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Abstract: The number of subtrees, or simply the subtree number, is one of the most studied
counting-based graph invariants that has applications in many interdisciplinary fields such as
phylogenetic reconstruction. Motivated from the study of graph surgeries on evolutionary dynamics,
we consider the subtree problems of fan graphs, wheel graphs, and the class of graphs obtained from
“partitioning” wheel graphs under dynamic evolution. The enumeration of these subtree numbers
is done through the so-called subtree generation functions of graphs. With the enumerative result,
we briefly explore the extremal problems in the corresponding class of graphs. Some interesting
observations on the behavior of the subtree number are also presented.
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1. Introduction

The study of graph invariants or topological indices has been proven to be of crucial importance in
various interdisciplinary topics. Generally, the existing known topological indices could be divided into
distance-based, degree-based, or structure-based ones; some of the studies on these three categories are
referred to in [1–4] and the references therein. The number of subtrees, or simply the subtree number,
is one of the counting-based graph invariants.

Finding and/or enumerating special topological structures or graph patterns has become an
important problem due to their applications including, to name a few, frequent subgraphs mining [5],
network optimization design [6,7], and local network reliability [8,9]. In particular, the subtree
number has also been shown to be correlated to phylogenetic reconstruction [10] and various
chemical indices such as the Wiener index (closely correlated with the boiling point of paraffin [3]),
the Merrifield–Simmons index, and the Hosoya index [11]. Research results also show that there exists
an amazing “negative correlation” between the number of subtrees and the Wiener index [12–17].
Therefore, the subtree number index can indirectly characterize the physical–chemical characteristics
of molecules.

Various topics related to the subtree number have been explored over the past years, such as
extremal problems [12,18,19], the subtree density problem [20–22], generic chemical structures storage
problems [23,24], fault tolerant computing and parallel scheduling [25,26], recognition of substructure [27],
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simplification of the flow networks [28], Markovian queuing systems decomposition [29], and matching
problems [30,31].

By using “generating functions”, Yan and Yeh [4] presented a linear-time algorithm to evaluate
the subtree weight sum of a tree, leading to an algorithmic approach to compute the subtree number
of a tree. Following this approach and more recently, Yang et al. [32,33] proposed enumerating
algorithms for BC-subtrees of trees, unicyclic, and edge-disjoint bicyclic graphs and computed the
subtree number on spiro and polyphenyl hexagonal chains [17]. With structure mapping and weights
transferring of cycles, Yang et al. [34] also presented enumerating algorithms for subtrees of hexagonal
and phenylene chains. More recently, Chin et al. [35] presented the subtree number of complete graphs,
complete bipartite graphs, and theta graphs, as well as the ratio of spanning trees to all subtrees of the
above graphs.

Let K1,n = (V(K1,n), E(K1,n); f , g) be a weighted star on n + 1 vertices with center c0, vertex
weight function f (v) = y for all v ∈ V(K1,n), and edge weight function g(e) = z for all e ∈ E(K1,n).
Suppose the n leaves are labeled, in counterclockwise order, c1, c2, . . . , cn, then the wheel graph Wn is
obtained from K1,n by adding the edges (ci, ci+1) for i = 1, . . . , n (here we let cn+1 = c1).

As is well known, star K1,n and wheel graphs Wn are very typical network topologies used in
designing and implementing communication networks. The wheel graph Wn is the planar graph with
a chromatic number not greater than 4. Specifically, the chromatic number of Wn is 3 for odd n and 4
for even n. Some researchers have tried to apply this property of Wn to prove the famous Four Color
Theorem [36]. Moreover, Wn can also be used in wireless ad hoc networks [37]. Therefore, it is worth
studying the new structural characteristics of these two graphs, especially from new perspectives.

Inspired by the significant effect of graph surgeries on evolutionary dynamics in [38], we are
motivated to study the subtree number in graphs resulting from graph surgeries. In particular, we will
consider a class of graphs that “lie in between” the fan and wheel graphs, called the “partitions”
(explanation will be given later) of wheel graphs.

Definition 1. Given the star K1,n on n+ 1 vertices defined above with center vertex c0 and 0 ≤ j ≤ n, the graph
K j

1,n is obtained from K1,n by adding the edges (cs, cs+1) for all 1 ≤ s ≤ n− 1 except for s = j, 2j, 3j, . . . (see

Figure 1a). If n = j > 0, we call K j
1,j the fan graph on j + 1 vertices. It is also easy to see that K0

1,0 is the single

vertex c0, and K1
1,n is the star K1,n.
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From the definitions of the graph K j
1,n and the wheel graph Wn, we see that the graph K j

1,n can be
vividly described in terms of Wn through “partitions” (and deletion of edges {(cs, cs+1)|s = j, 2j, 3j, . . .})
perspective.

The reason that we consider our graphs as vertex and edge weighted is to use the so-called subtree
generating functions. We assume a graph G = (V(G), E(G); f , g) to be a weighted graph and define
the vertex-weight function f : V(G)→ < and edge-weight function g : E(G)→ <, where < is the real
number. Unless otherwise noted, for a graph G, we initialize its vertex weight function f (v) = y for
each v ∈ V(G) and its edge weight function g(e) = z for each e ∈ E(G) throughout this paper.

The following notations need to be listed before introducing the main tool:

• G− X denotes the graph obtained from G by removing all elements of X;
• S(G) (resp. S(G; v)) denotes the set of subtrees of G (resp. containing v);
• S(G; (a, b)) denotes the set of subtrees of G containing the edge (a, b);
• ω(T1) denotes the weight of subtree T1 ∈ S(G);
• F(·) is the sum of weights of subtrees in S(·);
• η(·) is the cardinality (namely the number) of the corresponding S(·) set of subtrees.

We define the weight of a subtree Ts of G, denoted by ω(Ts), as the product of the weights
of the vertices and edges in Ts. The generating function of subtrees of G, denoted by F(G; f , g),
is the sum of weights of subtrees of G. Namely, F(G; f , g) = ∑

T1∈S(G)
ω(T1). Similarly, we define

F(G; f , g; vi) = ∑
T1∈S(G;vi)

ω(T1), F(G; f , g; (u, v)) = ∑
T1∈S(G;(u,v))

ω(T1).

By substituting each vertex weight y = 1 and edge weight z = 1 in these generating
functions, we have the corresponding numbers of subtrees under various constraints, i.e., η(T) =

F(T; 1, 1), η(T; vi) = F(T; 1, 1; vi), and η(T; (u, v)) = F(T; 1, 1; (u, v)).
We introduce the following lemma, which will frequently be used in our work.

Lemma 1. [4] Let Pn be a path on n vertices, with vertex weight function f (v) = y for all v ∈ V(Pn) and edge

weight function g(e) = z for all e ∈ E(Pn), then F(Pn; f , g) =
n−1
∑

t=0
(n− t)yt+1zt.

In Section 2, we will present the subtree generating functions of K j
1,n(1 ≤ j ≤ n) and the wheel

graph Wn. Through using these generating functions and theoretical analysis, we study the extremal
graphs, subtree fitting problems, and subtree density behaviors of these graphs in Section 3. Lastly,
in Section 4, we summarize our results and comment on potential topics for future work.

2. Subtree Generating Functions of K J
1,N(1 ≤ J ≤ N) and Wheel Graph Wn

In this section, we will establish the subtree generating functions of K j
1,n(1 ≤ j ≤ n) and wheel

graph Wn and provide the theoretical background for our computational analysis. We start by studying
the subtree problem of K j

1,n(1 ≤ j ≤ n).

2.1. Subtree Generating Functions and Subtree Numbers of K J
1,N

Theorem 1. Let K j
1,n be the weighted graph defined as above, and n, j be non-negative integers with 0 ≤ j ≤ n

and n ≡ i (mod j). Then

F(K j
1,n; f , g) = F(K j

1,j; f , g; c0)
n−i

j ∗ y(1 + yz)i ∗ y−
n−i

j + iy +
n− i

j

j−1

∑
t=0

(j− t)yt+1zt, (1)
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with F(K j
1,j; f , g; c0) = F(K j−1

1,j−1; f , g; c0) +
j

∑
r=1

r(yz)rF(K j−r
1,j−r; f , g; c0), and F(K0

1,0; f , g; c0) = y,

F(K1
1,1; f , g; c0) = y + y2z.

Proof. We consider the subtrees of K j
1,n by cases

(i) not containing the center c0,
(ii) containing the center c0.

From Lemma 1, we have the subtree generating function of case (i) as

n− i
j

j−1

∑
t=0

(j− t)yt+1zt + iy. (2)

With the contraction method of [4] and structure analysis, we have the subtree generating function
of case (ii) as

F(K j
1,j; f , g; c0)

n−i
j ∗ y(1 + yz)i ∗ y−

n−i
j . (3)

Denote ej = (c0, cj) and ẽj = (cj−1, cj), and divide all subtrees for S(K j
1,j; c0) (see Figure 1b) into

four cases S(K j
1,j; c0) = S1

⋃ S2
⋃ S3

⋃ S4 where

• S1 is the collection of subtrees that contain neither ej nor ẽj;
• S2 is the collection of subtrees that contain ej, but not ẽj;
• S3 is the collection of subtrees that contain ẽj, but not ej;
• S4 is the collection of subtrees that contain both ej and ẽj.

From the definitions of subtree weight and subtree generating function, we know that:
(a) S1 = S(K j−1

1,j−1; c0);
(b) S2 = {T1 + ej|T1 ∈ S1}, where T1 + ej are the trees obtained from T1 by attaching an edge ej at

vertex c0;
(c) We can write S3 as

S3 = {T + (c0, cj−k) +
r⋃

h=2−k

(cj−k−h+1, cj−k−h+2)|T ∈ S(K j−k−r
1,j−k−r; c0)} (4)

for k = 1, 2, . . . , j− 1 and r = 1, 2, . . . , j− k;
(d) For each subtree T4 ∈ S4, we know that T4 must not contain the edge (c0, cj−1). Consequently,

we can further consider the subtrees that contain edges (c0, cj)
k⋃

r=1
(cj−r, cj−r+1) but not (cj−k−1, cj−k)

recursively for k = 1, 2, . . . , j− 1.
With (a)–(d),we have

∑
T1∈S1

ω(T1) = F(K j−1
1,j−1; f , g; c0), (5)

∑
T2∈S2

ω(T2) = ∑
T1∈S1

f (cj)g(ej)ω(T1) = yzF(K j−1
1,j−1; f , g; c0), (6)

∑
T3∈S3

ω(T3) =
j−1

∑
k=1

(
j−k

∑
r=1

[ r

∏
h=2−k

(
f (cj−k−h+1)g((cj−k−h+1, cj−k−h+2))

)
f (cj)g(c0, cj−k)F(K j−k−r

1,j−k−r; f , g; c0)

])

=
j−1

∑
k=1

(
j−k

∑
r=1

(yz)r+kF(K j−k−r
1,j−k−r; f , g; c0)

)
,

(7)
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∑
T4∈S4

ω(T4) = f (cj)g(ej)
j−1

∑
k=1

( k

∏
r=1

f (cj−r)g((cj−r, cj−r+1))

)
F(K j−k−1

1,j−k−1; f , g; c0)

=
j−1

∑
k=1

(yz)k+1F(K j−k−1
1,j−k−1; f , g; c0).

(8)

Hence, by Equations (5)–(8), we have

F(K j
1,j; f , g; c0) = ∑

T1∈S1

ω(T1) + ∑
T2∈S2

ω(T2) + ∑
T3∈S3

ω(T3) + ∑
T4∈S4

ω(T4)

=F(K j−1
1,j−1; f , g; c0) +

j

∑
r=1

r(yz)rF(K j−r
1,j−r; f , g; c0)

(9)

with F(K0
1,0; f , g; c0) = y, F(K1

1,1; f , g; c0) = y + y2z.
Combining Equations (2), (3), and (9), we have Equation (1) and the theorem follows.

Following similar arguments to Theorem 1, we can also obtain the subtree generating functions of
the graphs obtained from identifying the centers of different fan graphs K jt

1,jt
(t = 1, 2, . . . , l). We skip

the tedious details for the sake of space.

Theorem 2. Let K j1
1,j1

, K j2
1,j2

, . . . , K jl
1,jl

be different weighted fan graphs, and suppose there are njt copies of K jt
1,jt

for t = 1, 2, . . . , l. Let G =
l⋃

t=1
(K jt

1,jt
)njt be the graph that is constructed by identifying the centers of these

l
∑

t=1
njt fan graphs with c0. Then

F(G; f , g) = y
1−

l
∑

t=1
njt

l

∏
t=1

F(K jt
1,jt

; f , g; c0)
njt +

l

∑
t=1

(
njt

jt−1

∑
r=0

(jt − r)yr+1zr
)

, (10)

with F(K jt
1,jt

; f , g; c0) = F(K jt−1
1,jt−1; f , g; c0) +

jt
∑

r=1
r(yz)rF(K jt−r

1,jt−r; f , g; c0) and F(K0
1,0; f , g; c0) = y,

F(K1
1,1; f , g; c0) = y + y2z.

Actually, a single fan graph is a special case of the above discussion, so we can further obtain the
subtree generating function for the subtrees containing a particular vertex. Again, we skip the similar
but technical details.

Theorem 3. Let K j
1,j be a weighted fan graph with vertex weigh f and edge weigh g (see Figure 1b), then

F(K j
1,j; f , g; c1) = F(K j

1,j; f , g; c0)− F(K j−1
1,j−1; f , g; c0) +

j−1

∑
t=0

yt+1zt , (11)

with F(K j
1,j; f , g; c0) = F(K j−1

1,j−1; f , g; c0) +
j

∑
r=1

r(yz)rF(K j−r
1,j−r; f , g; c0) and F(K0

1,0; f , g; c0) = y,

F(K1
1,1; f , g; c0) = y + y2z.

Adding an edge between any two fan graphs (to construct a bigger fan) of a graph will also increase
the number of subtrees. Let G be the weighted graph as defined in Theorem 2, and suppose K jr

1,jr

(with non-center vertices labeled counterclockwise as c1
j1

, c1
j2

, . . . , c1
jr ) and K js

1,js (with non-center vertices

labelled clockwise as c2
j1

, c2
j2

, . . . , c2
js ) are the two sub-fan graphs of G with jr ≥ 1. Define G′ = G +

(c1
jr , c2

js) to be the graph obtained from G by adding one edge (c1
jr , c2

js). Meanwhile, denote G the graph of
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G−
(

r⋃
t=1

(c0, c1
jt)
⋃ s⋃

t=1
(c0, c2

jt)

)
that contains c0, and denote S the collection of subtrees in S(K jr+js

1,jr+js ; c0)

that contain (c1
jr , c2

js). By dividing the subtrees of G and G′ into two cases of containing center c0 or not,
with Lemma 1, definitions of subtree weight and subtree generating function, and combining structure
analysis, we have the following theorem:

Theorem 4. Let G and G′ be the weighted graphs defined above. Then,

F(G′; f , g) = F(G; f , g) + y−1F(G; f , g; c0) ∑
T∈S

ω(T) +
js

∑
t=0

tyt+1zt + js
jr

∑
t=js+1

yt+1zt +
jr+js−1

∑
t=jr+1

(jr + js − t)yt+1zt. (12)

By letting y = z = 1 in the subtree generating functions from the above theorems, we have the
corresponding subtree numbers of the various related graphs above.

Corollary 1. The subtree number of S(K j
1,j, c0) is

η(K j
1,j; c0) = η(K j−1

1,j−1; c0) +
j

∑
r=1

rη(K j−r
1,j−r; c0), (13)

with η(K0
1,0; c0) = 1, η(K1

1,1; c0) = 2.

With Corollary 1, we have the number of subtrees of K j
1,j that contain central vertex c0 as illustrated

in Figure 2.
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Figure 2. Number of subtrees of K j
1,j that contain central vertex c0, in semi-log(Log-Y) coordinates.

Corollary 2. Let n, j be positive integers with 1 ≤ j ≤ n, and i ≡ n (mod j), then

η(K j
1,n) =

(j + 1)(n− i)
2

+ i + 2ib
n−i

j
j , (14)

with bj = bj−1 +
j

∑
r=1

rbj−r and b0 = 1, b1 = 2.

With Corollary 2, we have the subtree number of K j
1,n, see details in subsection 3.1.
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Corollary 3. Let G =
l⋃

t=1
(K jt

1,jt
)njt , jt, njt and l be defined in Theorem 2, then

η(G) =
l

∏
t=1

η(K jt
1,jt

; c0)
njt +

1
2

l

∑
t=1

njt × jt(jt + 1), (15)

with η(K jt
1,jt

; c0) = η(K jt−1
1,jt−1; c0) +

jt
∑

r=1
rη(K jt−r

1,jt−r; c0) and η(K0
1,0; c0) = 1, η(K1

1,1; c0) = 2.

Let G1 be the graph defined in Theorem 2 with l = 4, j1 = 2, nj1 = 4; j2 = 3, nj2 = 3; j3 = 4, nj3 = 2;
j4 = 5, nj4 = 1, with Corollary 1 and Corollary 3, we have η(G1) = 6, 048, 255, 225, 665.

Corollary 4. The number of subtrees of the fan graph K j
1,j containing c1 is

η(K j
1,j; c1) = η(K j

1,j; c0)− η(K j−1
1,j−1; c0) + j, (16)

with η(K j
1,j; c0) = η(K j−1

1,j−1; c0) +
j

∑
r=1

rη(K j−r
1,j−r; c0) and η(K0

1,0; c0) = 1, η(K1
1,1; c0) = 2.

Similarly, the number of subtrees of K j
1,j that contain central vertex c1 (see Figure 3) can be obtained

from Corollary 4.
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Figure 3. Number of subtrees of K j
1,j that contain the vertex c1, in semi-log(Log-Y) coordinates.

Corollary 5. Let G be the graph defined in Theorem 2, and G′ be a merged graph from G with jr ≥ 1 and js ≥ 1
(Theorem 4), then

η(G′) = η(G) + η(G; c0)η(K
jr+js
1,jr+js ; c0, (c1

jr , c2
js)) + jr js, (17)

where η(K jr+js
1,jr+js ; c0, (c1

jr , c2
js)) is the number of subtrees containing both vertex c0 and edge (c1

jr , c2
js).

Let G, G, and G′ be the graphs defined in Corollary 5 with l = 2, j1 = 2, nj1 = 3; j2 = 3, nj2 = 2,
jr = 2 and js = 3, with Corollary 1, Corollary 5, and structural analysis, we have η(G) = 77,997,
η(G; c0) = 684 η(K jr+js

1,jr+js ; c0, (c1
jr , c2

js)) = 75, and η(G′) = 129,303.

2.2. Subtree Generating Function and Subtree Number of Wheel Graph Wn

Next we consider the subtree generating function of the weighted wheel graph Wn.
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Theorem 5. Let Wn (n ≥ 3) be the weighted wheel graph on n + 1 vertices with vertex weight function f ≡ y
and edge weight function g ≡ z. Then

F(Wn; f , g) =y + yzF(Wn−1; f , g) + (1 + 2yz)F(Kn−1
1,n−1; f , g; c0)− 2yzF(Kn−2

1,n−2; f , g; c0)

+
n−1

∑
t=1

(
(1− yz)(n− t) + 2yz

)
ytzt−1 + 2

n−1

∑
k=1

(yz)k+1F(Kn−1−k
1,n−1−k; f , g; c0)

+
n−3

∑
l=0

n−3−l

∑
r=0

(yz)l+r+3F(Kn−l−r−3
1,n−l−r−3; f , g; c0),

(18)

with F(W3; f , g) = 4y + 6y2z + 12y3z2 + 16y4z3, F(K j
1,j; f , g; c0) = F(K j−1

1,j−1; f , g; c0) +

j
∑

r=1
r(yz)rF(K j−r

1,j−r; f , g; c0), F(K0
1,0; f , g; c0) = y, and F(K1

1,1; f , g; c0) = y + y2z.

Proof. For convenience, we let e∗t = (c0, ct) for t = 1, 2, . . . , n, en = (c1, cn) and en−r = (cn−r, cn−r+1)

for r = 1, 2, . . . , n− 1. We also follow the convention that
j⋃

r=i
(cr, cr+1) = ∅ if j < i, and ∑

j
t=i bt = 0,

if j < i.
We first consider the subtrees of Wn(n ≥ 3) in different cases:
(i) not containing the edge e∗n,
(ii) containing the edge e∗n.
The subtrees in case (i) can be further partitioned into four categories. As a result, we have

S(Wn − e∗n) = S1
⋃
S2
⋃
S3
⋃
S4 ,

where

• S1 is the set of subtrees of S(Wn − e∗n) that contain neither en nor en−1;
• S2 is the set of subtrees of S(Wn − e∗n) that contain en−1, but not en;
• S3 is the set of subtrees of S(Wn − e∗n) that contain en but not en−1;
• S4 is the set of subtrees of S(Wn − e∗n) that contain both en and en−1.

From the definition of subtree weight and with structure analysis, we have

∑
T∈S1

ω(T) = y + F(Kn−1
1,n−1; f , g), (19)

∑
T∈S2

ω(T) = ∑
T∈S3

ω(T) = yzF(Kn−1
1,n−1; f , g; c1), (20)

and

∑
T∈S4

ω(T) = yz
(

F(Wn−1; f , g)− F(Kn−1
1,n−1; f , g)

)
. (21)

Thus, we have

∑
T∈S(Wn−e∗n)

ω(T) = ∑
T∈S1

ω(T) + ∑
T∈S2

ω(T) + ∑
T∈S3

ω(T) + ∑
T∈S4

ω(T)

=y + F(Kn−1
1,n−1; f , g) + yz

(
2F(Kn−1

1,n−1; f , g; c1) + F(Wn−1; f , g)− F(Kn−1
1,n−1; f , g)

)
.

(22)

Similarly, for case (ii), we have

S(Wn; e∗n) = S1
⋃
S2
⋃
S3
⋃
S4 ,
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where

• S1 is the set of subtrees in S(Wn; e∗n) that contain neither en nor en−1;
• S2 is the set of subtrees in S(Wn; e∗n) that contain en, but not en−1;
• S3 is the set of subtrees in S(Wn; e∗n) that contain en−1 but not en;
• S4 is the set of subtrees in S(Wn; e∗n) that contain both en and en−1.

Analyzing each case, we have:
(a) S1 = {T + (c0, cn)|T ∈ S(Kn−1

1,n−1; c0)}, where T + (c0, cn) are the trees obtained from
T(∈ S(Kn−1

1,n−1; c0)) by attaching the edge (cn, c0) at vertex c0;

(b) S2 = {T + e∗n + (c1, cn) +
k−1⋃
r=1

(cr, cr+1)|T ∈ S(K̃n−1−k
1,n−1−kc0)}, where K̃n−1−k

1,n−1−k(k = 1, 2, . . . , n− 1)

is the graph of Wn −
(

ek
⋃

en−1
⋃

e∗n
k⋃

r=1
e∗r

)
that contains c0, and obviously, K̃n−1−k

1,n−1−k
∼= Kn−1−k

1,n−1−k;

(c) S3 = {T + e∗n +
k⋃

r=1
(cn−r, cn−r+1)|T ∈ S(Kn−1−k

1,n−1−k; c0)} for k = 1, 2, . . . , n− 1;

(d) In a similar manner as (b) and (c), use variables l and r to count the number of edges trailing
off (cn−1, cn) and (c1, cn), respectively, then the subtrees in S4 are indexed by these two variables,
which count extra edges that are on the two sides of the T shape containing the 3 edges required by S4.
With (a)–(d), we have

∑
T1∈S1

ω(T1) = ∑
T∈S(Kn−1

1,n−1;c0)

f (cn)g(e∗n)ω(T) = yzF(Kn−1
1,n−1; f , g; c0), (23)

∑
T2∈S2

ω(T2) = ∑
T3∈S3

ω(T3) = f (cn)g(e∗n)
n−1

∑
k=1

k

∏
r=1

(
g(en−r) f (cn−r)

)
F(Kn−1−k

1,n−1−k; f , g; c0)

=yz
n−1

∑
k=1

(yz)kF(Kn−1−k
1,n−1−k; f , g; c0),

(24)

∑
T4∈S4

ω(T4) =
n−3

∑
l=0

n−3−l

∑
r=0

(yz)l+r+3F(Kn−l−r−3
1,n−l−r−3; f , g; c0). (25)

Now with Equations (23)–(25), we have

∑
T∈S(Wn ;(c0,cn))

ω(T) = ∑
T1∈S1

ω(T1) + ∑
T2∈S2

ω(T2) + ∑
T3∈S3

ω(T3) + ∑
T4∈S4

ω(T4)

=yzF(Kn−1
1,n−1; f , g; c0) + 2

n−1

∑
k=1

(yz)k+1F(Kn−1−k
1,n−1−k; f , g; c0)

+
n−3

∑
l=0

n−3−l

∑
r=0

(yz)l+r+3F(Kn−l−r−3
1,n−l−r−3; f , g; c0).

(26)

By Theorem 1, Theorem 3, and Equations (22) and (26), we have

F(Wn; f , g) =y + yzF(Wn−1; f , g) + (1 + 2yz)F(Kn−1
1,n−1; f , g; c0)− 2yzF(Kn−2

1,n−2; f , g; c0)

+
n−1

∑
t=1

(
(1− yz)(n− t) + 2yz

)
ytzt−1 + 2

n−1

∑
k=1

(yz)k+1F(Kn−1−k
1,n−1−k; f , g; c0)

+
n−3

∑
l=0

n−3−l

∑
r=0

(yz)l+r+3F(Kn−l−r−3
1,n−l−r−3; f , g; c0).

(27)

Note that W2 is not a wheel graph. With Theorem 1 and Lemma 1, we have

∑
T∈S(W2)

ω(T) = 3y + 4y2z + 5y3z2. (28)
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Now from Equations (27) and (28), we have

F(W3; f , g) = 4y + 6y2z + 12y3z2 + 16y4z3. (29)

The subtree generating function of Wn now follows from Equations (27) and (29).

Letting y = z = 1 in Equation (18), we have the following corollary.

Corollary 6. The subtree number of Wn(n ≥ 3) is

η(Wn) = η(Wn−1) + 3η(Kn−1
1,n−1; c0) + 2n− 1 + 2

n−1

∑
k=2

η(Kn−1−k
1,n−1−k; c0) +

n−3

∑
l=0

n−3−l

∑
r=0

η(Kn−l−r−3
1,n−l−r−3; c0), (30)

with η(W3) = 38, η(K j
1,j; c0) = η(K j−1

1,j−1; c0) +
j

∑
r=1

rη(K j−r
1,j−r; c0), η(K0

1,0; c0) = 1 and η(K1
1,1; c0) = 2.

With Corollary 6, the subtree numbers of Wn (n = 3, 4, . . . , 50) are shown in Table 1.

Table 1. The subtree numbers of wheel graph Wn (n = 3, 4, . . . , 50).

n η(Wn) n η(Wn) n η(Wn)

3 38 19 2,899,980,984 35 269,604,917,347,967,886
4 112 20 9,128,846,611 36 848,689,059,340,934,448
5 332 21 28,736,686,630 37 2,671,587,471,512,527,895
6 1007 22 90,460,187,232 38 8,409,887,625,375,274,755
7 3110 23 284,759,535,167 39 26,473,477,146,304,448,341
8 9704 24 896,394,265,075 40 83,335,833,180,604,495,475
9 30,431 25 2,821,758,641,457 41 262,332,788,908,879,910,034

10 95,643 26 8,882,611,305,147 42 825,797,133,240,010,600,373
11 300,885 27 27,961,563,560,618 43 2,599,525,999,414,007,165,103
12 946,923 28 88,020,178,967,761 44 8,183,045,386,844,876,767,480
13 2,980,538 29 277,078,636,493,555 45 25,759,400,682,377,496,173,050
14 9,382,101 30 872,215,572,630,716 46 81,087,992,568,389,361,552,840
15 29,533,519 31 2,745,646,560,009,062 47 255,256,813,613,269,834,457,576
16 92,968,088 32 8,643,018,158,636,696 48 803,522,677,430,288,749,342,627
17 292,653,642 33 27,207,348,527,149,292 49 2,529,408,261,449,734,855,548,318
18 921,243,536 34 85,645,986,192,695,055 50 7,962,321,827,121,343,008,620,568

As a matter of fact, with the generating function and further structural and theoretical analysis,
we can also solve the subtree generation computing problems for the following more generalized types
of graphs; here we skip the similar but technical details.

(i) Graph G =
l⋃

i=1
Fti

i,ni
is constructed by identifying the center ci

0 of l graphs Fti
i,ni

(i = 1, 2, . . . , l)

to c0, where Fti
i,ni

(ni ≥ 1, 2 ≤ ti ≤ ni) is the graph constructed from a vertex ci
0 and a path Pci

1ci
ni

=

ci
1ci

2 · · · ci
ni

by connecting ci
0 with ci

1, ci
ni

, and any other arbitrary ti − 2 vertices on the path Pci
1ci

ni
; for

the special case ni = 1, the graph Fti
i,ni

is a path ci
0ci

1 on vertices ci
0 and ci

1.

(ii) Graph G = Wn −
l⋃

t=1
(c0, cjt)(1 ≤ l, jt ≤ n), namely the graph obtained from wheel Wn by

deleting random l different edges (c0, cjt)(t = 1, 2, . . . , l) (each jt is different the others).

3. Behaviors of K J
1,N(1 ≤ J ≤ N) and Wn in Terms of Subtrees

With the subtree generating functions established, we can now analyze the behaviors of the
graphs K j

1,n(1 ≤ j ≤ n) and Wn in terms their subtree numbers and other related properties.
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3.1. Subtree Numbers and K J
1,N

We start with the subtree numbers of the graphs K j
1,n for different n and j. First, we take a quick

look at the extremal problems.

Proposition 1. Among all K j
1,n (1 ≤ j ≤ n):

• the graph K1
1,n has 2n + n subtrees, fewer than any other K j

1,n(j 6= 1); and

• the graph Kn
1,n has n(n+1)

2 + bn subtrees (where bn = bn−1 +
n
∑

r=1
rbn−r and b0 = 1, b1 = 2), more than

any other K j
1,n(j 6= n).

Proof. Note that adding an edge to a graph will strictly increase the subtree number. The extremal
structures K1

1,n and Kn
1,n then follow immediately from the fact that the former is a subgraph of any

K j
1,n and the latter contains any K j

1,n as a subgraph.

We are also interested in knowing which K j
1,n (2 ≤ j ≤ n− 1) has the second- or third-largest

subtree number. To examine this, we also explore how the subtree numbers of the graphs K j
1,n behave.

With Corollary 2 and Matlab computing (see Appendix A for more details), we obtain the subtree
number behaviors of K j

1,n as shown in Figure 4.

It seems from Figure 4a,b that among all K j
1,n (1 ≤ j ≤ n− 1):

• Kn−1
1,n has the second-largest subtree number; and

• Kn−2
1,n has the third-largest subtree number for odd (or sufficiently large) n.

• the subtree number K j
1,n increment trend meets exponential growth when j ≥ d n+1

2 e.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2
x 10

16

number of non−central vertices

s
u

b
tr

e
e

 n
u

m
b

e
r

 

 

n=33

0 10 20 30 40 50 60
0

1

2

3

4

5
x 10

28

number of non−central vertices

s
u

b
tr

e
e

 n
u

m
b

e
r

 

 

n=58

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14
x 10

36

number of non−central vertices

s
u

b
tr

e
e

 n
u

m
b

e
r

 

 

n=75

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5
x 10

39

number of non−central vertices

s
u

b
tr

e
e

 n
u

m
b

e
r

 

 

n=80

(a) Subtree numbers of K j
1,n with n = 33, 58, 75, 80, j from 1 to n, in Cartesian coordinates.

Figure 4. Cont.
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(b) Subtree numbers of K j
1,n with n = 33, 58, 75, 80, j from 1 to n, in semi-log(Log-Y) coordinates.

Figure 4. Subtree numbers of K j
1,n with n = 33, 58, 75, 80, j from 1 to n.

In general, it is not difficult to show the following.

Proposition 2. Suppose n >> k (i.e., n is much larger than k), then among all K j
1,n (1 ≤ j ≤ n), the graph

Kn−k
1,n has the (k + 1)-th largest subtree number.

The proof follows from adjusting the “sizes” of the two sub-fan graphs of K j
1,n. We skip the details

here. The same argument can also show the monotonic behavior for large enough j.

Proposition 3. If j > n
2 , then K j+1

1,n has a larger subtree number than K j
1,n.

Understanding the specific behavior of K j
1,n for general j in terms of the subtree number seems to

be an interesting and nontrivial problem.
Similarly, from Corollary 6, we can obtain the subtree numbers of wheel graph Wn (n ≥ 3),

as already shown in Table 1. On the other hand, experimental observation shows that the subtree
numbers of Wn (n ≥ 3) increase very fast and this growth trend seems to fit the linear regression
model after doing the logarithmic transformation. Through implementing the linear regression in
the MATLAB software for data of the number of subtrees of Wn from n = 3 to 602, the appropriate
formula for the subtree number of Wn can be stated as

η(Wn) ≈ exp(0.0126 + 1.1466n). (31)

As exp0.0126 ≈ 1, Equation (31) can be rewritten as

η(Wn) ≈ exp1.1466n. (32)

With Corollary 6, Equation (32), and logarithmic transformation for each subtree number of Wn and
fitted value, we can obtain the subtree number trend of Wn(n ≥ 3), as illustrated in Figure 5 where
the original and fitted data are respectively marked in red and blue. We believe Equation (32) can be
proved or disproved through traditional analytic combinatorial approaches, but we will not pursue
the technical analysis here.
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Figure 5. Subtree number trend of wheel graph Wn (n = 3, 4, . . . , 602), in semi-log(Log-Y) coordinates.

Our work can also be easily applied to more general “partitions” of wheel graphs instead of just
the K j

1,ns. To illustrate the observations, we introduce some simple notations. Given a positive integer
n and partition π = (π1, π2, . . . , πk) of n (with π1 ≥ π2 ≥ . . . ≥ πk and n = ∑k

i=1 πi), the graph
Kπ is obtained from K1,n by adding edges (cj, cj+1) for all 1 ≤ j ≤ n− 1 except for j = ∑s

i=1 πi, for
s = 1, 2, . . . , k. It seems that the subtree numbers of Kπs coincide with some sort of ordering of the
partitions π of n. In general, larger and fewer parts in π results in more subtrees in Kπ . More precise
statements along this line requires further study.

3.2. Subtree Densities of K J
1,N and Wn

The subtree generating function can be used to provide more information than just the number of
subtrees. For instance, using the subtree generating function, one can easily obtain the total number of
vertices in all subtrees, from which we have the average subtree order in a given graph. The ratio of
the average subtree order and the order of the original graph is called the subtree density of the graph.
We present the formal subtree density definition as follows:

Definition 2 ([20]). Suppose G is a graph with n vertices, then µ(G) = 1
k

k
∑

i=1
ni is the average order of the

subtrees of G, where n1, n2, . . . , nk are the orders of all of G’s k non-empty subtrees, and the subtree density of G
is defined as D(G) = µ(G)

n .

It is essentially the probability that a vertex chosen at random from G will belong to a randomly
chosen subtree of G. Some of the work related to subtree densities can be found in [20,21,39].

With Theorem 1, Theorem 5, and substituting z = 1, we could obtain the vertex generating
function of subtrees of K j

1,n and Wn, respectively, i.e., F(K j
1,n; y, 1) and F(Wn; y, 1)). The subtree density

of K j
1,n and Wn is simply

D(G∗) =

∂F(G∗; y, 1)
∂y

∣∣∣
y=1

F(G∗; 1, 1) ∗ n(G∗)
, (33)

where n(G∗) denotes the vertex number of G∗, and G∗ can be K j
1,n or Wn.

We will now apply this to find the subtree densities of K j
1,n and Wn.
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Clearly, the vertex number of K j
1,n and Wn is n + 1, namely

n(K j
1,n) = n(Wn) = n + 1. (34)

With Theorem 1 and letting z = 1 in Equation (1), we obtain the vertex generating function of subtrees
of K j

1,n(1 ≤ j ≤ n).

F(K j
1,n; f , 1) = (1 + y)iy1− n−i

j ∗ F(K j
1,j; f , 1; c0)

n−i
j + iy +

n− i
j

j−1

∑
t=0

(j− t)yt+1 , (35)

with i ≡ n (mod j), F(K j
1,j; f , 1; c0) = F(K j−1

1,j−1; f , 1; c0) +
j

∑
r=1

ryrF(K j−r
1,j−r; f , 1; c0) and F(K0

1,0; f , 1; c0) =

y, F(K1
1,1; f , 1; c0) = y + y2.

Similarly, letting z = 1 in Equation (18), we obtain the vertex generating function of subtrees
of Wn.

F(Wn; f , 1) =y + yF(Wn−1; f , 1) + (1 + 2y)F(Kn−1
1,n−1; f , 1; c0)− 2yF(Kn−2

1,n−2; ) f , 1; c0)

+
n−1

∑
t=1

(
(1− y)(n− t) + 2y

)
yt + 2

n−1

∑
k=1

yk+1F(Kn−1−k
1,n−1−k; f , 1; c0)

+
n−3

∑
l=0

n−3−l

∑
r=0

yl+r+3F(Kn−l−r−3
1,n−l−r−3; f , 1; c0),

(36)

with F(W3; f , 1) = 4y + 6y2 + 12y3 + 16y4, F(K j
1,j; f , 1; c0) = F(K j−1

1,j−1; f , 1; c0) +
j

∑
r=1

ryrF(K j−r
1,j−r; f , 1; c0)

and F(K0
1,0; f , 1; c0) = y, F(K1

1,1; f , 1; c0) = y + y2.

From Equations (33)–(35), we can obtain the subtree densities of K j
1,n (1 ≤ j ≤ n) (plotted in

Figure 6); related data can be found in Table 2. Similarly, from Equations (33), (34), and (36), we have
subtree densities Wn plotted in Figure 7; related data are listed in Table 3.

From Table 2 and Figure 6, it appears that K1
1,22 and K12

1,22 have the smallest and second-smallest

subtree densities, respectively. K j
1,22(12 ≤ j ≤ 22) grows linearly with the increase of j. Moreover,

from Table 3 and Figure 7, we see that Wn(3 ≤ n ≤ 24) increases first in the interval [3, 8] and reaches
the maximum value when n = 8, and then decreases gradually in the interval [9, 24] and approximates
the limit value of 0.8135.

Similarly, as studied in paper [35], we can also discuss the ratio of spanning trees to all subtrees
and spanning tree densities of K j

1,n and Wn. We skip the details here.
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Figure 6. Subtree densities of the graphs K j
1,22 (1 ≤ j ≤ 22).
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Table 2. Related data for K j
1,n, with n = 22 and j = 1, 2, . . . , 22.

j Py(Kj
1,n) η(Kj

1,n) D(Kj
1,n)

1 50,331,670 4,194,326 0.521736621869847
2 5,683,820,588 362,797,089 0.681159363604678
3 29,685,950,982 1,787,743,521 0.721967947748206
4 52,358,400,102 3,110,400,052 0.731884047161090
5 87,226,395,622 5,103,959,426 0.743041170007376
6 56,400,430,972 3,370,318,067 0.727584934777173
7 231,968,014,120 13,141,451,319 0.767462100378713
8 36,440,865,014 2,224,820,302 0.712140856484914
9 93,645,742,414 5,511,577,694 0.738727501280144
10 240,339,417,442 13,653,922,612 0.765314128820302
11 616,080,713,876 33,825,095188 0.791900742502907
12 9,137,267,062 592,843,864 0.670113169892776
13 14,666,890,448 933,106,276 0.683406494463958
14 23,533,982,520 1,468,662,129 0.696699813456106
15 37,748,062,639 2,311,599,999 0.709993128330647
16 60,525,953,078 3,638,341,646 0.723286440182849
17 97,015,668,926 5,726,566,014 0.736579749833999
18 155,453,553,144 9,013,325,743 0.749873057893726
19 249,013,516,065 14,186,519,625 0.763166364810336
20 398,761,664,190 22,328,865,632 0.776459670910826
21 638,376,020,719 35,144,507,194 0.789752976431952
22 1,021,684,176,864 55,315,680,041 0.803046281543951

* Py(G) stands for
∂F(G; y, 1)

∂y

∣∣∣
y=1

.
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Figure 7. Subtree densities of wheel graph Wn(3 ≤ n ≤ 24).

Table 3. Related data for wheel graph Wn (n = 3, 4 . . . , 24).

k Py(Wk) D(Wk) k Py(Wk) D(Wk)

3 116 0.7631578947368421 14 115,215,423 0.8186895664414613
4 444 0.7928571428571428 15 386,480,089 0.8178844370865525
5 1617 0.8117469879518072 16 1,291,505,336 0.8171718247840813
6 5789 0.8212512413108243 17 4,301,328,493 0.8165375712479791
7 20,519 0.8247186495176849 18 14,282,430,812 0.8159697793983819
8 72,064 0.8251351103783091 19 47,296,291,958 0.815458656779937
9 250,841 0.8242943051493543 20 156,239,476,051 0.8149961728004785
10 865,923 0.8230636087039588 21 514,980,557,554 0.8145757185906111
11 2,967,219 0.8218031806171793 22 1,693,994,724,188 0.8141918205521789
12 10,102,071 0.8206394655271703 23 5,561,968,202,536 0.813839912225434
13 34,200,012 0.8196030381092273 24 18,230,780,418,139 0.8135161559345164

* Py(G) stands for
∂F(G; y, 1)

∂y

∣∣∣
y=1

.
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4. Concluding Remarks

In this paper we established the subtree generating functions of the wheel graph Wn and
“partitions” K j

1,n (1 ≤ j ≤ n), along with other related structures such as the fan graphs. With the
subtree generating functions, we are able to study the subtree number and subtree densities of these
graphs. From our computational analysis, several theoretical conclusions are drawn, especially on the
extremal problems with respect to the subtree number. These results provide a fundamental basis for
studying subtree problems of multi-cyclic graphs, chemical compounds, and complex graphs.

As one can see, the computational results in Section 3.2 show interesting observations on the
characteristics of these structures. Attempting to verify some of them, especially on those related to the
subtree densities, and exploring the BC-subtree number index, Wiener index, Harary index, atom-bond
connectivity trends of wheel graph Wn, “partitions” K j

1,n (1 ≤ j ≤ n), and their generalizations
would make very interesting projects for future work. Exploring the novel structural properties from
the evolutionary perspective of graphs with more complicated cycle structures, particularly some
important nanomaterials such as the pentagonal carbon nanocone, is also a very attractive future topic.

Author Contributions: H.W, Y.Y and A.W contributed to supervision, project administration, and the formal
analysis. W.-T.Z and D.-Q.S contributed to the methodology and writing of the original draft preparation. The final
draft was written by H.W and Y.Y

Funding: This work is supported by the National Natural Science Foundation of China (grant nos. 61702291,
61772102, 61472058,11531001), the China Postdoctoral Science Foundation (grant no. 2018M632095), the Program
for Science & Technology Innovation Talents in Universities of Henan Province (grant no. 19HASTIT029), the
Joint NSFC-ISF Research Program (jointly funded by the National Natural Science Foundation of China and the
Israel Science Foundation (No. 11561141001)), the Key Research Project in Universities of Henan Province (grant
nos. 19B110011, 19B630015), the Scientific Research Starting Foundation for High-Level Talents of Pingdingshan
University (grant no.PXY-BSQD2017006), and the Simons Foundation (grant no. 245307).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Matlab Code, Python Code, And Data

In what follows, we provide the source codes related to Figure 4. Python code Pythoncode1
(derived from Corollary 2) can output the data files “n=33.txt”, “n=58.txt”, “n=75.txt”, and “n=80.txt”
by inputting the integer 33, 58, 75, 80, respectively. MATLAB codes MCF1a, MCF1b can draw the
Figure 4a,b, respectively.

Pythoncode1. The Python code for computing the subtree number of K j
1,n (1 ≤ j ≤ n).

1 n= i n t ( input ( ) )
2 b=[−1 f o r i in range ( n +1 ) ]
3 b [0 ]=1
4 b [1 ]=2
5 f o r j in range ( 1 , n + 1 ) :
6 sum1=0
7 f o r r in range ( 1 , j + 1 ) :
8 sum1=sum1+r ∗b [ j−r ]
9 b [ j ]=b [ j −1]+sum1

10 f i le_name ="n="+ s t r ( n ) + " . t x t "
11 f i l e = open ( fi le_name , ’w’ )
12 f o r j in range ( 1 , n + 1 ) :
13 i = n%j
14 s =( j +1)∗ ( n−i )/2+ i +2∗∗( i )∗b [ j ] ∗ ∗ ( ( n−i )/ j )
15 f i l e . wri te ( s t r ( s ) )
16 f i l e . wri te ( ’\n ’ )
17 p r i n t ( s )
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MCF1a. MATLAB source code for Figure 1a.

1 c l e a r ;
2 c l c ;
3 s1 = load ( ’ n=33. t x t ’ ) ;
4 s2 = load ( ’ n=58. t x t ’ ) ;
5 s3 = load ( ’ n=75. t x t ’ ) ;
6 s4 = load ( ’ n=80. t x t ’ ) ;
7 format long ;
8 A = c e l l ( 1 , 1 0 ) ;
9 A{1 ,1}= ’−bo ’ ;

10 A{1 ,2}= ’−go ’ ;
11 A{1 ,3}= ’−mo’ ;
12 A{1 ,4}= ’− ro ’ ;
13 subplot ( 2 , 2 , 1 ) ;
14 p l o t ( s1 ,A{ 1 , 1 } ) ;
15 a x i s normal ;
16 s e t ( legend ( ’ n = 3 3 ’ ) , ’ f o n t s i z e ’ , 8 ) ;
17 x l a b e l ( ’ number of non−c e n t r a l v e r t i c e s ’ ) ;
18 y l a b e l ( ’ subtree number ’ ) ;
19 subplot ( 2 , 2 , 2 ) ;
20 p l o t ( s2 ,A{ 1 , 2 } ) ;
21 s e t ( legend ( ’ n = 5 8 ’ ) , ’ f o n t s i z e ’ , 8 ) ;
22 x l a b e l ( ’ number of non−c e n t r a l v e r t i c e s ’ ) ;
23 y l a b e l ( ’ subtree number ’ ) ;
24 subplot ( 2 , 2 , 3 ) ;
25 p l o t ( s3 ,A{ 1 , 3 } ) ;
26 a x i s normal ;
27 s e t ( legend ( ’ n = 7 5 ’ ) , ’ f o n t s i z e ’ , 8 ) ;
28 x l a b e l ( ’ number of non−c e n t r a l v e r t i c e s ’ ) ;
29 y l a b e l ( ’ subtree number ’ ) ;
30 subplot ( 2 , 2 , 4 ) ;
31 p l o t ( s4 ,A{ 1 , 4 } ) ;
32 s e t ( legend ( ’ n = 8 0 ’ ) , ’ f o n t s i z e ’ , 8 ) ;
33 x l a b e l ( ’ number of non−c e n t r a l v e r t i c e s ’ ) ;
34 y l a b e l ( ’ subtree number ’ ) ;

MCF1b: The MATLAB source code for Figure 1b.

1 c l e a r ;
2 c l c ;
3 s1 = load ( ’ n=33. t x t ’ ) ;
4 s2 = load ( ’ n=58. t x t ’ ) ;
5 s3 = load ( ’ n=75. t x t ’ ) ;
6 s4 = load ( ’ n=80. t x t ’ ) ;
7 format long ;
8 A = c e l l ( 1 , 1 0 ) ;
9 A{1 ,1}= ’−bo ’ ;

10 A{1 ,2}= ’−go ’ ;
11 A{1 ,3}= ’−mo’ ;
12 A{1 ,4}= ’− ro ’ ;
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13 subplot ( 2 , 2 , 1 ) ;
14 semilogy ( s1 ,A{ 1 , 1 } ) ;
15 a x i s normal ;
16 s e t ( legend ( ’ n =33 ’ , ’ l o c a t i o n ’ , ’ southeast ’ ) , ’ f o n t s i z e ’ , 8 ) ;
17 x l a b e l ( ’ number of non−c e n t r a l v e r t i c e s ’ ) ;
18 y l a b e l ( ’ subtree number ’ ) ;
19 subplot ( 2 , 2 , 2 ) ;
20 semilogy ( s2 ,A{ 1 , 2 } ) ;
21 s e t ( legend ( ’ n =58 ’ , ’ l o c a t i o n ’ , ’ southeast ’ ) , ’ f o n t s i z e ’ , 8 ) ;
22 x l a b e l ( ’ number of non−c e n t r a l v e r t i c e s ’ ) ;
23 y l a b e l ( ’ subtree number ’ ) ;
24 subplot ( 2 , 2 , 3 ) ;
25 semilogy ( s3 ,A{ 1 , 3 } ) ;
26 a x i s normal ;
27 s e t ( legend ( ’ n =75 ’ , ’ l o c a t i o n ’ , ’ southeast ’ ) , ’ f o n t s i z e ’ , 8 ) ;
28 x l a b e l ( ’ number of non−c e n t r a l v e r t i c e s ’ ) ;
29 y l a b e l ( ’ subtree number ’ ) ;
30 subplot ( 2 , 2 , 4 ) ;
31 semilogy ( s4 ,A{ 1 , 4 } ) ;
32 s e t ( legend ( ’ n =80 ’ , ’ l o c a t i o n ’ , ’ southeast ’ ) , ’ f o n t s i z e ’ , 8 ) ;
33 x l a b e l ( ’ number of non−c e n t r a l v e r t i c e s ’ ) ;
34 y l a b e l ( ’ subtree number ’ ) ;
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