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Abstract

:

In this paper, we specified a method that generalizes a number of fixed point results for single and multi-valued mappings in the structure of extended b-metric spaces. Our results extend several existing ones including the results of Aleksic et al. for single-valued mappings and the results of Nadler and Miculescu et al. for multi-valued mappings. Moreover, an example is given at the end to show the superiority of our results.
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1. Introduction and Preliminaries


Banach contraction principle [1] is a fundamental tool for providing the existence of solutions for many mathematical problems involving differential equations and integral equations. A mapping T:U→U on a metric space (U,d) is called a contraction mapping, if there exists η<1 such that for all u,v∈U,


d(Tu,Tv)≤ηd(u,v).



(1)




If the metric space is complete and T satisfies inequality (1), then T has a unique fixed point. Clearly, inequality (1) implies continuity of T. Naturally, a question arises as to whether we can find contractive conditions which will imply the existence of fixed points in a complete metric space, but will not imply continuity. In [2], Kannan derived the following result, which answers the said question. Let T:U→U be a mapping on a complete metric space (U,d), which satisfies inequality:


d(Tu,Tv)≤η[d(u,Tu)+d(v,Tv)],



(2)




where η∈[0,12) and u,v∈U. The mapping satisfying inequality (2) is called a Kannan type mapping. There are number of generalizations of the contraction principle of Banach both for single-valued and multi-valued mappings, see ([3,4,5,6,7,8,9,10,11,12,13]). Chatterjea in [14] established the following alike co ntractive condition. Let (U,d) be a complete metric space. A mapping T:U→U has a unique fixed point, if it satisfies the following inequality:


d(Tu,Tv)≤η[d(u,Tv)+d(v,Tu)].



(3)




where η∈[0,12) and u,v∈U. The mapping satisfying inequality (3) is called a Chatterjea type mapping.



Due to the problem of the convergence of measurable functions with respect to a measure, Bakhtin [15], Bourbaki [16], and Czerwik [17,18] introduced the concept of b-metric spaces by weakening the triangle inequality of the metric space as follows:



Definition 1

([17]). Let U be a set and s≥1 a real number. A function d:U×U→[0,∞) is called a b-metric space, if it satisfies the following axioms for all u1,u2,u3∈U:




	(1)

	
d(u1,u2)=0 if and only if u1=u2;




	(2)

	
d(u1,u2)=d(u2,u1);




	(3)

	
d(u1,u3)≤s[d(u1,u2)+d(u2,u3)].









The pair (U,d) is called a b-metric space.





Clearly, every metric space is a b-metric space with s=1, but its converse is not true in general. After that, a number of research papers have been established that generalized the Banach fixed point result in the framework of b-metric spaces. In [19], Kir and Kiziltunc introduced the following results, which generalized Kannan and Chatterjea type mappings in b-metric spaces. Let T:U→U be a mapping on a complete b-metric space (U,d), which satisfies inequality:


d(Tu,Tv)≤η[d(u,Tu)+d(v,Tv)].



(4)




where sη∈[0,12) and u,v∈U. Then T has a unique fixed point.



Let (U,d) be a complete b-metric space. A mapping T:U→U has a unique fixed point in U, if it satisfies the following inequality:


d(Tu,Tv)≤η[d(u,Tv)+d(v,Tu)],



(5)




for all u,v∈U, where η∈[0,12). In [20], the given below results, which generalized Equation (4) for κ1=κ2=κ3=0 and (5) for κ1=κ4=0 and κ2=κ3, have been derived.



Theorem 1

([20]). Let (U,d) be a complete b-metric space with constant s≥1. If T:U→U satisfies the inequality:


d(Tu,Tv)≤κ1d (u,v)+κ2d (u,Tu)+κ3d (v,Tv)+κ4[d (v,Tu)+d (u,Tv)],



(6)




where,


κ1+2sκ2+κ3+2sκ4<1,








then T has a unique fixed point.





Theorem 2

([20]). Let (U,d) be a complete b-metric space with constant s≥1. If T:U→U satisfies the inequality:


d(Tu,Tv)≤κ1dϕ(u,v)+κ2[dϕ(u,Tu)+dϕ(v,Tv)],



(7)




for all u,v∈U, where κ1,κ2∈[0,13), then T has a unique fixed point.





In [21], Koleva and Zlatanov proved the following result, which generalizes Chatterjea’s type mappings in b-metric spaces and do not involve the b-metric constant.



Theorem 3

([21]). Let (U,d) be a complete b-metric space and d be a continuous function. If T:U→U is a Chatterjea’s mapping, i.e., it satisfies inequality (3) such that supn∈N{d(Tnu,u)}<∞ holds for every u∈U. Then:




	(i)

	
There exists a unique fixed point of T, say ξ;




	(ii)

	
For any u0∈U, the sequence {un}n=1∞ converges to ξ, where un+1=Tnun, n=0,1,2,…;




	(iii)

	
There holds the priori error estimate.


d(ξ,Tmu)≤η1−ηmsupj∈N{d(Tju,u)},








where η∈[0,12).











Ilchev and Zlatanov in [22] proved the following result generalizing Theorem 3 for κ1=0.



Theorem 4

([22]). Let (U,d) be a complete b-metric space and d be a continuous function. If,




	(1)

	
T:U→U is a Reich mapping, i.e., there exist κ1,κ2≥0, such that κ1+2κ2<1, so that the inequality


d(Tu,Tv)≤κ1dϕ(u,v)+κ2[d(u,Tv)+d(v,Tu)],



(8)




holds for every u,v∈U;




	(2)

	
the inequality supn∈N{d(Tnu,u)}<∞ holds for every u∈U,









then:




	(i)

	
There exists a unique fixed point of T, say ξ;




	(ii)

	
For any u0∈U, the sequence {un}n=1∞ converges to ξ, where un+1=Tnun, n=0,1,2,…;




	(iii)

	
There holds the priori error estimate.


d(ξ,Tmu)≤κ1+κ21−κ2msupj∈N{d(Tju,u)}.



















In [23], the author introduced the following results, which improve Theorems 1 and 2 of [20].



Theorem 5

([23]). Let (U,d) be a complete b-metric space with a constant s≥1. If T:U→U satisfies the inequality:


d(Tu,Tv)≤κ1 d(u,v)+κ2 d(u,Tu)+κ3 d(v,Tv)+κ4[d(v,Tu)+d(u,Tv)],



(9)




where κi≥0, for i=1,2,3,4 and


κ1+κ2+κ3+2sκ4<1,








then T has a unique fixed point.





Theorem 6

([23]). Let (U,d) be a complete b-metric space with a constant s≥1. If T:U→U satisfies the inequality:


d(Tu,Tv)≤κ1 d(u,v)+κ2[d(u,Tu)+ d(v,Tv)],



(10)




for all u,v∈U, where κ1,κ2∈[0,13) such that κ2<min{13,1s}, then T has a unique fixed point.





If s=1, then (U,d) is a metric space and condition (9) implies:


d(Tu,Tv)≤kmax{d(u,v),d(u,Tu),d(v,Tv),d(v,Tu)+d(u,Tv)2},



(11)




where κ1+κ2+κ3+2κ4<1. With Equation (11), we recover the well-known result for generalized Ciric’s contraction mapping in the metric space and obtain a unique fixed point.



In 1969, Nadler [24] generalized the single-valued Banach contraction principle into a multi-valued contraction principle. This mapping has been carried out for a complete metric space (U,d) by using subsets of U that are nonempty closed and bounded. There are number of generalizations for Nadler’s fixed point theorem (see [25,26,27]). In [28], the author introduced the given below quasi-contraction mapping and proved an existence and uniqueness fixed point theorem.



A mapping T:U→U on a metric space (U,d) is called a quasi-contraction, if there exists q<1 such that for all u,v∈U,


d(Tu,Tv)≤qmax{d(u,v),d(u,Tu),d(v,Tv),d(u,Tv),d(v,Tu)}.











Amini-Harandi in [29] introduced the concept of q-multi-valued quasi-contractions and derived a fixed point theorem, which generalized Ciric’s theorem [28].



A multi-valued map T:U→CB(U) on a metric space (U,d) is called a q-multi-valued quasi-contraction, if there exists q<1 such that for all u,v∈U,


d(Tu,Tv)≤qmax{d(u,v),d(u,Tu),d(v,Tv),d(u,Tv),d(v,Tu)},








where CB(U) denotes the non-empty closed and bounded subsets of U. In [30], Aydi et al. established the following result, which generalized Theorem 2.2 from [29] and Ciric’s result [28].



Theorem 7

([30]). Let (U,d) be a complete b-metric space. Suppose that T is a q-multi-valued quasi-contraction and q<1s2+s, then T has a fixed point in U.





In 2017, Kamran et al. generalized the structure of a b-metric space and called it, an extended b-metric space. Thereafter, a number of research articles have appeared, which generalize the contraction principle of Banach in extended b-metric spaces for both single and multi-valued mappings (see [31,32,33,34,35,36,37]). In this paper, we illustrate a method (see Lemma 3), to generalize a number of fixed point results of single-valued and multi-valued mappings in the structure of extended b-metric spaces.



Definition 2

([38]). Let U be a nonempty set and ϕ:U×U→[1,∞). A function dϕ:U×U→[0,∞) is called an extended b-metric, if for all u1,u2,u3∈U, it satisfies:




	(d1)

	
dϕ(u1,u2)=0 iff u1=u2;




	(d2)

	
dϕ(u1,u2)=dϕ(u2,u1);




	(d3)

	
dϕ(u1,u3)≤ϕ(u1,u3)[dϕ(u1,u2)+dϕ(u2,u3)].









The pair (U,dϕ) is called an extended b-metric space.





Example 1.

Let U=[0,∞). Define dϕ:U×U→[0,∞) by:


dϕ(u,v)=0,if u=v;3,if u or v∈{1,2},u≠v;5,if u≠v∈{1,2};1,otherwise.








Then (U,dϕ) is an extended b-metric space, where ϕ:U×U→[1,∞) is defined by:


ϕ(u,v)=u+v+1,








for all u,v∈U.





Remark 1.

Every b-metric space is an extended b-metric space with constant function ϕ(u1,u2)=s, for s≥1, but its converse is not true in general.





Definition 3

([35]). Let (U,dϕ) be an extended b-metric space, where ϕ:U×U→[1,∞) is bounded. Then for all A,B∈CB(U), where CB(U) denotes the family of all nonempty closed and bounded subsets of U, the Hausdorff–Pompieu metric on CB(U) induced by dϕ is defined by:


HΦ(A,B)=max{supa∈Adϕ(a,B),supb∈Bdϕ(b,A)},








where for every a∈A, dϕ(a,B)=inf{dϕ(a,b):b∈B} and Φ:CB(U)×CB(U)→[1,∞) is such that:


Φ(A,B)=sup{ϕ(a,b):a∈A,b∈B}.













Theorem 8

([31]). Let (U,dϕ) be an extended b-metric space. Then (CB(U),HΦ) is an extended Hausdorff–Pompieu b-metric space.





Lemma 1

([39]). Every sequence {un}n∈N of elements from an extended b-metric space (U,dϕ), having the property that for every n∈N, there exists γ∈[0,1) such that:


dϕ(un+1,un)≤γdϕ(un,un−1)



(12)




where for each u0∈U, limn,m→∞ϕ(un,um)<1γ. Then {un}n=0∞ is a Cauchy sequence.





Definition 4.

Let U be any set and T:U→CB(U) be a multi-valued map. For any point u0∈U, the sequence {un}n=0∞ given by:


un+1∈Tun,n=0,1,2,…



(13)




is called an iterative sequence with initial point u0.






2. Main Results


Definition 5.

Let (U,dϕ) be an extended b-metric space. A function T:U→CB(U) is called continuous, if for every sequence {un}n∈N and {vn}n∈N belongs to U and u,v∈U such that limn→∞un=u, limn→∞vn=v and vn∈Tun. We have v∈Tu.





Definition 6.

An extended b-metric space (U,dϕ) is called ∗-continuous, if for every A∈CB(U), {un}n∈N∈U and u∈U such that limn→∞un=u. We have limn→∞dϕ(un,A)=dϕ(u,A).





Remark 2.

Note that ∗- continuity of dϕ is stronger than continuity of dϕ in first variable.





Lemma 2.

For every sequence {un}n∈N of elements from an extended b-metric space (U,dϕ), the inequality


dϕ(u0,uk)≤∑i=0k−1dϕ(ui,ui+1)∏l=0iϕ(ul,uk),



(14)




is valid for every k∈N.





Proof. 

From the triangle inequality for k>0, we haveL


dϕ(u0,uk)≤ϕ(u0,uk)dϕ(u0,u1)+ϕ(u0,uk)ϕ(u1,uk)dϕ(u1,u2)+⋯+ϕ(u0,uk)ϕ(u1,uk)…ϕ(uk−1,uk)dϕ(uk−1,uk).











This implies that:


dϕ(u0,uk)≤∑i=0k−1dϕ(ui,ui+1)∏l=0iϕ(ul,uk).








□





Lemma 3.

Every sequence {un}n∈N of elements from an extended b-metric space (U,dϕ), having the property that there exists γ∈[0,1) such that:


dϕ(un+1,un)≤γdϕ(un,un−1)



(15)




for every n∈N is Cauchy.





Proof. 

First, by successively applying (15), we get:


dϕ(un,un+1)≤γndϕ(u0,u1),



(16)




for every n∈N. Then by the Lemma 3, for all m,k∈N, we have:


dϕ(um,um+k)≤∑n=mm+k−1dϕ(un,un+1)∏l=0nϕ(ul,um+k)










dϕ(um,um+k)≤dϕ(u0,u1)∑n=mm+k−1γn∏l=0nϕ(ul,um+k)










dϕ(um,um+k)≤dϕ(u0,u1)∑n=0k−1γn+m∏l=0n+mϕ(ul,um+k)










dϕ(um,um+k)≤γmdϕ(u0,u1)∑n=0k−1γn∏l=0n+mϕ(ul,um+k)










dϕ(um,um+k)≤γmdϕ(u0,u1)∑n=0k−1γlogγ∏l=0n+mϕ(ul,um+k)+n.



(17)







Now let us take two cases for logγ∏l=0n+mϕ(ul,um+k)+n.




	Case 1:

	
If ∏l=0n+mϕ(ul,um+k) is finite, let us say M, then limn→∞logγM+n=∞. Hence the series ∑n=0k−1γlogγM+n is convergent.




	Case 2:

	
If ∏l=0n+mϕ(ul,um+k) is infinite, then limn→∞logγ∏l=0n+mϕ(ul,um+k)=∞, so there exist n0∈N such that logγ∏l=0n+mϕ(ul,um+k)>M, i.e.,


γlogγ∏l=0n+mϕ(ul,um+k)+n≤γM·γn,foreachn∈N,n≥n0.

















Hence the series ∑n=0k−1γlogγ∏l=0n+mϕ(ul,um+k)+n is convergent. In both cases denoting by S the sum of this series, we come to the conclusion that:


dϕ(um,um+k)≤γmdϕ(u0,u1)S,








for all m,k∈N. Consequently, as limm→∞γm=0, we conclude that {um}m∈N is a Cauchy sequence. □





Remark 3.

Lemma 3 shows that the condition on ϕ in Lemma 1 corresponding to that for each u0∈U, limn,m→∞ϕ(un,um)<1γ, can be avoided. Therefore, Lemma 3 generalizes Lemma 1, which is the basis of the results from [36].





Lemma 4.

Let A,B∈CB(U), then for every η>0 and b∈B there exists a∈A such that:


dϕ(a,b)≤HΦ(A,B)+η.



(18)









Proof. 

By definition of Hausdorff metric, for A,B∈CB(U) and for any b∈Y, we have:


dϕ(A,b)≤HΦ(A,B).











By the definition of infimum, we can let {an} be a sequence in A such that:


dϕ(b,an)<dϕ(b,A)+η,whereη>0.



(19)







We know that A is closed and bounded, so there exists a∈A such that an→a. Therefore, by (19), we have:


dϕ(a,b)<dϕ(A,b)+η≤HΦ(A,B)+η.








□





Theorem 9.

Let (U,dϕ) be a complete extended b-metric space with ϕ:U×U→[1,∞). If T:U→U satisfies the inequality:


dϕ(Tu,Tv)≤κ1dϕ(u,v)+κ2dϕ(u,Tu)+κ3dϕ(v,Tv)+κ4[dϕ(v,Tu)+dϕ(u,Tv)],



(20)




where κi≥0, for i=1,…,4 and for each u0∈U,


κ1+κ2+κ3+2κ4limn,m→∞ϕ(un,um)<1,








then T has a fixed point.





Proof. 

Let us choose an arbitrary u0∈U and define the iterative sequence {un}n=0∞ by un=Tun−1=Tn−1u0 for all n≥1. If un=un−1, then un is a fixed point of T and the proof holds. So we suppose un≠un−1, ∀ n≥1. Then from Equation (20), we have:


dϕ(Tun,Tun−1)≤κ1dϕ(un,un−1)+κ2dϕ(un,Tun)+κ3dϕ(un−1,Tun−1)+κ4[dϕ(un−1,Tun)+dϕ(un,Tun−1)].











From the triangle inequality, we get:


dϕ(Tun,Tun−1)≤κ1dϕ(un,un−1)+κ2dϕ(un,Tun)+κ3dϕ(un−1,Tun−1)+κ4ϕ(un−1,un+1)[dϕ(un−1,un)+dϕ(un,un+1)].











This implies that:


dϕ(un+1,un)≤(κ1+κ3+κ4ϕ(un−1,un+1))dϕ(un,un−1)+(κ2+κ4ϕ(un−1,un+1))dϕ(un,un+1).



(21)







Similarly,


dϕ(un,un+1)≤(κ1+κ2+κ4ϕ(un−1,un+1))dϕ(un,un−1)+(κ3+κ4ϕ(un−1,un+1))dϕ(un,un+1).



(22)







By adding Equations (21) and (22), we get:


dϕ(un+1,un)≤ηdϕ(un,un−1).



(23)




where,


η=2κ1+κ2+κ3+2κ4ϕ(un−1,un+1)2−κ2−κ3−2κ4ϕ(un−1,un+1).











Since κ1+κ2+κ3+2κ4limn,m→∞ϕ(un,um)<1, multiply by 2,


2κ1+2κ2+2κ3+4κ4limn,m→∞ϕ(un,um)<2,










2κ1+2κ2+2κ3+(2κ4limn,m→∞ϕ(un,um)+2κ4limn,m→∞ϕ(un,um))<2.











This implies that:


2κ1+κ2+κ3+2κ4limn,m→∞ϕ(un,um)<2−κ2−κ3−2κ4limn,m→∞ϕ(un,um).








⇒ η<1. Hence from Lemma 3, {un}n=0∞ is a Cauchy sequence. As U is complete, therefore there exists u∈U such that limn→∞un=u. Next, we will show that u is a fixed point of T. From the triangle inequality and Equation (20), we have:


dϕ(u,Tu)≤ϕ(u,Tu)[dϕ(u,un+1)+dϕ(un+1,Tu)]≤ϕ(u,Tu)[dϕ(u,un+1)+κ1dϕ(un,u)+κ2dϕ(un,un+1)+κ3dϕ(u,Tu)+κ4[dϕ(un,Tu)+dϕ(u,un+1)]≤ϕ(u,Tu)[dϕ(u,un+1)+κ1dϕ(un,u)+κ2dϕ(un,un+1)+κ3dϕ(u,Tu)+κ4dϕ(u,un+1)+κ4ϕ(un,Tu)[dϕ(un,u)+dϕ(u,Tu)]≤ϕ(u,Tu)[(1+κ4)dϕ(u,un+1)+(κ1+κ4ϕ(un,Tu))dϕ(u,un)κ2dϕ(un,un+1)+(κ3+κ4ϕ(un,Tu))dϕ(u,Tu)]..











So,


(1−κ3−κ4ϕ(un,Tu))dϕ(u,Tu)≤ϕ(u,Tu)[(1+κ4)dϕ(u,un+1)+(κ1+κ4ϕ(un,Tu))dϕ(u,un)+κ2dϕ(un,un+1)].



(24)







Similarly,


(1−κ2−κ4ϕ(un,Tu))dϕ(u,Tu)≤ϕ(u,Tu)[(1+κ4)dϕ(u,un+1)+(κ1+κ4ϕ(un,Tu))dϕ(u,un)+κ3dϕ(un,un+1)].



(25)







By adding Equations (24) and (25), we have:


(2−κ2−κ3−2κ4ϕ(un,Tu))dϕ(u,Tu)≤ϕ(u,Tu)[2(1+κ4)dϕ(u,un+1)+2(κ1+κ4ϕ(un,Tu))dϕ(u,un)+(κ2+κ3)dϕ(un,un+1)]→0,








as n→∞. This implies that:


(2−κ2−κ3−2κ4ϕ(un,Tu))dϕ(u,Tu)≤0.











Since (2−κ2−κ3−2κ4ϕ(un,Tu))>0, we get dϕ(u,Tu)=0, i.e., Tu=u. Now, we show that u is the unique fixed point of T. Assume that u′ is another fixed point of T, then we have Tu′=u′. Also,


dϕ(u,u′)=dϕ(Tu,Tu′)≤κ1dϕ(u,u′)+κ2dϕ(u,Tu′)+κ3dϕ(u′,Tu)+κ4[dϕ(u,Tu′)+dϕ(u′,Tu)≤κ1dϕ(u,u′)+κ2dϕ(u,u′)+κ3dϕ(u′,u)+κ4[dϕ(u,u′)+dϕ(u′,u)≤(κ1+2κ4)dϕ(u,u′).











This implies that:


(1−κ1−2κ4)dϕ(u,u′)≤0.








As κ1+κ2+κ3+2κ4≤κ1+κ2+κ3+2κ4limn,m→∞ϕ(un,um)<1. Therefore (1−κ1−2κ4)>0, and dϕ(u,u′)=0, i.e., u=u′. Hence T has a unique fixed point in U. □





Remark 4.

From the symmetry of the distance function dϕ, it is easy to prove similar to that done in [4,22] that κ2=κ3. Thus the inequality (20) is equivalent to the following inequality:


dϕ(Tu,Tv)≤κ1dϕ(u,v)+κ2[dϕ(u,Tu)+dϕ(v,Tv)]+κ4[dϕ(v,Tu)+dϕ(u,Tv)],



(26)




where κ1,κ2,κ4≥0 such that κ1+2κ2+2κ4limn,m→∞ϕ(un,um)<1. If κ1=κ2=0 and κ4∈[0,12) in inequality (26), we obtain generalization of Chatterjea’s map [14] in extended b-metric space.





Remark 5.

Theorem 9 generalizes and improves Theorem 1.5 of [23] and therefore Theorem 2.1 of [20]. Moreover, Theorem 9 generalizes and improves Theorem 3.7 from [40], that is, Theorem 2.19 from [41].





Theorem 10.

Let (U,dϕ) be a complete extended b-metric space with ϕ:U×U→[1,∞). If T:U→U satisfies the inequality:


dϕ(Tu,Tv)≤κ1dϕ(u,v)+κ2[dϕ(u,Tu)+dϕ(v,Tv)],



(27)




for each u,v∈U, where κ1,κ2∈[0,13). Moreover for each u0∈U,


limn,m→∞ϕ(un,um)κ2<1,








then T has a unique fixed point.





Proof. 

Let us choose an arbitrary u0∈U and define the iterative sequence {un}n=0∞ by un=Tun−1=Tn−1u0 for all n≥1. If un=un−1, then un is a fixed point of T and the proof holds. So we suppose un≠un−1, ∀ n≥1. Then from Equation (27), we have:


dϕ(Tun,Tun−1)≤κ1dϕ(un,un−1)+κ2[dϕ(un−1,Tun−1)+dϕ(un,Tun)].











So,


(1−κ2)dϕ(un+1,un)≤(κ1+κ4)dϕ(un,un−1).










dϕ(un,un+1)≤κ1+κ41−κ4dϕ(un,un−1).











This implies that:


dϕ(un+1,un)≤ηdϕ(un,un−1).



(28)




where,


η=κ1+κ41−κ4.











Since κ1,κ2∈[0,13), so η<1, from Lemma 3, {un}n=0∞ is a Cauchy sequence. As U is complete, therefore there exists u∈U such that limn→∞un=u. Next, we will show that u is a fixed point of T in U. From the triangle inequality and Equation (27), we have:


dϕ(u,Tu)≤ϕ(u,Tu)[dϕ(u,un+1)+dϕ(un+1,Tu)]≤ϕ(u,Tu)[dϕ(u,un+1)+κ1dϕ(un,u)+κ2[dϕ(un,un+1)+dϕ(u,Tu)]..











So,


(1−κ2ϕ(u,Tu))dϕ(u,Tu)≤0,








as n→∞. Since limn,m→∞ϕ(un,um)κ2<1, we get (1−κ2ϕ(u,Tu))>0, and so dϕ(u,Tu)=0, i.e., Tu=u. We will show that u is the unique fixed point of T. Assume that u′ is another fixed point of T, then we have Tu′=u′. Again,


dϕ(u,u′)=dϕ(Tu,Tu′)≤κ1dϕ(u,u′)+κ2[dϕ(u,Tu)+dϕ(u′,Tu′)]+κ1dϕ(u,u′)<dϕ(u,u′),








which is a contradiction. Hence T has a unique fixed point in U. □





Remark 6.

Theorem 10 generalizes Theorem 1.2 of [20].





For u,v∈U and c,d∈[0,1], we will use the following notation:


Nc1,c2(u,v)=max{dϕ(u,v),c1dϕ(u,Tu),c1dϕ(v,Tv),c22(dϕ(u,Tv)+dϕ(v,Tu))}.











Theorem 11.

Let (U,dϕ) be an extended b-metric space. Let T:U→CB(U) be a multi-valued mapping having the property that there exist c1,c2∈[0,1] and η∈[0,1) such that:




	(i)

	
For each u0∈U, limn,m→∞ηc2ϕ(un,um)<1, here un=Tnu0,




	(ii)

	
HΦ(Tu,Tv)≤ηNc1,c2(u,v) for all u,v∈U.









Then for every u0∈U, there exist γ∈[0,1) and a sequence {un}n∈N of iterates from U such that for every n∈N,


dϕ(un,un+1)≤γdϕ(un−1,un).



(29)









Proof. 

Let us choose an arbitrary u0∈U and u1∈Tu0. Consider:


γ=max{η,ηc2ϕ(un−1,un+1)2−ηc2ϕ(un−1,un+1)}.








Clearly, γ<1. If u1=u0, then for every n∈N, the sequence {un}n∈N given by un=u0 satisfies Equation(29). Since:


dϕ(u1,Tu1))≤dϕ(Tu0,Tu1)≤HΦ(Tu0,Tu1)≤ηNc1,c2(u0,u1).








there exists u2∈Tu1 such that dϕ(u1,u2)≤ηNc1,c2(u0,u1). If u2=u1, then for every n∈N, n≥1, the sequence {un}n∈N given by un=u1 satisfies Equation (29). By repeating this process, we obtain a sequence {un}n∈N of elements from U such that un+1∈Tun and 0<dϕ(un,un+1)≤ηNc1,c2(un−1,un) for every n∈N, n≥1. Then we have:


0<dϕ(un,un+1)≤ηNc1,c2(un−1,un)≤ηmax{dϕ(un−1,un),c1dϕ(un−1,Tun−1),c1dϕ(un,Tun),c22(dϕ(un−1,Tun)+dϕ(un,Tun−1))}≤ηmax{dϕ(un−1,un),c1dϕ(un−1,un),c1dϕ(un,un+1),c22(dϕ(un−1,un+1))}



(30)






≤ηmax{dϕ(un−1,un),c1dϕ(un−1,un),c1dϕ(un,un+1),c2ϕ(un−1,un+1)2(dϕ(un−1,un)+dϕ(un,un+1))},



(31)




for every n∈N. If we take:


max{dϕ(un−1,un),c1dϕ(un−1,un),c1dϕ(un,un+1),c2ϕ(un−1,un+1)2(dϕ(un−1,un)+dϕ(un,un+1))}=c1dϕ(un,un+1),








then from Equations (30) and (31), 0<d(un,un+1)≤ηc1dϕ(un,un+1)<ηdϕ(un,un+1). As η<1, so we obtain the contradiction. Therefore, we have:


dϕ(un,un+1)≤ηNc1,c2(un−1,un)≤ηmax{dϕ(un−1,un),c2ϕ(un−1,un+1)2(dϕ(un−1,un)+dϕ(un,un+1))}.











Consequently, dϕ(un,un+1)≤ηdϕ(un−1,un) or


dϕ(un,un+1)≤ηc2ϕ(un−1,un+1)2(dϕ(un−1,un)+dϕ(un,un+1)).











This implies that dϕ(un,un+1)≤ηdϕ(un−1,un) or


dϕ(un,un+1)≤ηc2ϕ(un−1,un+1)2−ηc2ϕ(un−1,un+1)dϕ(un−1,un),








for every n∈N. Thus,


dϕ(un,un+1)≤max{η,ηc2ϕ(un−1,un+1)2−ηc2ϕ(un−1,un+1)}dϕ(un−1,un),








i.e.,


dϕ(un,un+1)≤γdϕ(un−1,un).











Thus, the sequence {un}n∈N satisfies Equation(29). Hence from Lemma 3, we conclude that {un}n∈N is Cauchy sequence. □





Theorem 12.

Let (U,dϕ) be a complete extended b-metric space. Let T:U→CB(U) be a multi-valued mapping having the property that there exist c1,c2∈[0,1] and η∈[0,1) such that:




	(i)

	
For each u0∈U, limn,m→∞ηc2ϕ(un,um)<1, here un=Tnu0,




	(ii)

	
HΦ(Tu,Tv)≤ηNc1,c2(u,v) for all u,v∈U,




	(iii)

	
T is continuous.









Then T has a fixed point in U.





Proof. 

From Theorem 11, by taking in account condition (i) and (ii), we conclude that {un}n∈N is a Cauchy sequence such that:


un+1∈Tun,



(32)




for every n∈N. As U is complete, so there exists u∈U such that limn→∞un=u. From inequality (3), by the continuity of T, it follows that:


un+1=Tun→Tu,asn→∞.











Therefore, u∈Tu. Hence T has a fixed point in U. □





Theorem 13.

Let (U,dϕ) be a complete extended b-metric space. Let T:U→CB(U) be a multi-valued mapping having the property that there exist c1,c2∈[0,1] and η∈[0,1) such that:




	(i)

	
For each u0∈Ulimn,m→∞ηc2ϕ(un,um)<1, here un=Tnu0,




	(ii)

	
HΦ(Tu,Tv)≤ηNc1,c2(u,v) for all u,v∈U,




	(iii)

	
T is ∗-continuous.









Then T has a fixed point in U. □





Proof. 

From Theorem 3, by taking in account condition (i) and (ii), we conclude that {un}n∈N is a Cauchy sequence such that:


un+1∈Tun,



(33)




for every n∈N. As U is complete, so there exists u∈U such that limn→∞un=u. Then we have:


dϕ(un+1,Tu)=dϕ(Tun,Tu)≤HΦ(Tun,Tu)≤ηNc1,c2(un,u)≤ηmax{dϕ(un,u),c1dϕ(un,Tun),c1dϕ(u,Tu),c22(dϕ(un,Tu)+dϕ(u,Tun))}≤ηmax{dϕ(un,u),c1dϕ(un,un+1),c1dϕ(u,Tu),c22(dϕ(un,Tu)+dϕ(u,Tun))}



(34)






≤ηmax{dϕ(un,u),c1dϕ(un,un+1),c1dϕ(u,Tu),c22(ϕ(un,Tu)(dϕ(un,u)+dϕ(u,Tu)))+dϕ(u,un+1)},



(35)




for every n∈N. Since limn→∞un=u, limn→∞dϕ(un,un+1)=0. Then limn→∞dϕ(un+1,Tu)=dϕ(u,Tu). Therefore, by taking limit n→∞ in Equations (34) and (35), we obtain:


dϕ(u,Tu)≤ηNc1,c2(un,u)≤ηmax{0,c1dϕ(u,Tu),c2limn→∞ϕ(un,Tu)2dϕ(u,Tu)}≤max{ηc1,ηηc2limn→∞ϕ(un,Tu)2}dϕ(u,Tu).











As max{ηc1,ηηc2limn→∞ϕ(un,Tu)2}<1, so from above inequality dϕ(u,Tu)<dϕ(u,Tu), which is impossible, therefore dϕ(u,Tu)=0 i.e., u∈Tu. Hence T has a fixed point in U. □





Theorem 14.

A multi-valued mapping T:U→CB(U) has a fixed point in a complete extended b-metric space (U,dϕ), if it satisfies the following two axioms:




	(i)

	
There exist c1,c2∈[0,1] and η∈[0,1) such that HΦ(Tu,Tv)≤ηNc1,c2(u,v) for all u,v∈U,




	(ii)

	
For each u0∈U, max{ηc1limn,m→∞ϕ(un,um),ηc2limn,m→∞ϕ(un,um)}<1, here un=Tnu0.











Proof. 

From Theorem 11, by taking in account condition (i) and (ii), we conclude that {un}n∈N is a Cauchy sequence such that:


un+1∈Tun,



(36)




for every n∈N. As U is complete, so there exists u∈U such that limn→∞un=u. Then for every n∈N, we have:


dϕ(un+1,Tu)=dϕ(Tun,Tu)≤HΦ(Tun,Tu)≤ηNc1,c2(un,u)≤ηmax{dϕ(un,u),c1dϕ(un,Tun),c1dϕ(u,Tu),c22(dϕ(un,Tu)+dϕ(u,Tun))}≤ηmax{dϕ(un,u),c1dϕ(un,un+1),c1dϕ(u,Tu),c22(dϕ(un,Tu)+dϕ(u,Tun))}



(37)






≤ηmax{dϕ(un,u),c1dϕ(un,un+1),c1dϕ(u,Tu),c22(ϕ(un,Tu)(dϕ(un,u)+dϕ(u,Tu)))+dϕ(u,un+1)}.



(38)







Now, we will take two cases:




	Case (i):

	
If dϕ(u,Tu)≤limn→∞supdϕ(un,Tu), then there exists a subsequence {unl}n∈N of {un} such that dϕ(u,Tu)≤liml→∞dϕ(unl+1,Tu), so for each ϵ>0, ∃lϵ∈N such that for every l∈N, l≥lϵ, we have:


dϕ(u,Tu)−ϵ≤dϕ(unl+1,Tu)≤ηmax{dϕ(unl,u),c1dϕ(unl,unl+1),c1dϕ(u,Tu),c22(dϕ(unl,Tu)+dϕ(u,unl+1))}



(39)






≤ηmax{dϕ(unl,u),c1dϕ(unl,unl+1),c1dϕ(u,Tu),c22(ϕ(unl,Tu)(dϕ(unl,u)+dϕ(u,Tu))+dϕ(u,unl+1)}.



(40)







Since liml→∞unl=u, liml→∞dϕ(unl,unl+1)=0. Therefore, by taking limit l→∞ in Equations (39) and (40), we obtain:


dϕ(u,Tu)−ϵ≤ηmax{0,c1dϕ(u,Tu),c2liml→∞ϕ(unl,Tu)2dϕ(u,Tu)}   ≤ηmax{c1,ηc2liml→∞ϕ(unl,Tu)2}dϕ(u,Tu),








for every ϵ>0. Thus,


dϕ(u,Tu)≤max{ηc1,ηηc2liml→∞ϕ(unl,Tu)2}dϕ(u,Tu).











As max{ηc1,ηηc2liml→∞ϕ(unl,Tu)2}<1, so from above inequality dϕ(u,Tu)<dϕ(u,Tu), which is impossible, therefore dϕ(u,Tu)=0, i.e., u∈Tu. Hence T has a fixed point in U.




	Case (ii):

	
If dϕ(u,Tu)>limn→∞supdϕ(un,Tu), then there exists N0∈N such that for every n≥N0, we have


dϕ(unl,Tu)≤dϕ(u,Tu).











From the triangle inequality, dϕ(u,Tu)≤ϕ(u,Tu)(dϕ(u,un+1)+dϕ(un+1,Tu)), we obtain:


dϕ(u,Tu)−ϕ(u,Tu)(dϕ(u,un+1)≤ϕ(u,Tu)dϕ(un+1,Tu)≤ϕ(u,Tu)ηmax{dϕ(un,u),c1dϕ(un,un+1),c1dϕ(u,Tu),c22(dϕ(un,Tu)+dϕ(u,un+1))}



(41)






≤ηmax{dϕ(un,u),c1dϕ(un,un+1),c1dϕ(u,Tu),c22(ϕ(un,Tu)(dϕ(un,u)+dϕ(u,Tu)))+dϕ(u,un+1)}.



(42)







Since limn→∞un=u, limn→∞dϕ(un,un+1)=0. Therefore by taking limit n→∞ in Equations (41) and (42), we obtain:


dϕ(u,Tu)−ϕ(u,Tu)dϕ(u,un+1)≤ϕ(u,Tu)ηmax{0,c1dϕ(u,Tu),c2limn→∞ϕ(un,Tu)2dϕ(u,Tu)≤ϕ(u,Tu)max{ηc1,ηηc2limn→∞ϕ(un,Tu)2}dϕ(u,Tu),



(43)




from condition (ii), since ϕ(u,Tu)max{ηc1,ηηc2limn→∞ϕ(un,Tu)2}<1, so from Equation (43), dϕ(u,Tu)<dϕ(u,Tu), which is impossible, therefore dϕ(u,Tu)=0, i.e., u∈Tu. Hence T has a fixed point in U.









□





Remark 7.






	(i)

	
For c1,c2=0 in Theorem 12, we obtain Nadler’s contraction principle for multi valued-mappings, i.e., Theorem 5 from [24].




	(ii)

	
Theorem 14 generalizes Theorems 12 and 13;




	(ii)

	
Theorem 14 generalizes Theorem 3.3 from [42], which generalizes Theorem 7 of [30]. Also, Theorem 7, which is a generalization of Theorem 2.2 from [29], improves Theorem 3.3 from [43], Corollary 3.3 from [5], and Theorem 1 from [28].











Example 2.

Let U={12,14,…,12n,…}∪{0,1}, dϕ(u1,u2)=(u1−u2)2, for u1,u2∈U, where ϕ:U×U→[1,∞) define by ϕ(u1,u2)=u1+u2+1. Then U is a complete extended b-metric space. Define mapping T:U→CB(U) as


Tu={12n+1},u=12n,n=0,1,2,…u,u=0.











Hence T is continuous. Since Nc1,c2(12n,0)=122n, for all c1,c2∈[0,1], we get:


HΦT12n,T(0)=122n+2≤122n+1≤12Nc1,c212n,0,








where η=12. Also for each u0∈U, limn,m→∞ηc2ϕ(un,um)<1. Clearly, it satisfies all the conditions of Theorem 12, and so there exists a fixed point.





Example 3.

Let U=[0,∞). Define dϕ(u1,u2)=(u1−u2)2, for u1,u2∈U, where ϕ:U×U→[1,∞), where ϕ(u1,u2)=u1+u2+2. Then U is a complete extended b-metric space. Define mapping T:U→CB(U) as Tu={89u} for every u∈U. Note that Theorem 14 is applicable by taking c1=c2=0 and η=89.
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