required to inspect the manufactured units (t3), and time
required to rework imperfect units (t4), i.e.,

tp = t1 + t2 + t3 + t4 (1)

Obtaining these times in terms of the demand rate (d) and inventory lot size Q,
From Figure 1, the area of ∆ 146 is the accumulated by production and backorder inventory, one

can obtain
tan θ =

I1 + B
t1 + t2

p(1− γ) =
I1 + B
t1 + t2

t1 + t2 =
I1 + B
p(1− γ)

(2)
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The time required for the inspection of manufactured products (t3) is given by the following
relation at the rate M,

t3=
I1 + B

M
(3)

Similarly, t4 is the time required to rework imperfect products,

t4 =
γ Q

p

In addition, the area of ∆ 91213 is the accumulated inventory during reworking, then the time can
be obtained as follows:

t4 =
I2

( p− d)

i.e.,

I2 = γQ
(
1−

d
p

)
(4)

Therefore, (1) becomes
Q
p
=

I1 + B
p(1− γ)

+
I1 + B

M
+

γ Q
p

After some algebraic rearrangements and simplification, one can obtain

I1 =
MQ(1− γ)2

M + p(1− γ)
− B (5)

Therefore, from (4) and (5), the maximum inventory is given by

Imax = I1 + I2 =
QM (1− γ)2

M + p(1− γ)
− B + γQ

(
1−

d
p

)
(6)

Assuming
(1− γ)2

M + p(1− γ)
= θ1 and (1−

d
p
) = θ2, then

I1 = MQθ1 − B
I2 = γQθ2

Imax = MQθ1 + γQθ2 − B

The average inventory can be found by taking the sum of the area of triangles and rectangles as
shown in Figure 1 divided by the cycle time. The cycle time is defined as the time in which Q units
inventory is consumed at the demand rate (d).

From the area ∆ 356, the inventory for accruing Q quantity during inspection, area A1 is given by

A1=
I1 × t2

2

where t2 =
I1

p(1− γ) , putting in the above equation

A1=
(MQθ1 − B)2

2p(1− γ)
(7)

The area of ∆ 5698 is the area for holding inventory Q quantity during inspection, A2 is as follows:

A2= I1 × t3
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where t3 =
(I1+B)

M , thus

A2=
(MQθ1 − B)2 + (B(MQθ1 − B))

M
(8)

Similarly,

A3 = I1 × t4, where t4 =
γQ
p

A3= (
MQ2θ1γ

p
−

BQγ
p

) (9)

The area of ∆ 91213 is the area for reworking, which gives the building of inventory. One can have

A4 =
I2 × t4

2

A4 =
Q2γ2θ2

2p
(10)

The area A5 of ∆111315 is the area for demand of products without any production. Thus, the
area can be found as follows:

A5=
Imax × t5

2
, where t5 =

Imax

d
Therefore,

A5 =
(MQθ1 + γQθ2 − B)

2d

2

(11)

Therefore, the average inventory
(
Iavg

)
per unit cycle time is the summation of (7–10), and (11)

divided by the cycle time (t), i.e.,

Iavg =


(
(MQθ1−B)2

2p(1−γ)

)
+

(
(MQθ1 −B)2

+(B(MQθ1 −B))
M

)
+

(
MQ2θ1γ

p −
BQγ

p

)
+

(
Q2γ2θ2

2p

)
+

(
(MQθ1+γQθ2−B)

2d

2)
Q
d

 (12)

Algebraic simplification results in the following expression:

Iavg = {(
(M2Q2θ2

1+B2
−2 BMQθ1)

2p(1−γ) + MQ2θ2
1 − BQθ1 +

MQ2θ1γ
p +

Q2γ2θ2
2p −

BQγ
p +

1
2d (M

2Q2θ2
1 + B2 + Q2θ2

2γ2
−2BMQθ1 − 2 BQγθ2 + 2MQ2θ1θ2γ))/(

Q
d )}

(13)

Hence, the total inventory holding cost per unit cycle time is given by

Ci = h{(
(M2Q2θ2

1+B2
−2 BMQθ1)

2p(1−γ) + MQ2θ2
1 − BQθ1+

MQ2θ1γ
p +

Q2θ2γ
2

2p −
BQγ

p

+ 1
2d (M

2Q2θ2
1 + B2 + Q2θ2

2γ2
− 2BMQθ1 − 2 BQγθ2 + 2MQ2θ1θ2γ))/(

Q
d )}

(14)

The average backordering cost can be computed by calculating the area of ∆ 123 and ∆ 141516
which represent the average inventory in the form of backordered products per unit time (t).

Therefore,

Backorder cost (Cb) = (Average backorder inventory) × (Unit cos t per unit backorder product per unit of time)

=
(Area of (∆ 123) + Area of(∆ 141516))

t × (z)

=
(

B×t1
2 +

B×t6
2 )

Q
d

(z)
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where t1 = B
p( 1−γ) , t6 = B

d , which gives

Cb =

(
B2(p(1− γ) + d)

2p(1− γ)Q

)
(z) (15)

Other important costs taken into consideration are the setup cost (Cs) and the manufacturing
cost (Cm).

Cs=
kd
Q

(16)

Cm= cd(1 + γ) (17)

Therefore, following the relation for all associated costs including the inventory-holding cost,
setup cost, backorder cost and manufacturing cost per unit of time.

TC (Q, B) = h{(
M2Q2θ2

1+B2
−2 BMQθ1

2p(1−γ) + MQ2θ2
1 − BQθ1 +

MQ2θ1γ
p +

Q2θ2γ
2

2p −
BQγ

p +
1

2d (M
2Q2θ2

1 + B2 + Q2θ2
2γ2
− 2BMQθ1 − 2 BQγθ2 + 2MQ2θ1θ2γ))/(

Q
d )}

+ (
B2(p(1−γ)+d)

2p(1−γ)Q )(z) + cd(1 + γ) + kd
Q

(18)

After algebraic simplification, one obtains:

TC (Q, B) =

 dhM2θ2
1

2p(1− γ)
+ dhMθ2

1 +
dhθ2γ2

2p
+

dhMθ1γ

p
+

M2hθ1
2

2
+

hθ2
2γ2

2
+ hMθ1θ2γ

Q

(
dh

p(1− γ)
+ h +

(p(1− γ) + d)z
p(1− γ)

)
B2

2Q
−

(
dhMθ1

p(1− γ)
+ dhθ1 +

dhγ
p

+ hMθ1 + hθ2γ

)
B + cd(1 + γ) +

kd
Q

The following symbols are used to simplify the above expression,

R1=

 dhM2θ2
1

2p(1− γ)
+ dhMθ2

1 +
dhθ2γ2

2p
+

dhMθ1γ

p
+

M2hθ1
2

2
+

hθ2
2γ2

2
+ hMθ1θ2γ


R2=

(
dh

p(1− γ)
+ h +

(p(1− γ) + d)z
p(1− γ)

)
R3=

(
dhMθ1

p(1− γ)
+ dhθ1 +

dhγ
p

+ hMθ1 + hθ2γ

)
thus,

TC (Q, B) = Q(R1) +

(
B2

2Q

)
(R2) − B(R3) +

kd
Q

+ cd(1 + γ) (19)

The optimum lot size (Q*) and backorder quantity (B*) can be found by minimization of the total
cost function assuming Q and B as continues function.

Theorem 1. TC∗(Q, B) will have global maximum values at Q∗ and B∗ if Q∗ =
√

2kd(R2)

2R1R2−(R3)
2 and B∗ = R3

R2(√
2kd(R2)

2R1R2−(R3)
2

)
.

Proof. The following conditions need to be fulfilled in order to verify that (19) is a convex function.

I) ∂2TC (Q, B)
∂Q2 > 0, ∂2TC (Q, B)

∂B2 > 0

II)
(
∂2TC (Q, B)

∂Q2

)(
∂2TC (Q, B)

∂B2

)
−

(
∂2TC (Q, B)

∂Q∂B

)2
> 0

(20)
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�

Assuming Q and B as continues, first partial derivatives with respect to Q and B of (19) are shown
in (21) and (22), respectively.

∂TC (Q, B)
∂Q

= (R1)−

(
B2

2Q2

)
(R2) −

kd
Q2 (21)

∂TC (Q, B)
∂B

=

(
B
Q

)
(R2) − (R3) (22)

Similarly,
∂2TC (Q, B)

∂Q2 =

(
B2

Q3

)
(R2) +

2kd
Q3 > 0 (23)

∂2TC (Q, B)
∂B2 =

(
R2

Q

)
> 0 (24)

(
∂2TC (Q, B)

∂Q2

)(
∂2TC (Q, B)

∂B2

)
−

(
∂2TC (Q, B)

∂Q∂B

)2

=
2kd
Q4

(R2) (25)

The necessary and sufficient conditions for (19) to be convex have been fulfilled as shown in (23),
(24), and (25). Therefore, an optimal solution exists at which the total cost function will be minimum.
Thus, (21) and (22) are simultaneously solved to obtain the optimal lot size (Q) and backorder quantity
(B) which are given by:

Q∗ =

√
2kd(R2)

2R1R2 − (R3)
2 (26)

B∗ =
R3

R2


√

2kd(R2)

2R1R2 − (R3)
2

 (27)

The optimal total cost can be obtained by substituting (26) and (27) in (19) as follows:

TC∗(Q∗, B∗) =

√
2kd

(
2R1R2 −R2

3

)
R2

+ cd(1 + γ)

Therefore, TC∗(Q∗, B∗) is the global minimum total cost at Q∗ and B∗.
This proposed model could be reduced to the basic economic production quantity model (EPQ) if

processes are assumed perfect, demand is fulfilled during the production phase and shortages are not
expected. In addition, the optimum lot size and optimum backorder quantity obtained by (26) and (27)
can be reduced to the mathematical model developed by Cárdenas-Barrón [1] if the assumption of
meeting customer demands during the production phase is made.

4. Numerical Examples

Two numerical examples have been used to understand the proposed model utilization for
practical engineering problems and its comparison with previously developed models. Data has been
taken from the Cárdenas-Barrón’s model [1]. Numerical examples illustrate the effect of imperfect
products and the inspection rate on the optimum lot size and backorder quantity. The total cost,
optimal lot size and optimal backorder quantity at different values of the defect rate and inspection
rate are calculated.
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4.1. Example 1

The parametric data used for the mathematical experiment of the proposed model include the
demand rate (d) = 300 units per year, inspection rate (M) = 550 units per year, production rate
(p) = 550 units per year, holding cost (h) = $50 per unit per year, shortage cost per unit (z) = $10 per
unit short per year, manufacturing cost (c) = $7 per unit, setup cost (k) = $50 per unit per year.

4.2. Example 2

The similar type of analysis is performed for another example whose data set is relatively for
higher demand and production rate. In this example, the demand rate (d) = 4800 units per year,
production rate (p) = 24,000 units per year, setup cost (k) = $120 per lot size, holding cost (h) = $0.6 per
unit per year, shortages cost (z) = $14 per unit short per year and manufacturing cost (c) = $3 per unit.
The inspection rate is assumed as 36,000 units per year and defective products produced during the
process are varied gradually over an interval (0, 40%).

5. Results and Discussion

Table 2 shows the impact of the defective rate on the optimal lot size (Q) and optimal backorder
quantity (B). It can be observed that lot size increases with an increase in the percentage of the defective
rate. Similarly, the total cost variation is also significant. Total cost is increased with an increase
in imperfection during the manufacturing process. However, an increase in the optimal backorder
quantity level is relatively low with an increase in the defective rate. Comparing these results with
the results obtained by Cárdenas-Barrón [1] (Example 1), it can be observed that the total cost of our
proposed model is comparable for the range of imperfection (0%, 40%). However, the lot size has
been increased significantly. The backorder quantity increases up to 35% of the defective rate and then
decreases with increases in defective products.

Table 2. Change in optimal lot size and backorder quantity with variation in the defective rate
(Example 1).

γ(%) θ1 Total Cost ($/Year) Q*(Units) B*(Units)

0 0.000909091 2423.44 93 52
1 0.000895477 2437.49 95 53
5 0.000841492 2493.71 104 57

10 0.00077512 2564.18 118 62
15 0.000710074 2635.20 136 69
20 0.000646465 2707.40 160 79
25 0.000584416 2782.06 191 90
30 0.000524064 2861.69 228 104
35 0.000465565 2950.74 259 113
40 0.000409091 3054.67 262 109

It can be observed in Table 3 that the total cost and optimal lot size increase with an increase in the
defective rate significantly at higher demand and production rate. The higher the defective products
produced, the higher will be the lot size to be ordered. However, the change in backorder units is
less significant for higher production rate and demand rate when the holding cost per unit product
is comparatively low. Comparing these results with the results obtained by Cárdenas-Barrón [1]
(Example 2), the total cost of our proposed model has not been increased significantly although the
inspection process and carrying inventory over a longer period have been incorporated. Relatively
larger lot sizes have been proposed by our model.

The change in optimal lot size with the change in the inspection rate has been shown in Figure 2
below. Example 2 data has been used for further analysis. It can be observed that the optimal lot size
goes on decreasing with an increase in the inspection rate. It may be noted that the inspection rate is
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increased from 24,000 units (equal to the production rate) to 42,000 units per year (one and half time
higher than the production rate). Defective products rate remain fixed at 20%. All other data remain
the same. The total cost and backorder quantity level has been shown in Table 4. It may be noted that
the backorder quantity level doesn’t change with significant change in the inspection rate at the fixed
level of defective products produced.

Table 3. Change in optimal lot size and backorder quantity with variation in the defective rate
(Example 2).

γ(%) θ1 Total Cost ($/Year) Q* (Units) B*(Units)

0 0.000016 14,991.78 1947 52
1 0.000016 15,133.44 1954 52
5 0.000015 15,700.49 1985 52

10 0.000014 16,410.33 2020 52
15 0.000012 17,121.43 2052 52
20 0.000011 17,833.88 2080 52
25 0.000010 18,547.80 2103 51
30 0.000009 19,263.32 2120 51
35 0.000008 19,980.57 2131 51
40 0.000007 20,699.69 2135 50
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Table 4. Change in optimal lot size and backorder quantity with variation in the inspection rate
(Example 2).

M (Units Per Year) θ1 Total Cost ($/Year) Q*(Units) B* (Units)

24,000 0.0000148 17,783.27 2289 52
26,000 0.0000141 17,793.67 2243 52
28,000 0.0000135 17,803.15 2202 52
30,000 0.0000130 17,811.81 2166 52
32,000 0.0000125 17,819.77 2134 52
34,000 0.0000120 17,827.10 2106 52
36,000 0.0000115 17,833.88 2080 52
38,000 0.0000112 17,840.17 2057 52
40,000 0.0000108 17,846.02 2035 52
42,000 0.0000104 17,851.47 2016 52

At the end, both the inspection rate and defective products production rate are changed
simultaneously with an ascending order and their impact on the lot size, backorder level, and
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total cost is evaluated. The data has been shown in Table 5. It can be observed that total cost increases
with an increase in the inspection and defective rate. Moreover, it can be observed that for higher
inspection rate relative to the production process (M>>>p), the optimal lot size calculated by our
proposed model approaches the lot size calculated by using the economic order quantity model under
ideal conditions.

Table 5. Change in optimal lot size and backorder quantity with variation in the defective rate and
inspection rate (Example 2).

M (Units Per Year) γ(%) θ1 Total Cost ($/Year) Q* (Units) B* (Units)

24,000 0 0.000020 14,914.97 2237 52
26,000 5 0.000018 15,644.61 2196 52
28,000 10 0.000016 16,371.63 2167 52
30,000 15 0.000014 17,096.52 2147 52
32,000 20 0.000125 17,819.77 2134 52
34,000 25 0.000011 18,541.88 2126 52
36,000 30 0.0000092 19,263.32 2120 51
38,000 35 0.0000078 19,984.59 2115 50
40,000 40 0.0000066 20,706.15 2109 50
42,000 45 0.0000054 21,428.45 2100 49

6. Sensitivity Analysis

In order to evaluate the impact of important parameters on the optimal lot size and optimal
backorder quantity as proposed by the developed model, sensitive analysis is carried out. It is based
on the data shown in Example 2.

Table 6 summarizes the effect of key parameters on the optimal lot size, optimal backorder
quantity, and total cost function. Parameters’ values have been changed from −50% to +50%. It
can be observed that the lot size increases with the increase in values for parameters k, d, p, and γ.
Furthermore, the lot size decreases for increased values for parameters h M, and z. Similarly, the
optimal backorder quantity increases for increased values of parameters k, d, h, and p. The impact of
parameters’ M, γ, and z is reverse, i.e., optimal backorder quantity decreases for higher values of M
and z. Furthermore, the impact of positive change in parameters k, d, h, M, γ, and z values increases
the total cost function value. However, the total cost function value decreases with increased values
for parameter p. The setup cost and holding cost are key costs for any production system. If all costs
are fixed and these costs are increased, the total cost must be increased. Within these costs, it is found
that the setup cost is more sensitive than the holding cost. It means that the industry can reduce
further the total cost by reducing the setup cost using some initial investment. It is found that the
production rate is increased whereas the total cost is reduced. In the proposed model, the production
rate is constant and it’s increasing value gives decreasing total cost. This implies that the industry can
think about the controllable production rate within a certain limit of minimum production rate and
maximum production rate. Then, the total cost of the production system can be reduced more. As it
is a traditional production system, thus the inspection cost is controlled through human inspection.
With the increasing value of this cost, the total cost increases; this implies that the industry manager
should think about the smart production system where all inspections controlled through online by
the machine and production rate is flexible. The rejection cost is the most sensitive cost as all types
of efforts are there with all procedures but there are no products that can be sold to obtain revenue.
Thus, the machinery system should be perfect always to produce perfect product always such that
there should not be any rejection cost. The shortage cost should not be in the production system as the
production rate is greater than the demand but as during production no demanded products are given
to the market. Thus, this cost has to incorporate. Even though, the shortage cost is there, the total cost
is increasing very less comparing to the other costs.
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Table 6. Sensitivity analysis (Example 2).

Parameter Changes (%) Parameter Value Q (Units) B (Units) Total Cost ($/Year)

Setup cost (k)

−50% 60 1471 37 17,671.65
−25% 90 1801 45 17,759.68
+25% 150 2325 58 17,899.26
+50% 180 2547 63 17,958.36

Holding cost (h)

−50% 0.3 2910 37 17,675.81
−25% 0.45 2389 45 17,762.20
+25% 0.75 1870 58 17,896.04
+50% 0.9 1716 63 17,951.37

Production rate (p)

−50% 12,000 1720 47 17,949.81
−25% 18,000 1915 50 17,881.72
+25% 30,000 2229 53 17,796.91
+50% 36,000 2366 54 17,766.95

Inspection rate (M)

−50% 18,000 2479 53 17,744.79
−25% 27,000 2222 52 17,798.52
+25% 45,000 1990 51 17,858.99
+50% 54,000 1927 51 17,877.76

Rejection (%)

−50% 0.1 2020 52 16,410.33
−25% 0.15 2052 52 17,121.43
+25% 0.25 2103 51 18,547.80
+50% 0.3 2120 51 19,263.32

Shortage cost (z)

−50% 7.2 2123 102 17,822.63
−25% 10.8 2094 69 17,830.06
+25% 18 2071 42 17,836.21
+50% 21.6 2065 35 17,837.78

7. Conclusions

In this paper, a single stage manufacturing model for the imperfect production setup with rework,
inspection, and backordering has been developed. It is assumed that inventory is carried over a longer
period of time in the production phase, as the process is imperfect. Due to process imperfection,
products are not delivered directly to the customer as observed in most of the conventional production
order quantity models. This model optimized the lot size and backorder quantity in an imperfect
manufacturing setup when demands are fulfilled after the production process. This approach is against
the conventional production order quantity models where processes are imperfect and demands
are fulfilled simultaneously. Moreover, products were passed through an inspection station for
their qualification. The results were compared via numerical examples to the previously developed
model from literature. The numerical examples highlighted the importance of the proposed model
as compared to the previous model by considering the quality of the product through the inspection
process, however, the cost is slightly been increased. Furthermore, as the demand rate and production
rate were increased, the total cost of this model has been reduced in a significant way. The model
provides insights to manufacturing engineers working in an imperfect manufacturing setup. It can be
best utilized when manufacturing industries deliver products after the inspection process. Total cost is
increased when demand is not fulfilled during the production process due to process imperfection
under given conditions. Furthermore, the proposed model approaches the production quantity
model to calculate the optimal lot size, when the inspection rate is much higher in comparison to
the production rate under ideal situations. The model can be extended to incorporate the partial
backordering and multistage manufacturing environment to obtain an optimal lot size and backorder
level. The consideration of the suppliers and buyers with the imperfection process and sample based
inspection can be the extension of the study with the assumption that demands are fulfilled after the
inspection process. This production can be incorporated within an integrated inventory model or
within a supply chain model to extend it further. The production rate can be considered as variable to
make it a smart production system to produce smart products.
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