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Abstract

:

In this paper, we prove a new fixed point theorem for a multi-valued mapping from a complete extended b-metric space U into the non empty closed and bounded subsets of U, which generalizes Nadler’s fixed point theorem. We also establish some fixed point results, which generalize our first result. Furthermore, we establish Mizoguchi–Takahashi’s type fixed point theorem for a multi-valued mapping from a complete extended b-metric space U into the non empty closed and bounded subsets of U that improves many existing results in the literature.
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1. Introduction


Throughout this paper, (U,dϕ) is an extended b-metric space. We denote by CL(U) the set of all subsets of U that are non empty and closed, by CLB(U) the set of all subsets of U that are non empty closed and bounded and by K(U) the set of all subsets of U that are non empty compacts.



An element u′∈U is called a fixed point of a multi-valued map F:U→CLB(U) if u′∈Fu′. An orbit for a mapping F:U→CLB(U) at a point u0∈U denoted by O(F) is a sequence {un}n=0∞ in U such that un+1∈Fun. A mapping f:U→R is said to be F-orbitally lower semi-continuous if for any sequence {un}n=0∞ in O(F) and u∈U, un→u implies f(u)≤limn→∞inff(un).



Define a function f:U→R as f(u)=dϕ(u,Fu). For a constant q∈(0,1), define the set Iqu⊂U as


Iqu={v∈Fu|qdϕ(u,v)≤dϕ(u,Fu)}.











The Pompeiu–Hausdorff distance measuring the distance between the subsets of a metric space was initiated by D. Pompeiu in [1]. The fixed point theory of set-valued contractions was initiated by Nadler [2], but later many authors extrapolated it multi directionally (see [3,4]).



Theorem 1

(Reich [5]). Let (U,d) be a complete metric space and let F:U→K(U). Assume that there exists a map η:[0,∞)→[0,1) such that


limsups→t+η(s)<1,forallt∈(0,∞),








and


H(Fu,Fv)≤η(d(u,v))d(u,v),forallu,v∈U.











Then F has a fixed point.





In [5] Reich raised the question if the above theorem is also true for F:U→CLB(U). In [6], Mizoguchi and Takahashi gave supportive solution to the conjecture of [5] under the hypothesis limsups→t+η(s)<1,forallt∈[0,∞). In particular, they proved the following result:



Theorem 2

(Mizoguchi, Takahashi [6]). Let (U,d) be a complete metric space and let F:U→CLB(U). Assume that there exists a map η:[0,∞)→[0,1) such that


limsups→t+η(s)<1,forallt∈[0,∞),








and


H(Fu,Fv)≤η(d(u,v))d(u,v),forallu,v∈U,u≠v.











Then F has a fixed point.





In [7], Feng and Liu extended Nadler’s fixed point theorem, other than the direction of Reich and Takahashi. They proved a theorem as follows:



Theorem 3

(Feng, Liu [7]). Let (U,d) be a complete metric space and let F:U→CLB(U). Assume that:




	(i) 

	
The map f:U→R defined by f(u)=d(u,Fu), u∈U, is lower semi-continuous;




	(ii) 

	
There exist p,q∈(0,1), p<q such that for all u∈U there exists v∈{v∈Fu|qd(u,v)≤d(u,Fu)} satisfying


d(v,Fv)≤pd(u,v).

















Then F has a fixed point.





Hicks and Rhodes [8] and Klim and Wardowski [9] proved the following results:



Theorem 4

([8]). Let (U,d) be a complete metric space and let g:U→U, 0≤h<1. Suppose there exists q such that


d(gv,g2v)≤hd(v,gv),foreveryy∈{x,gx,g2x,…}.











Then




	(i) 

	
limngnx=q exists;




	(ii) 

	
d(gnx,q)≤hn1−hd(x,gx);




	(iii) 

	
q is a fixed point of g iff G(x)=d(x,gx) is g-orbitally lower semi-continuous at q.











Theorem 5

([9]). Let (U,d) be a complete metric space and let F:U→K(U). Assume that the following conditions hold:




	(i) 

	
The map f:U→R defined by f(u)=d(u,Fu), u∈U, is lower semi-continuous;




	(ii) 

	
There exists a map η:[0,∞)→[0,1) such that


limsups→t+η(s)<1,forallt∈(0,∞),








and for all u∈U there exists v∈{v∈Fu:d(u,v)≤d(u,Fu)} satisfying


d(v,Fv)≤η(d(u,v))d(u,v).








Then F has a fixed point.











In 2007, Kamran [10] logically presented Mizoguchi–Takahashi’s type fixed point theorem, that simply generalizes Theorems 4 and 5.



The idea of generalizing metric spaces into b-metric spaces was initiated from the works of Bakhtin [11], Bourbaki [12], and Czerwik [13,14]. In [15], the notion of b-metric space was generalized further by introducing the concept of extended b-metric spaces (see also [16,17,18]) as follows:



Definition 1

([15]). Let U be a non empty set and ϕ:U×U→[1,∞). A function dϕ:U×U→[0,∞) is called an extended b-metric, if for all u1,u2,u3∈U it satisfies:




	(i) 

	
dϕ(u1,u2)=0 if and only if u1=u2,




	(ii) 

	
dϕ(u1,u2)=dϕ(u2,u1),




	(iii) 

	
dϕ(u1,u3)≤ϕ(u1,u3)[dϕ(u1,u2)+dϕ(u2,u3)].









The pair (X,dϕ) is called an extended b-metric space.





Remark 1

([15]). Every b-metric space is an extended b-metric space with a constant function ϕ(x1,x2)=s, for s≥1, but its converse is not true in general.





Example 1.

Let U={u∈R:u≥1}. Define dϕ:U×U→[0,∞) and ϕ:U×U→[1,∞) as follows:


dϕ(u1,u2)=(u1−u2)2,ϕ(u1,u2)=1+u1+u2,








for all u1,u2∈U. Then (U,dϕ) is an extended b-metric space.





For more examples and recent results see [19]. Also, in [20] Muhammad Usman Ali et al. established fixed point results for new F-contractions of Hardy–Rogers type in the setting of b-metric space and proved the existence theorem for Volterra-type integral inclusion. Their results generalized many existence results in the literature. Finally in [21], authors introduced the notion of a generalized Pompeiu–Hausdorff metric induced by the extended b-metric as follows:



Definition 2.

([21]) Let (U,dϕ) be an extended b-metric space, where ϕ:U×U→[1,∞) is bounded. Then for all A,B∈CLB(U), where CLB(U) denotes the family of all non empty closed and bounded subsets of U, the Hausdorff–Pompieu metric on CLB(U) induced by dϕ is defined by


HΦ(A,B)=max{supa∈Adϕ(a,B),supb∈Bdϕ(b,A)},








where for every a∈A, dϕ(a,B)=inf{dϕ(a,b):b∈B} and Φ:CLB(U)×CLB(U)→[1,∞) is such that


Φ(A,B)=sup{ϕ(a,b):a∈A,b∈B}.













Theorem 6.

([21]) Let (U,dϕ) be an extended b-metric space. Then (CLB(U),HΦ) is an extended Hausdorff–Pompieu b-metric space.





In this paper, we extend Nadler’s fixed point theorem for the extended b-metric space. Moreover, we improve Mizoguchi–Takahashi’s type fixed point theorem (Theorem 1.2, [10]) for the extended b-metric space when F is a multi-valued mapping from U to CLB(U). Our results generalize Theorems 4 and 5 in the setting of extended b-metric spaces which in turn generalize many existing results including Theorems 1–3.




2. Main Results


We start with the following lemma.



Lemma 1.

Let X,Y∈CLB(U), then for every η>0 and y∈Y there exists x∈X such that


dϕ(x,y)≤HΦ(X,Y)+η.













Proof. 

By definition of the Hausdorff metric, for X,Y∈CLB(U) and for any y∈Y, we have


dϕ(X,y)≤HΦ(X,Y).











By the definition of an infimum, we can let {xn}n=0∞ be a sequence in X such that


dϕ(y,xn)<dϕ(y,X)+η,whereη>0.



(1)







We know that X is closed and bounded, so there exists x∈X such that xn→x. Therefore by (1), we have


dϕ(x,y)<dϕ(X,y)+η≤HΦ(X,Y)+η.








 ☐





Theorem 7.

Let (U,dϕ) be a complete extended b-metric space. If F:U→CLB(U) satisfies the inequality


HΦ(Fu,Fv)≤ηdϕ(u,v),forallu,v∈U,



(2)




where η∈[0,1) is a real constant such that limn,m→∞ηϕ(un,um)<1, then F has a fixed point.





Proof. 

Let us consider η>0. Let u0∈U and choose u1∈Fu0. Since Fu0,Fu1∈CLBU) and u1∈Fu0, then by Lemma 1, there exists u2∈Fu1 such that


dϕ(u1,u2)≤HΦ(Fu0,Fu1)+η.











Now since Fu1,Fu2∈CLBU) and u2∈Fu1, there is a point u3∈Fu2 such that


dϕ(u2,u3)≤HΦ(Fu1,Fu2)+η2.











Continuing in this fashion, we obtain a sequence {un}n=0∞ of elements of U such that un+1∈Fun and


dϕ(un,un+1)≤HΦ(Fun−1,Fun)+ηn,foralln≥1.











By (2), we note that


dϕ(un,un+1)≤ηdϕ(un−1,un)+ηn≤η(ηdϕ(un−2,un−1)+ηn−1)+ηn≤η2dϕ(un−2,un−1)+2ηn.











Continuing in this way, we have


dϕ(un,un+1)≤ηndϕ(u0,u1)+nηn,foralln≥1.



(3)







By the triangle inequality and (3) for m>n, we have


dϕ(un,um)≤ϕ(un,um)[ηndϕ(u0,u1)+nηn]+ϕ(un,um)ϕ(un+1,um)[ηn+1dϕ(u0,u1)+(n+1)ηn+1]+……+ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)[ηm−1dϕ(u0,u1)+(m−1)ηm−1],










dϕ(un,um)≤dϕ(u0,u1)[ϕ(un,um)ηn+ϕ(un,um)ϕ(un+1,um)ηn+1+…+ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)ηm−1]+[ϕ(un,um)nηn+ϕ(un,um)ϕ(un+1,um)(n+1)ηn+1+…+ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)(m−1)ηm−1],










dϕ(un,um)≤dϕ(u0,u1)[ϕ(u1,um)ϕ(u2,um)…ϕ(un,um)ηn+ϕ(u1,um)ϕ(u2,um)…ϕ(un+1,um)ηn+1+…+ϕ(u1,um)ϕ(u2,um)…ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)ηm−1]+[ϕ(u1,um)ϕ(u2,um)…ϕ(un,um)nηn+ϕ(u1,um)ϕ(u2,um)…ϕ(un+1,um)(n+1)ηn+1+…+ϕ(u1,um)ϕ(u2,um)…ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)(m−1)ηm−1].











Since limn,m→∞ϕ(un+1,um)η<1, the series


∑n=1∞ηn∏i=1nϕ(ui,um)and∑n=1∞nηn∏i=1nϕ(ui,um)








converges by the ratio test for each m∈N. Let


S=∑n=1∞ηn∏i=1nϕ(ui,um),Sn=∑j=1nηj∏i=1jϕ(ui,um),








and


S′=∑n=1∞nηn∏i=1nϕ(ui,um),Sn′=∑j=1njηj∏i=1jϕ(ui,um).











Thus for m>n, the above inequality implies


dϕ(un,um)≤dϕ(u0,u1)[Sm−1−Sn]+[Sm−1′−Sn′].











By letting n→∞, we conclude that {un}n=1∞ is a Cauchy sequence. Since U is complete, there exists u∈U such that limn→∞un=u (so limn→∞un+1=u). Now by the triangle inequality


dϕ(Fu,u)≤ϕ(Fu,u)[dϕ(Fu,un)+dϕ(un,u)]≤ϕ(Fu,u)[ηdϕ(u,un−1)+dϕ(un,u)].











This implies that


dϕ(Fu,u)≤0asn→∞.










dϕ(Fu,u)=0.











Hence u is a fixed point of F.  ☐





Theorem 8.

Let us consider a multi-valued mapping F:U→CLB(U), where (U,dϕ) is a complete extended b-metric space. Furthermore, let us consider that the following two conditions hold:




	(i) 

	
The map f:U→R defined by f(u)=dϕ(u,Fu), u∈U, is lower semi-continuous;




	(ii) 

	
There exist p,q∈(0,1), p<q such that for all u∈U there exists v∈Iqu satisfying


dϕ(v,Fv)≤pdϕ(u,v).

















Moreover limn,m→∞αϕ(un,um)<1, for all α∈(0,1). Then F has a fixed point in U.





Proof. 

As Fu∈CLB(U) for any u∈U, Iqu is non void for any constant q∈(0,1). For some arbitrary point u0∈U, there exists u1∈Iqu0 such that


dϕ(u1,Fu1)≤pdϕ(u0,u1).











And, for u1∈U, there exists u2∈Iqu1 satisfying


dϕ(u2,Fu2)≤pdϕ(u1,u2).











Continuing in this fashion, we can get an iterative sequence {un}u=0∞, where un+1∈Iqun and


dϕ(un+1,Fun+1)≤pdϕ(un,un+1),n=0,1,2,⋯.











Now we will prove that {un}n=0∞ is a Cauchy sequence. On the one hand,


dϕ(un+1,Fun+1)≤pdϕ(un,un+1),n=0,1,2,⋯.



(4)







On the other hand, un+1∈Iqun implies


qdϕ(un,un+1)≤dϕ(un,Fun),n=0,1,2,⋯.











By the above two equations, we have


dϕ(un+1,un+2)≤pqdϕ(un,un+1),n=0,1,2,⋯,



(5)






dϕ(un+1,Fun+1)≤pqdϕ(un,Fun),n=0,1,2,⋯.











By inequality (5), it is easy to prove that


dϕ(un,un+1)≤pnqndϕ(u0,u1),n=0,1,2,⋯,










dϕ(un,Fun)≤pnqndϕ(u0,Fu0),n=0,1,2,⋯.



(6)







Let α=pq. Since p<q we have α=pq<1. By taking n→∞ in (6), we obtain


limn→∞dϕ(un,Fun)=0.



(7)







By the triangle inequality and (6), for m,n∈N, m>n


dϕ(un,um)≤ϕ(un,um)[dϕ(un,un+1)+dϕ(un+1,um)],










dϕ(un,um)≤ϕ(un,um)dϕ(un,un+1)+ϕ(un,um)ϕ(un+1,um)[dϕ(un+1,un+2)+dϕ(un+2,um)],










dϕ(un,um)≤ϕ(un,um)dϕ(un,un+1)+ϕ(un,um)ϕ(un+1,um)dϕ(un+1)+⋯⋯+ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)dϕ(um−1,um),










dϕ(un,um)≤ϕ(un,um)αndϕ(u0,u1)+ϕ(un,um)ϕ(un+1,um)αn+1dϕ(u0,u1)+⋯⋯+ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)αm−1dϕ(u0,u1),










dϕ(un,um)≤dϕ(u0,u1)[ϕ(u1,um)ϕ(u2,um)…ϕ(un,um)αn+ϕ(u1,um)ϕ(u2,um)…ϕ(un+1,um)αn+1+…+ϕ(u1,um)ϕ(u2,um)…ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)αm−1].











Since α<1 so limn,m→∞αϕ(un,um)<1. Therefore the series ∑n=1∞αn∏i=1nϕ(ui,um) converges by ratio test for all m∈N. Let


S=∑n=1∞αn∏i=1nϕ(ui,um),andSn=∑j=1nαj∏i=1jϕ(ui,um).











Thus for m>n the above inequality implies


dϕ(un,um)≤dϕ(u0,u1)[Sm−1−Sn].











By taking n→∞, we conclude that {un}n=0∞ is a Cauchy sequence. As U is complete, there exists u∈U such that limn→∞un=u.



On the other hand as f is lower semi-continuous, so from (7) we have


0≤f(u)≤limn→∞inff(un)=0.











Hence f(u)=dϕ(u,Fu)=0. Finally, by the closeness of Fu, we have u∈Fu.  ☐





Theorem 9.

Let us consider a multi-valued mapping F:U→CLB(U), where (U,dϕ) is a complete extended b-metric space. Furthermore, let us consider that the following two conditions hold:




	(i) 

	
The map f:U→R defined by f(u)=dϕ(u,Fu), u∈U, is lower semi-continuous;




	(ii) 

	
There exist q∈(0,1) and η:[0,∞)→[0,q) such that


limsups→t+η(s)<q,forallt∈[0,∞)



(8)




and for all u∈U, there exists v∈Iqu satisfying


dϕ(v,Fv)≤η(dϕ(u,v))dϕ(u,v),forallu∈Uandv∈Fu.



(9)













Moreover limn,m→∞αϕ(un,um)<1, for all α∈(0,1). Then F has a fixed point in U.





Proof. 

Let us assume that F has no fixed point, so dϕ(u,Fu)>0 for each u∈U. Since Fu∈CLB(U), for any u∈U, Iqu is non void for any constant q∈(0,1). If v=u then u∈Fu, which is a contradiction. Hence for all q∈(0,1) and u∈U, there exist v∈Tu with u≠v such that


qdϕ(u,v)≤dϕ(u,Fu).



(10)







Let us take an arbitrary point u0∈U. By (10) and (ii), there exists u1∈Fu0 with u1≠u0, satisfying


qdϕ(u0,u1)≤dϕ(u0,Fu0),



(11)




and


dϕ(u1,Fu1)≤η(dϕ(u0,u1))dϕ(u0,u1),η(dϕ(u0,u1)<q.



(12)







From (11) and (12), we have


dϕ(u0,Fu0)−dϕ(u1,Fu1)≥qdϕ(u0,u1)−η(dϕ(u0,u1))dϕ(u0,u1)≥[q−η(dϕ(u0,u1))]dϕ(u0,u1)>0.











Further, for u1, there exists u2∈Fu1, u2≠u1, such that


qdϕ(u1,u2)≤dϕ(u1,Fu1),



(13)




and


dϕ(u2,Fu2)≤η(dϕ(u1,u2))dϕ(u1,u2),η(dϕ(u1,u2)<q.



(14)







By (13) and (14), we have


dϕ(u1,Fu1)−dϕ(u2,Fu2)≥qdϕ(u1,u2)−η(dϕ(u1,u2))dϕ(u1,u2)≥[q−η(dϕ(u1,u2))]dϕ(u1,u2)>0.











Furthermore from (12) and (13)


dϕ(u1,u2)≤1qdϕ(u1,Fu1)≤1qη(dϕ(u0,u1))dϕ(u0,u1)<dϕ(u0,u1).











Continuing in this fashion, for un, n>1, there exists un+1∈Fun, un+1≠un satisfying


qdϕ(un,un+1)≤dϕ(un,Fun),



(15)




and


dϕ(un+1,Fun+1)≤η(dϕ(un,un+1))dϕ(un,un+1),η(dϕ(un,un+1)<q.



(16)







From (15) and (16), we have


dϕ(un,Fun)−dϕ(un+1,Fun+1)≥qdϕ(un,un+1)−η(dϕ(un,un+1))dϕ(un,un+1)≥[q−η(dϕ(un,un+1))]dϕ(un,un+1)>0








and


dϕ(un,un+1)<dϕ(un−1,un).



(17)







From above both equations, it follows that the sequences {dϕ(un,Fun)} and {dϕ(un,un+1)} are decreasing, and hence convergent. Now from (8), there exists q′∈[0,q) such that limn→∞supη(dϕ(un,un+1))=q′. Therefore for any q0∈(q′,q), there exists n0∈N such that


η(dϕ(un,un+1))<q0,foralln>n0



(18)







Consequently from (15) and (16), we have


dϕ(un,un+1)<αdϕ(un−1,un),



(19)




where α=q0q and n>n0. Furthermore, from (15)–(17), for n>n0, we have


dϕ(un,Fun)≤ηdϕ(un−1,un)≤η(dϕ(un−1,un))qdϕ(un−1,Fun−1)≤…≤(η(dϕ(un−1,un))…η(dϕ(u0,u1))qndϕ(u0,Fu0)=η(dϕ(un−1,un))…η(dϕ(un0+1,un0+2))qn−n0×η(dϕ(un0,un0+1))…η(dϕ(u0,u1))qn0dϕ(u0,Fu0)<q0qn−n0η(dϕ(un0,un0+1))…η(dϕ(u0,u1))qn0dϕ(u0,Fu0).











Since q0<q, clearly limn→∞(q0q)n−n0=0. This gives


limn→∞dϕ(un,Fun)=0.











Let m>n>n0, from the triangle inequality and (19), we have


dϕ(un,um)≤ϕ(un,um)dϕ(un,un+1)+ϕ(un,um)ϕ(un+1,um)dϕ(un+1)+⋯⋯+ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)dϕ(um−1,um),










dϕ(un,um)≤ϕ(un,um)αndϕ(u0,u1)+ϕ(un,um)ϕ(un+1,um)αn+1dϕ(u0,u1)+⋯⋯+ϕ(un,um)ϕ(un+1,um)…ϕ(um−1,um)αm−1dϕ(u0,u1).











By using the analogous procedure as in Theorem 8, there exists a Cauchy sequence {un}n=0∞ such that un+1∈Fun, un+1≠un. As U is complete, therefore there exists u∈U such that un→u. By (i), we obtain


0≤dϕ(u,Fu)≤limn→∞infdϕ(un,Fun)=0.











By the closedness of Fu, we have u∈Fu, which contradicts our assumption that F has no fixed point.  ☐





Corollary 1.

Let F:U→K(U) be a multi-valued mapping, where (U,dϕ) is a complete extended b-metric space. Furthermore, let us consider that the following conditions hold:




	(i) 

	
The map f:U→R defined by f(u)=dϕ(u,Fu), u∈U, is lower semi-continuous;




	(ii) 

	
There exists η:[0,∞)→[0,1) such that


limsups→t+η(s)<1,forallt∈[0,∞),








and for all u∈U, there exists v∈I1u satisfying


dϕ(v,Fv)≤η(dϕ(u,v))dϕ(u,v),forallu∈Uandv∈Fu.

















Moreover limn,m→∞αϕ(un,um)<1, for all α∈(0,1). Then F has a fixed point in U.





Proof. 

Let us assume that F has no fixed point, so dϕ(u,Fu)>0 for any u∈U. Since Fu∈K(U) for any u∈U, I1u is non empty. If v=u then u∈Fu, which is a contradiction. Hence for all u∈U, there exists v∈Fu with u≠v such that


dϕ(u,v)≤dϕ(u,Fu).



(20)







Let us consider an arbitrary point u0∈U. From (20), by using the analogous procedure as in Theorem 9, we obtain the existence of a Cauchy sequence {un}n=0∞ such that un+1∈Fun, un+1≠un, satisfying


dϕ(un,un+1)=dϕ(un,Fun)








and


dϕ(un,Fun)≤η(dϕ(un−1,un))dϕ(un−1,un),η(dϕ(un−1,un))<1.











Since U is complete, there exists u∈U such that un→u. By (i), we obtain


0≤dϕ(u,Fu)≤limn→∞infdϕ(un,Fun)=0.











By the closedness of Fu, we have u∈Fu, which contradicts our assumption that F has no fixed point.  ☐





Lemma 2.

Let (U,dϕ) be an extended b-metric space. Then for any u∈U and α>1, there exists an element x∈X, where X∈CLB(U) such that


dϕ(u,x)≤αdϕ(u,X).



(21)









Proof. 

Let us suppose that dϕ(u,X)=0 then u∈X, since X is a closed subset of U. Further, let us suppose that x=u, so (21) holds. Now, suppose that dϕ(u,X)>0 and choose


ϵ=(α−1)dϕ(u,X).



(22)







Then using the definition of dϕ(u,X), there exists x∈X such that


dϕ(u,x)≤dϕ(u,X)+ϵ,whereϵ>0.



(23)







By putting (22) in (23), we get


dϕ(u,x)≤αdϕ(u,X).








 ☐





Theorem 10.

Let (U,dϕ) be a complete extended b-metric space and F:U→CLB(U) be a multi-valued mapping satisfying


dϕ(v,Fv)≤η(dϕ(u,v))dϕ(u,v),forallu∈Uandv∈Fu,



(24)




where η:(0,∞)→[0,1) such that


limsups→t+η(s)<1,forallt∈[0,∞).



(25)







Moreover, let us suppose that limn,m→∞αϕ(un,um)<1, for all α∈(0,1). Then




	(i) 

	
There exists an orbit {un}n=0∞ of F for each u0∈U such that limn→∞un=u for u∈U;




	(ii) 

	
u is a fixed point of F, if and only if the function f(u)=dϕ(u,Fu) is F-orbitally lower semi-continuous at u.











Proof. 

Let us assume u0∈U and choose u1∈Fu0, since Fu0≠0. If u0=u1, then u0 is a fixed point of F. Let u0≠u1, by taking α=1η(dϕ(u0,u1)), it follows from Lemma 2 that there exists u2∈Fu1 such that


dϕ(u1,u2)≤1η(dϕ(u0,u1))dϕ(u1,Fu1).











Continuing in this fashion, we produce a sequence {un}n=1∞ of points in U such that un+1∈Fun and


dϕ(un,un+1)≤1η(dϕ(un−1,un))dϕ(un,Fun).



(26)







Now assume that un−1≠un, for otherwise un−1 is fixed point of F. Using (24), it follows from (26) that


dϕ(un,un+1)≤η(dϕ(un−1,un))dϕ(un−1,un)<dϕ(un−1,un).



(27)







Hence {dϕ(un,un+1)} is a decreasing sequence, so it is converges to some non-negative real number. Let a be the limit of {dϕ(un,un+1)}. Clearly, a=0, for otherwise by taking limits in (27), we obtain a≤ca, where c=limsups→a+η(s). From (27), we have


dϕ(un,un+1)≤η(dϕ(un−1,un))η(dϕ(un−2,un−1))dϕ(un−2,un−1)……≤η(dϕ(un−1,un))…η(dϕ(u0,u1))]dϕ(u0,u1).











From (25), we can choose δ>0 and α∈(0,1) such that


η(t)<α2,fort∈(0,δ).











Let N be such that dϕ(un−1,un)<δ for n≥N. From (27), we have


dϕ(un,un+1)≤αdϕ(un−1,un)≤…≤αn−N+1dϕ(uN−1,un).











Hence from the inequality (27), we get


dϕ(un,un+1)≤αn−N+1[η(dϕ(uN−2,uN−1))…η(dϕ(u0,u1))]dϕ(u0,u1)<αn−N+1dϕ(u0,u1).



(28)







Therefore from the triangle inequality and (28) for any m∈N with m>n, we have


dϕ(un,un+m)≤ϕ(un,un+m)dϕ(un,un+1)+ϕ(un,un+m)ϕ(un+1,un+m)dϕ(un+1,un+2)+⋯⋯+ϕ(un,un+m)ϕ(un+1,un+m)…ϕ(un+m−1,un+m)dϕ(un+m−1,un+m),










dϕ(un,un+m)≤αn−N+1[ϕ(un,un+m)+α2ϕ(un,un+m)ϕ(un+1,un+m)+⋯⋯+αm−n−1ϕ(un,un+m)ϕ(un+1,un+m)…ϕ(un+m−1,un+m)]dϕ(u0,u1),










dϕ(un,un+m)≤αn−N+1[ϕ(u1,un+m)ϕ(u2,un+m)…ϕ(un,un+m)+ϕ(u1,un+m)ϕ(u2,un+m)…ϕ(un+m−1,un+m)]dϕ(u0,u1).











Since limn,m→∞ϕ(un,um)α<1, the series ∑j=1∞αj∏i=1jϕ(uj,un+m) converges by the ratio test for each m∈N. Let


S=∑j=1∞αj∏i=1jϕ(ui,un+m),Sn=∑j=1nαj∏i=1jϕ(ui,un+m).











Thus for m∈N with m>n, the above inequality implies


dϕ(un,un+m)≤αn−N+1[Sm−1−Sn].











By letting n→∞, we conclude that {un}n=1∞ is a Cauchy sequence in U. As U is complete, there exists u∈U such that limn→∞un=u. Since un∈Fun−1, it follows from (24) that


dϕ(un,Fun)≤η(dϕ(un−1,un))dϕ(un−1,un)<dϕ(un−1,un).











Letting n→∞, from the above inequality we have


limn→∞dϕ(un,Fun)=0.











Suppose f(u)=dϕ(u,Fu) is F orbitally semi-continuous at u,


dϕ(u,Fu)=f(u)≤limn→∞inff(un)=limn→∞infdϕ(un,Fun)=0.











Hence u∈Fu, since Fu is closed. Conversely let us suppose that u is a fixed point of F (u∈Fu), then f(u)=0≤limn→∞inff(un). Hence f is F orbitally semi-continuous at u.  ☐





Remark 2.

Theorem 10 improves Theorem 1, since F may take values in CLB(U). Since dϕ(v,Fv)≤H(Fu,Fv) for v∈Fu. We have the following corollary.





Corollary 2.

Let (U,dϕ) be a complete extended b-metric space and F:U→CLB(U) be such that


HΦ(Fu,Fv)≤η(dϕ(u,v))dϕ(u,v),foreachu∈Uandv∈Fu,








where η:(0,∞)→(0,1] is such that


limsups→t+η(s)<1,forallt∈[0,∞).











Then




	(i) 

	
there exist an orbit {un}n=0∞ of F for each u0∈U and u∈U such that limn→∞un=u;




	(ii) 

	
u is a fixed point of F, if and only if the function f(u)=dϕ(u,Fu) is F-orbitally lower semi-continuous at u.











Remark 3.

Theorem 7 extends Nadler’s fixed point theorem when U is the extended b-metric space.





Remark 4.

Theorem 8 is a generalization of 7. The following example shows that generalization.





Example 2.

Let U={12,14,…,12n,…}∪{0,1} and dϕ:U×U→[0,∞) be a mapping defined as dϕ(u1,u2)=(u1−u2)2, for u1,u2∈U, where ϕ:U×U→[1,∞) is a mapping defined by ϕ(u1,u2)=u1+u2+2. Then (U,dϕ) is a complete extended b-metric space. Define F:U→CLB(U) as


F(u)={12n+1,1},u=12n,n=0,1,2,…{0,12},u=0.











In a sense of Theorem 7, clearly F is not contractive, in fact


HΦF12n,F(0)=12≥122n=dϕ(u1,u2),forn=1,2,3,….











On the other way,


f(u)=(12n+1)2,u=12n,n=1,2,…u,u=0,1











Hence f is continuous, so it is clearly lower semi-continuous. Furthermore there exists v∈I0.7u for any u∈U such that


dϕ(v,F(v))=14dϕ(u,v).











Thus the existence of a fixed point follows from Theorem 8. Hence Theorem 8 is a generalization of Theorem 7.





Remark 5.

Theorem 9 is an extension of Theorem 8. In fact, let us consider a constant map η=c, where 0<c<q. Thus the hypotheses of Theorem 9 are fulfilled. On the other hand, there exists a map which fulfills the hypotheses of Theorem 9, but does not fulfill the hypotheses of Theorem 8. See the following example:





Example 3.

Let U=[0,1] and dϕ:U×U→[0,∞) be a mapping defined as dϕ(u1,u2)=(u1−u2)2, for u1,u2∈U, where ϕ:U×U→[1,∞) is a mapping defined by ϕ(u1,u2)=u1+u2+2. Then (U,dϕ) is a complete extended b-metric space. Let F:U→CLB(U) be such that


F(u)={12u2},u∈[0,1532)∪(1532,1],{1796,14},u=1532.











Let q=34 and let η:[0,∞)→[0,q) be of the form


η(t)=32t,fort∈[0,724)∪(724,12),425768,fort=724,12,fort=[12,∞).











Since


f(u)=(u−12u2)2,foru∈[0,1532)∪(1532,1],491024,foru=1532.











Obviously f is a lower semi-continuous. Further, for any u∈[0,1532)∪(1532,1] and v=12u2, we have


qdϕ(u,v)≤dϕ(u,Fu),








and


dϕ(v,Fv)≤η(dϕ(u,v))dϕ(u,v).











Of course these both inequalities hold for u=1532 and v=1796. Hence all the hypotheses of Theorem 9 are satisfied and the fixed point of F is {0}. Next let us suppose that, if q∈(0,34] and p∈(0,1) is such that p<q, then, for u=1, we have v=1/2 and consequently


dϕ12,F12>pdϕ1,12.











If q∈(3/4,1) and p∈(0,1) is such that p<q, then for u=1532, we have Fu={1796,14}. Thus, in the case v=1796, we obtain


qdϕ1532,1796>dϕ1532,F1532,








and, in the case v=14, we have


dϕ14,F14>pdϕ1532,14.











Hence hypotheses of Theorem 8 are not fulfilled.





Remark 6.

Theorem 10 is an extension of (Theorem 2.1, [10]) for the case when F is a multi-valued mapping from U to CLB(U) and hence generalizes Theorems 4 and 5 and also the results of [2,5,7,22].
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