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Abstract: Over the last decade, high dimensional data have been popularly paid attention to in
bioinformatics. These data increase the likelihood of detecting the most promising novel information.
However, there are limitations of high-performance computing and overfitting issues. To overcome
the issues, alternative strategies need to be explored for the detection of true important features.
A two-stage approach, filtering and variable selection steps, has been receiving attention. Filtering
methods are divided into two categories of individual ranking and feature subset selection methods.
Both have issues with the lack of consideration for joint correlation among features and computing
time of an NP-hard problem. Therefore, we proposed a new filter ranking method (PF) using the
elastic net penalty with sure independence screening (SIS) based on resampling technique to overcome
these issues. We demonstrated that SIS-LASSO, SIS-MCP, and SIS-SCAD with the proposed filtering
method achieved superior performance of not only accuracy, AUROC, and geometric mean but also
true positive detection compared to those with the marginal maximum likelihood ranking method
(MMLR) through extensive simulation studies. In addition, we applied it in a real application of
colon and lung cancer gene expression data to investigate the classification performance and power
of detecting true genes associated with colon and lung cancer.
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1. Introduction

In the last decade, high dimensional data has appeared with the development of high throughput
techniques, especially in the research area of machine learning [1,2] and data mining [3,4] in biology.
The possibility of finding novel true important variables has potentially become high with a huge
amount of data. However, due to limitations of computing capabilities and overfitting issues,
two-stage approaches of filtering and variable selection for prediction purpose has been popular.
These include methods for microarray [5–8] and RNA-Seq [9,10] data, and genome-wide association
studies (GWAS) [11,12]. Filtering methods, which reduce dimensionality and try to retain the most
promising features as possible, have long been under development. A number of filtering methods has
been proposed to rank features, such as Information gain [13], Markov blanket [14], Bayesian variable
selection [15], Boruta [16], Fisher score [17], Relief [18], maximum relevance and minimum redundancy
(MRMR) [19], marginal maximum likelihood score (MMLs) [20], among which MMLS is one of the
simplest and computationally efficient methods of feature selection with some criteria.

Feature selection methods are divided into two categories of marginal feature ranking and feature
subset selection considering relationship among features. Marginal feature ranking methods order
individual features by their scores and then drop out irrelevant features with small scores using
the desired criteria. [21] utilized the Relief statistical method to rank features. [20] gave a marginal
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maximum likelihood estimator as a feature ranking method and improved classification accuracy. [22]
also developed a novel method to rank features and then chose the optimal subset of features. Individual
ranking methods have been widely used in high throughput data analysis because of their simplicity
and computational time efficiency but a predetermined threshold is required before variable selection
stage. To overcome this issue, the sure independent screening (SIS) approach [23] was developed to
ensure that all true important variables survive after the variable screening with probability tending to
one. Feature subset selection methods [24–26] detect an optimal subset of features leading to the best
performance of prediction. However, these methods have heavy computational time leading to be
NP-hard [27] under a high dimensional setting.

In this paper, we proposed a filter ranking method (PF) utilizing selection probability with an elastic
net based on resampling technique with SIS. The selected features are then applied to three popular
variable selection algorithms such as least absolute shrinkage and selection operator (LASSO) [28],
minimax concave penalty (MCP) [29], and smoothly clipped absolute deviation (SCAD) [30].

The rest of this article is organized as follows. In Section 2, we described three penalized
logistic methods of LASSO, MCP, and SCAD, marginal maximum likelihood ranking method,
sure independence screening method (SIS), the proposed statistical methods for filter ranking and
its algorithm, and metrics of performance including accuracy, area under the receiver operating
characteristic (AUROC), and geometric mean of sensitivity and specificity (G-mean). In Section 3,
we describe the superior performance of our proposed method compared to an individual ranking
method of marginal maximum likelihood logistic regression (MMLR) with SIS through the extensive
simulation studies. We next applied the proposed method to the high dimensional colon gene
expression data and investigate the biological meaning of selected genes. Finally, in Section 4,
we discuss our findings.

2. Materials and Methods

We split this section into several subsections describing the methods used in the study. The section
of sparse logistic regression, such as LASSO, adaptive LASSO, SCAD, and MCP, is discussed. A filtering
method with SIS used as a reference is briefly described and then our proposed method is explained
in detail. The final section considers metrics of the performance including accuracy, AUROC, and
G-mean. All simulations and real applications were done with R software and the corresponding
codes, results, and data are available at [31].

2.1. Penalized Logistic Regression Method

Binary logistic regression is widely used in the classification of clinical outcomes of cancer using
gene expression data to identify the relationship between the outcome and a set of predictors to build
prediction models. However, the logistic regression has limited use in high dimensional settings
when N << P because the inverted matrix does not exist for the estimation of regression coefficients.
Embedded methods such as LASSO, SCAD, and MCP are the most popular methods in gene selection
under a high dimensional setting because they are allowed to select a sparse subset of genes by
continuously shrinking unimportant covariates’ regression coefficients into zero. A number of penalty
based embedded methods has been extensively studied and modified in the area of cancer genes
selection under high throughput data [32–43].

Let the expression levels of genes in ith individual be denoted as xi = (xi1, xi2, . . . , xid)

for i = 1, . . . , n and d is a total number of genes. Given a training data set
{
(xi, yi)

}n
i=1 where yi ∈ (0, 1),

yi = 0 indicates that ith individual is in normal group and yi = 1 in cancer group. Assuming that
p(xi) = p(yi = 1

∣∣∣xi) , the logistic regression is defined as follows:

log
(

p(xi)

1− p(xi)

)
= β0 + xiβ, where i = 1, . . . , n and β = (β1, . . . , βd)

T. (1)
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The following formula is for the maximum log-likelihood estimator of logistic regression (MLR).
β̂MLR is defined as follows:

β̂MLR = argmax
β

[log(L(β))] = argmax
β

 n∑
i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi)))

 (2)

The estimation of parameters can be calculated by maximizing the above log-likelihood function
log(L(β)). The criterion for classification is that if p(yi = 1

∣∣∣xi) ≥ 0.5 , then the individual belongs to
the cancer group, otherwise, normal group. The penalized logistic regression (PLR) is a combination
of logistic regression with penalty function and parameters can be estimated by minimizing the
log-likelihood function with penalty function as follows:

β̂PLR = argmin
β

− n∑
i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + p(β)

, (3)

where p(β) is a penalty function.
One of the most popular penalty functions is LASSO [12–18]. It forces most of the unimportant

genes’ regression coefficients into zero. Although it is widely used in high throughput biomedical
data, it has the tendency to randomly choose one of the genes with high correlation and then throw
out the rest of the genes. The estimation of regression coefficients can be done by minimizing the
following likelihood:

β̂lasso = argmin
β

− n∑
i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + λ
d∑

i=1

∣∣∣βi
∣∣∣. (4)

Another popular sparse logistic regression is SCAD with a concave penalty that complements the
limitation of lasso mentioned above. To estimate parameters of regression coefficients, the following
log-likelihood can be minimized:

β̂SCAD = argmin
β

− n∑
i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + λ
d∑

i=1

pλ(βi)

. (5)

The pλ(βi) is

∣∣∣β j
∣∣∣I(|β j |≤λ) +


{(

a2
− 1

)
λ2
−

(
aλ−

∣∣∣βi
∣∣∣)2

+

}
I
(
λ ≤

∣∣∣βi
∣∣∣)

2(a− 1)

, for λ ≥ 0 and a > 2. (6)

The minimax concave penalty (MCP) is also popular as much as SCAD. The estimation of
regression coefficients can be achieved by minimizing the following log-likelihood function:

β̂MCP = argmin
β

− n∑
i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + λ
d∑

i=1

pλ(βi)

. (7)

pλ(βi) is written as follows.2aλ
∣∣∣βi

∣∣∣− βi
2

2a

I
(∣∣∣βi

∣∣∣ ≤ aλ
)
+

(
aλ2

2

)
I
(∣∣∣βi

∣∣∣ > aλ
)
, f or λ ≥ 0 and a > 1. (8)
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2.2. Variable Ranking with MMLR

In practice, gene expression data usually contain irrelevant genes that lead to low classification
performance under high dimensional settings. Therefore, the analysis with respect to important
variable detection has become a main part of the classification. Filter methods have been paid attention
to such a goal. These methods essentially measure the strength of the relationship of each of genes with
a binary outcome and then ranks them [44]. They have serval benefits for the analysis of huge amounts
of gene expression data. First of all, they reduce high dimension into the appropriate dimension as well
as the cost of computation time. Furthermore, they can also help improve the classification performance
by increasing the likelihood to choose true important genes. There are a lot of filter methods applied to
big data analysis of gene expression. One of the popular ranking methods is a logistic regression as a
classifier. The value of maximum marginal likelihood estimator of logistic regression (MMLR) in each
gene can be calculated using Equation (2) with a single gene. According to this method, a significant
gene should have a large magnitude for its MMLR. Likewise, the list of ranking genes is made by the
marginal strength of association with the response. That is, the top-ranked genes considered as most
promising features have larger values of MMLR. To make a decision, the threshold of selecting top
genes from the list, SIS would be used. It is a simple and effective algorithm which includes the true
significant variables with probability tending toward one [43]. The cutoff value to select top-ranked

genes is set up with
⌊

n
log(n)

⌋
. Those filtered genes would be plugged into the sparse logistic regression

models such as LASSO, MCP, and SCAD to further evaluate the performance of classification as well as
gene selection. The Algorithm 1 describes the procedure of the proposed two-stage approach.
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Algorithm 1 Proposed two-step procedure

Step 1: Sample 70% of samples randomly without replacement from the training set.
Step 2: Count frequency of each of genes from 100 models of λ values.
Step 3: Repeat Step 1 and Step 2 100 times.
Step 4: Calculate selection probability for each of variables based on Equation (10) and then rank them.

Step 5: Select top
⌊

n
log(n)

⌋
genes with the highest frequency.

Step 6: Apply them to sparse logistic regression methods to build prognostic models.

2.3. The Proposed Variable Ranking Method

We utilize the following elastic net (α = 0.5) penalized regression method based on resampling
technique to rank the features of importance using frequency. Elastic net is a combination of
L1(LASSO) and L2(Ridge) and it has the benefit of performing well with highly correlated variables.

β̂elastic net = argmin
β

− n∑
i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + λ

1− α
2

d∑
i=1

∣∣∣βi
∣∣∣2 + α

d∑
i=1

∣∣∣βi
∣∣∣
. (9)

The following is the equation of selection probability in each gene based on the elastic net.

SP(gl) =
1
K

K∑
i=1

1
L

L∑
j=1

I(βi , 0), for l = 1, 2, . . . , d, (10)

where K is the number of resampling, L is the number of λ, βi is the regression coefficient corresponding
gene l, and I( ) is the indicator variable. In each of K resampling, 100 values of λ are considered to build
variable selection models. With SIS approach, top genes are selected and then applied those genes to
LASSO, MCP, and SCAD penalized logistic regression method. The following is the algorithm of our
proposed filter ranking method to rank the variable of importance. Figure 1 describes the schema of
the proposed two-step approach.Mathematics 2019, 7, 493 6 of 17 
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2.4. Metrics of Performance

We calculated accuracy, the geometric mean of sensitivity and specificity (G-mean), and area under
the receiver operating characteristic curve (AUROC). The accuracy is done with the following equation:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100, (11)

where TP is the number of true positives, TN the number of true negatives, FP the number of false
positives, and FN the number of false negatives.

The geometric mean of sensitivity and specificity was used to check the joint performance.
The equation is as follows:

Geometric mean =
√

Sensitivity× Speci f icity. (12)

AUROC was also considered to evaluate the overall classification performance of the proposed
method. A perfect overall classification produces an AUROC = 1 whereas a random overall classification
has an AUROC = 0.5.

3. Results

3.1. Simulation Results

The response variable is generated by a sequence of Bernoulli trial with the following probability:

πi(yi = 1
∣∣∣xi) =

exp(xiβ)

1 + exp(xiβ)
. (13)

Data in each iteration are generated by using a multivariate normal distribution with mean 0
and variance-covariance matrix Σ with compound symmetry correlation structure whose diagonal
elements are 1 and off-diagonal elements are ρ = 0.2, 0.5, and 0.7, respectively. The following is the
variance-covariance matrix:

Σ =


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


d×d

(14)

x j ∼ Nd(0, Σ) is the jth row of design matrix X and yi is a binary outcome generated by a Bernoulli
trial with the probability from Equation (13). 100 datasets, where n is 200 and d is 1000, are generated
and six true regression coefficients are generated from a uniform distribution with min and max values
which are 2 and 4, respectively. The simulation data are applied to PF as well as MMLR as a first
stage to show the superiority of performance that true variables are highly ranked. The variable
ranking procedure in PF was run 100 times with resampling technique. Then the calculated average
selection probabilities of each of the 1000 variables were used to rank them. The result of filtering
performance was summarized as boxplots described in Figure 2. As seen in boxplots with three
different correlation structures, the ranking of six true important variables is higher than that of MMLR.
Under the correlation coefficient of 0.2, the average ranking of the six true variables with the proposed
ranking method was at 22nd among 1000 variables, whereas the MMLR method was at 44th. In case
of high correlation coefficients of 0.5 and 0.7, the proposed one was 59th and 62nd while MMLR was
132nd and 139th.

In addition, an average number of true variables included in filtered data with SIS is reported
in Table 1. As seen in Table 1, the proposed method includes more true variables than MMLR in the
various correlation settings. For each correlation setting, we used a paired two-sample t-test to check
for significance level for the mean difference of the true number of variables between the two methods
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through 100 iterations, and all three were significant. That is, the proposed method is superior to
MMLR for filtering true variables with SIS.

Table 2 shows that the performance of prediction as well as geometric mean with SIS-LASSO,
SIS-MCP, and SIS-SCAD based on the proposed filter method are better than that of MMLR. As seen in
TP (average number of true positives) of Table 2, all three variable selection methods capture mostly
a true number of variable filtered from each of PF and MMLR. However, model size (MS) with the
proposed filter ranking method is larger than that of MMLR because the methods with more true
variables have a tendency to select unimportant variables highly correlated with the true variables.
Figure 3 shows the boxplots of the area under the receiver operating characteristic (AUROC) for each
of three methods with both proposed filter ranking and MMLR ranking methods based on SIS under
three different correlation coefficients (ρ = 0.2, 0.5, and 0.7). It also demonstrated that the AUROCs
of SIS-methods based on the proposed filter ranking method is better performed compared to those
of MMLR.

Table 1. An average number of true positives from the proposed PF and MMLR with SIS and a
significance level of paired two-sample t-test for the mean difference of the number of true positives
between two methods using the number of true positives obtained over 100 iterations.

Filtering Method Metric
Correlation Coefficient

0.2 0.5 0.7

PF Number of True
Positive

5.4 (0.765) 4.21 (1.09) 3.11 (1.09)

MMRL 4.52(0.948) 2.15 (1.26) 0.29 (0.50)

two sample t-test (p value) 1.204 × 10−11 < 2.2 × 10−16 < 2.2 × 10−16

*(): standard deviation.

The variable selection procedures of SIS-LASSO, SIS-MCP, and SIS-SCAD with both PF and MMRL
filtered data were run 100 times using compound symmetry correlation structure with 0.2, 0.5, and 0.7.
In each iteration, accuracy, area under the receiver operating characteristic (AUROC), geometric mean
(G-mean) for sensitivity and specificity, true positives (TP), and false positives (FP). The results of
performance for the variable selection methods with both filter ranking methods are summarized in
Table 2.

3.2. Real Data Analysis

To test the performance of SIS-LASSO, SIS-MCP, and SIS-SCAD after filtering with the proposed
method, we analyzed colon cancer gene expression data. The dataset contains 62 samples, which
included 40 colon tumors and 22 normal colon tissue samples and 2000 genes whose gene expression
information was extracted from DNA microarray data resulting from preprocessing; all 2,000 genes
have unique expressed tags (ESTs) named. We also analyzed lung cancer gene expression data,
GSE10072. The dataset includes 107 samples, which are made up of 49 normal lung and 58 lung
tumor samples with 22,283 genes. Initially, we calculated the pairwise correlation for the normal and
cancer samples combined to check the extent of overall correlation among genes in the colon cancer.
The pairwise correlation is summarized in Figure 4 as a histogram with boxplot. The mean correlation
between genes is 0.428 with a standard deviation of 0.203. It is clear that there is a high correlation
between genes and this falls between the values tested in the simulation studies. In case of the lung
cancer, the mean correlation between genes is 0.012 with a standard deviation of 0.246 because we
used a full gene expression data unlike the colon gene expression data.
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Table 2. Classification performance of proposed filtering (PF) compared to marginal maximum
likelihood logistic regression estimator (MMLR) with SIS-LASSO, SIS-MCP, and SIS-SCAD over
100 iterations.

Correlation Filtering Methods Accuracy G-mean TP FP MS

0.2

PF

SIS-LASSO 0.856(0.047) 0.854(0.049) 5.25(0.757) 0.019(0.002) 24.55(1.971)
SIS-MCP 0.878(0.054) 0.877(0.056) 5.03(0.937) 0.006(0.003) 11.3(2.805)

SIS-SCAD 0.878(0.053) 0.876(0.055) 5.18(0.757) 0.012(0.005) 17.24(5.053)
average 0.871(0.051) 0.869(0.053) 5.153(0.817) 0.012(0.003) 17.697(3.276)

MMLR

SIS-LASSO 0.847(0.056) 0.844(0.06) 4.3(0.99) 0.015(0.002) 18.73(2.131)
SIS-MCP 0.86(0.061) 0.858(0.063) 4.21(0.988) 0.006(0.003) 10.32(2.449)

SIS-SCAD 0.861(0.059) 0.858(0.062) 4.3(0.99) 0.011(0.004) 14.8(3.649)
average 0.856(0.059) 0.853(0.062) 4.27(0.989) 0.011(0.003) 14.617(2.743)

0.5

PF

SIS-LASSO 0.886(0.041) 0.884(0.042) 3.65(1.266) 0.019(0.003) 22.71(2.267)
SIS-MCP 0.869(0.055) 0.868(0.057) 2.93(1.409) 0.008(0.003) 10.87(2.058)

SIS-SCAD 0.884(0.048) 0.883(0.05) 3.57(1.257) 0.017(0.004) 20.06(3.92)
average 0.88(0.048) 0.878(0.05) 3.383(1.311) 0.015(0.003) 17.88(2.748)

MMLR

SIS-LASSO 0.865(0.046) 0.863(0.047) 1.84(1.237) 0.015(0.003) 17.02(2.137)
SIS-MCP 0.858(0.048) 0.857(0.048) 1.66(1.233) 0.008(0.002) 9.89(1.681)

SIS-SCAD 0.863(0.047) 0.861(0.047) 1.83(1.28) 0.014(0.003) 15.64(2.873)
average 0.862(0.047) 0.86(0.047) 1.777(1.25) 0.012(0.003) 14.183(2.23)

0.7

PF

SIS-LASSO 0.911(0.037) 0.911(0.038) 2.74(1.16) 0.019(0.003) 21.14(2.274)
SIS-MCP 0.899(0.042) 0.899(0.043) 1.82(1.158) 0.007(0.002) 8.88(1.981)

SIS-SCAD 0.907(0.038) 0.907(0.038) 2.68(1.171) 0.016(0.004) 18.88(3.699)
average 0.906(0.039) 0.906(0.04) 2.413(1.163) 0.014(0.003) 16.3(2.651)

MMLR

SIS-LASSO 0.887(0.037) 0.886(0.037) 0.26(0.543) 0.014(0.002) 13.72(1.724)
SIS-MCP 0.881(0.04) 0.88(0.041) 0.21(0.498) 0.008(0.002) 7.75(1.591)

SIS-SCAD 0.888(0.036) 0.888(0.037) 0.25(0.52) 0.013(0.002) 13.45(2.285)
average 0.885(0.038) 0.885(0.038) 0.24(0.52) 0.012(0.002) 11.64(1.867)

*(): standard deviation.
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To obtain reliable results of the performance of accuracy, AUROC, and G-mean with screened
variables, we iterated 100 times of both the colon and lung cancer data with resampling technique.
In each iteration, we firstly divided the data into a training set of 70% of samples and a testing set
of 30% of samples. Secondly, we select top ranked number of genes with SIS to plug into LASSO,
MCP, and SCAD. Finally, we select genes with non-zero coefficients in the model and estimate the
performance. We also count genes appeared in the models across three variable selection methods to
build lists of ranking genes.

As in the simulation studies, we estimated the average of accuracy, AUROC, G-mean, and model
size as the results of using three methods with PF. The results are reported in Table 3. SIS-LASSO
with the performance of accuracy and AUROC, each of which is 0.803 and 0.886 with the standard
deviations of 0.098 and 0.077 for colon and 0.976 and 0.998 with standard of 0.017 and 0.007, respectively,
is relatively better compared to those of other variable selection methods in both datasets. We also
presented the top 10 genes selected from each of the three lists of ranking genes across the three variable
selection methods based on 100 resampling for the colon cancer and lung cancer data in both Tables 4
and 5. There are eight common genes of G50753, M76378, H08393 H55916, M63391, T62947, R80427,
and T71025 among top 10 ranked genes from the results of three methods in the colon data.
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The gene of R87126 is common between the results of SIS-LASSO and SIS-MCP, T47377 between
SIS-LASSO and SIS-SCAD, and T64012 between SIS-SCAD and SIS-MCP. In particular, G50753, H08393,
and H55916 were consistently ranked.

Table 3. Classification performance of the proposed selection method with SIS-LASSO, SIS-MCP, and
SIS-SCAD in both colon and lung cancer. It is the average performance resulting from 100 iterations.

Dataset Method Accuracy AUROC G-Mean Model Size

SIS-LASSO 0.803 (0.098) 0.886 (0.077) 0.745 (0.144) 7.8 (1.47)
Colon SIS-MCP 0.793 (0.097) 0.864 (0.088) 0.748 (0.132) 4.14 (1.054)

SIS-SCAD 0.798 (0.096) 0.874 (0.082) 0.753 (0.13) 6.73 (1.896)

SIS-LASSO 0.976 (0.017) 0.998 (0.007) 0.975 (0.019) 9.53 (1.453)
Lung SIS-MCP 0.952 (0.03) 0.983 (0.017) 0.95 (0.032) 1.09 (0.288)

SIS-SCAD 0.975 (0.021) 0.997 (0.006) 0.973 (0.023) 8.65 (2.222)

(): standard deviation.

G50753, M63391, and M76378 were reported as significant genes related to colon cancer in [45].
M76378, H08393, H55916, M63391, R87126, and T47377 were also reported as genes associated with
colon cancer in [46]. In addition, H08393 (collagen alpha 2(XI) chain) involved in cell adhesion is also
known as a gene related to colon carcinoma whose cell has collagen-degrading activity as part of the
metastatic process. T62947 has the potential to affect colon cancer by playing a role in controlling cell
growth and proliferation through the selective translation of particular classes of mRNA. R80427 is
also identified as genes distinguishing colon cancer in [47].

Table 4. Top 10 ranked genes with highest selection frequency from the lists of ranking genes using 100
times resampling approach across three methods of SIS-LASSO, SIS-MCP, and SIS-SCAD on both the
colon cancer and the lung cancer gene expression data.

Rank SIS-LASSO SIS-MCP SIS-SCAD

Gene Accession ID

1 Hsa.36689 *** (G50753) Hsa.36689 Hsa.36689
2 Hsa.692.2 *** (M76378) Hsa.8147 Hsa.692.2
3 Hsa.6814 *** (H08393) Hsa.6814 Hsa.6814
4 Hsa.1660 *** (H55916) Hsa.1660 Hsa.1660
5 Hsa.8147 *** (M63391) Hsa.692.2 Hsa.33268
6 Hsa.5392 *** (T62947) Hsa.12241 ** (T64012) Hsa.12241
7 Hsa.37937 ** (R87126) Hsa.33268 Hsa.5392
8 Hsa.33268 *** (R80427) Hsa.5392 Hsa.8147
9 Hsa.3016 ** (T47377) Hsa.8125 Hsa.8125
10 Hsa.8125 *** (T71025) Hsa.37937 Hsa.3016

***: common genes in all three ranked gene lists, **: common genes in two of the three ranked gene lists.; (): GenBank
Accession Number.

Likewise, the top 10 ranked genes in Table 4 from SIS-LASSO, SIS-MCP, and SIS-SCAD with PF
were shown to play an important role in colon cancer. Figure 5 shows the boxplots of significantly
differentially expressed genes between normal and colon samples on the eight genes found in all three
methods. H08393 and H55916 are significantly expressed and downregulated while the other six are
upregulated. In case of lung cancer data, there are five common genes of 21957_s_at, 209555_s_at,
209875_s_at, 209074_s_at, and 219213_at among top 10 ranked genes in lung cancer. The genes of
205357_s_at, 203980_at, 208982_at, and 220,170 are common between the results of SIS-LASSO and
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SIS-MCP. The gene of 32625_at is common gene between SIS-LASSO and SIS-SCAD. Specially, first
top four genes between the results of SIS-LASSO and SIS-SCAD have the same ranking. In addition,
there are four unique genes of 209614_at from SIS-SCAD, 206209_s_at, 204271_s_at, 204396_s_at,
and 219719_at from SIS-MCP. 219597_s_at (DUOX1) usually is downregulated and associated with
lung breast cancer [48,49]. 209555_s_at (CD36) is also related to breast cancer [50] and affects the
progression of lung cancer [51]. 209875_s_at (SPP1) is reported as a prognostic biomarker for lung
adenocarcinoma [52,53]. 209074_s_at (FAM107A) is also emphasized as a lung cancer biomarker
downregulated [54]. Although 219213_at (JAM2) are not directly known as a variant of lung cancer,
it is worthwhile to be further investigated as a potential biomarker related to lung adenocarcinoma.
We also found that most of five common genes play significant roles in lung cancer. Figure 6 also
represents the boxplots of significantly differentially expressed genes between normal and colon
samples on the five genes found commonly in the top ten ranked genes in all three methods. Only the
gene of 209875_s_at (SPP1) is upregulated while the rest of them are downregulated.

Table 5. Top 10 ranked genes with highest selection frequency from lists of gene ranking using 100
times resampling approach of three methods of SIS-LASSO, SIS-MCP, and SIS-SCAD on the lung cancer
gene expression data.

Rank SIS-LASSO SIS-MCP SIS-SCAD

- Gene Accession ID

1 219597_s_at ***(DUOX1) 209555_s_at 219597_s_at
2 205357_s_at ** 209074_s_at 205357_s_at
3 209555_s_at ***(CD36) 32625_at 209555_s_at
4 209875_s_at ***(SPP1) 206209_s_at * 209875_s_at
5 203980_at ** 204271_s_at * 209074_s_at
6 208982_at ** 204396_s_at * 219213_at
7 209074_s_at *** (FAM107A) 219213_at 208982_at
8 220170_at ** 219597_s_at 220170_at
9 219213_at *** (JAM2) 219719_at * 209614_at *
10 32625_at ** 209875_s_at 203980_at

***: common genes in all three ranked gene lists, **: common genes in two of the three ranked gene lists. *: unique genes. ():
Gene symbol.

4. Discussion

We explored the feasibility of using the proposed feature ranking method as a filtering stage with
Elastic net (α = 0.5) based on a resampling approach followed by SIS as screening in conjunction with
LASSO, MCP, and SCAD penalized logistic variable selection methods in high dimensional settings
to improve the performance of variable selection and classification prediction. One of the currently
popular methods achieving such a goal is MMLR. It ranks variables in order from largest to smallest
scores of maximum likelihood. It performs poorly with important variables that are marginally weak
but jointly and strongly associated with the response since it screens out such variables. The simulation
studies demonstrated that the PF method retained more true important variables when compared to
MMLR in Table 1. PF method also showed a better performance of retaining a true number of variables
as the correlation of the variables was increased than MMRL. It is clear that the elastic net-based PF
takes into account correlation among true important variables, while MMLR only considers marginal
strength with the outcome variable. However, as seen in the results of using three variable selection
methods with SIS based on both filtered data, the proportion of unimportant variables in the models is
still high.
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Figure 5. Boxplots of differential expression level between normal and colon samples on eight genes
from SIS-LASSO, SIS-MCP, and SIS-SCAD with the ranked data. Each boxplot contains the p-value of
mean differential expression between two groups with a two-sample t-test.

For further confirmation of the PF in selecting the most promising genes for superior classification
performance, we applied it to a real example of both colon and lung cancer gene expression data.
The SIS-LASSO method produced the best performance scores compared to SIS-MCP and SIS-SCAD.
We also selected the top 10 ranked genes with highest selection frequency from the lists of ranking
genes generated by the resampling approach in each of three variable selection methods to check gene
selection consistency as well as biological significance connecting to colon and lung cancer. There were
eight and five overlapped genes among top 10 ranked genes from the results of three methods in
Tables 4 and 5, respectively. Most of the genes are reported as significant genes related to colon and lung
carcinoma. In addition, some of the genes was consistently highly ranked across the three methods.



Mathematics 2019, 7, 493 13 of 16
Mathematics 2019, 7, 493 14 of 17 

 

 

Figure 6. Boxplots of differential expression level between normal and lung samples on five 
genes from SIS-LASSO, SIS-MCP, and SIS-SCAD with the ranked data. Each boxplot 
contains the p-value of mean differential expression between two groups with a two-
sample t-test. 

5. Conclusion 

In this study, the proposed PF demonstrated the superiority of ranking true variables highly as 
a filtering stage compared to MMLR through extensive simulation studies. Furthermore, the 
combination of SIS-LASSO, SIS-MCP, and SIS-SCAD with the PF also had better performance of 
classification as well as detection of true important variables than those with MMLR. Even in real 
applications of colon and lung gene expression data, it was demonstrated that the proposed two-
stage procedure with PF consistently captures the most promising features related to colon and lung 
cancer. As future research, we plan to develop the methodology of variable selection with PF to 
increase the power of detecting true important variables as well as prediction of classification. 

Author Contributions: All authors drafted the manuscript, and read and approved the final manuscript. 

Funding: This research received no external funding.  

Acknowledgments: We thank the referees for reading the manuscript very carefully and making a number of 
valuable and kind comments that improve the presentation of the manuscript. 

Conflict of Interest: The authors declare no conflict of interest.  

References 

1. Sangjin, K.; Susan, H. High Dimensional Variable Selection with Error Control. Biomed. Res. Int. Vol. 2016, 
2016, doi:10.1155/2016/8209453. 

2. Shuangge, M.; Jian, H. Penalized feature selection and classification in bioinformatics. Brief. Bioinform. 2008, 
9, 392–403. 

3. Abhishek, B.; Shailendra, S. Gene Selection Using High Dimensional Gene Expression Data: An Appraisal. 
Curr. Bioinform. 2018, 13, 225–233, doi:10.2174/1574893611666160610104946. 

4. Hassan, T.; Elf, E.; lan, W. An efficient approach for feature construction of high-dimensional microarray 
data by random projections. PLoS ONE 2018, 13, e0196385, doi:10.1371/journal.pone.0196385. 

Figure 6. Boxplots of differential expression level between normal and lung samples on five genes from
SIS-LASSO, SIS-MCP, and SIS-SCAD with the ranked data. Each boxplot contains the p-value of mean
differential expression between two groups with a two-sample t-test.

5. Conclusions

In this study, the proposed PF demonstrated the superiority of ranking true variables highly as a
filtering stage compared to MMLR through extensive simulation studies. Furthermore, the combination
of SIS-LASSO, SIS-MCP, and SIS-SCAD with the PF also had better performance of classification as
well as detection of true important variables than those with MMLR. Even in real applications of colon
and lung gene expression data, it was demonstrated that the proposed two-stage procedure with PF
consistently captures the most promising features related to colon and lung cancer. As future research,
we plan to develop the methodology of variable selection with PF to increase the power of detecting
true important variables as well as prediction of classification.
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