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Abstract

:

In this paper, we consider the Wiener–Poisson risk model, which consists of a Wiener process and a compound Poisson process. Given the discrete record of observations, we use a threshold method and a regularized Laplace inversion technique to estimate the survival probability. In addition, we also construct an estimator for the distribution function of jump size and study its consistency and asymptotic normality. Finally, we give some simulations to verify our results.
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1. Introduction


Let S={St}t≥0 with S0=0 be a compound Poisson process defined as


St=∑i=1Ntγi,t≥0,








where {Nt}t≥0 is a Poisson process with unknown intensity λ>0, and γ1,γ2,γ3,… are independent and identically distributed positive sequence of random variables with unknown distribution function F supported on (0,∞).



The Wiener–Poisson risk process is defined by


Xt=x+ct+σWt−∑i=1Ntγi,t≥0,



(1)




where x is a given positive constant, σ>0 is an unknown constant, the corresponding process {Nt,t≥0} is called the claim number process, {γi}i=1,2,… is a sequence of claims, and {Wt}t≥0 is a standard Brownian motion. Suppose that {Nt}t≥0, {Wt}t≥0 and {γi}i=1,2,… are independent of each other, and the mean and variance of claim are finite, i.e., μγ=∫0∞xF(dx)<∞, σγ2=∫0∞x2F(dx)−μγ2<∞. Further, we assume that the risk model in Equation (1) has a relative safety loading ω=cλμγ−1>0. Let τ(x)=inf{t>0;Xt≤0,X0=x}. The survival probability of the risk model in Equation (1) is defined by:


Φ(x)=Pτ(x)=∞,



(2)




and Ψ(x)=1−Φ(x), the probability of ruin.



In the last few decades, many works have been contributed to the survival probability for the risk model in Equation (1) and its extended risk model. In [1], the author first introduced the risk model in Equation (1) and established an asymptotic estimate for Ψ(x). In [2], the authors showed that Φ(x) satisfies a defective renewal equation. By renewal theory, they obtained the Pollaczeck–Khinchin formula of Φ(x). Accurate calculation and approximation for Ψ(x) has always been an inspiration and an important source of technological development for actuarial mathematics (see, e.g., [3,4,5,6,7,8,9]). Although various approximations to the probability of ruin (e.g., importance sampling or saddle-point approximations) are now available, developing alternative approximations of different nature is still an interesting and practical problem.



In recent years, many authors studied the ruin probability by using statistical methods (see, e.g., [10,11,12,13,14,15,16,17,18]). In [17], the author assumed that {Xtin|tin=ihn;i=0,1,2,…,n} and {γ1,γ2,…,γNtnn} are observed, where hn=tin−ti−1n is the sampling interval and the time of claims are known. The author constructed an estimator for Gerber–Shiu function and obtained its asymptotic property. Please refer to Equation (1.2) in [17] for the details of Gerber–Shiu function.



In our work, we suppose that a sample {Xt1n,Xt2n,Xt3n,…,Xtnn} can be observed, where hn=tin−ti−1n is the sampling interval. However, we cannot observe the exact time and size of claims. To estimate Φ(x), we have to estimate F, λ, λμγ and σ2. Given the discrete record of observations, we need to judge whether a claim occurs in the interval (ti−1n,tin]. The threshold method from [19,20,21,22] is to determine that a single jump has occurred within (ti−1n,tin] if and only if the increment |ΔiX|=|Xtin−Xti−1n| is larger than a suitable threshold function. By the threshold method and the work in [21,22], we can estimate F, λ, μγ and σ2.



In [14,17], the authors estimated the ruin probability and Gerber–Shiu function by a regularized Laplace inversion technique. Using the threshold method and the work in [23], it is easy to obtain an estimator for the Laplace transform of Φ(x). To estimate Φ(x), the regularized Laplace inversion technique is used. Finally, we also obtain a rate of convergence for the estimator of Φ(x) in a sense of the integrated squared error (ISE).



This paper is organized as follows. In Section 2, we give some estimators for σ2, λμγ, λ, F and its Laplace–Stieltjes transform. In Section 3, we study the asymptotic properties for the estimators. Finally, we give some conclusions in Section 5. All the technical proofs are presented in Appendix A.




2. Estimation of Survival Probability


To give the estimators for σ2, λμγ, λ, F and the Laplace transform of F, we introduce the following filter:


Cin(ϑ(hn))={ω∈Ω;|ΔiX(ω)|>ϑ(hn)},



(3)




where ϑ(hn) is a threshold function and Din(ϑ(hn)) is a complement of Cin(ϑ(hn)). In [19,20], the threshold function ϑ(hn) satisfies limhn→0ϑ(hn)=0 and limhn→0hnlog(1hn)ϑ(hn)=0. In [21], the author gave an expression of threshold function ϑ(hn)=Lhnb, where L>0 is a constant and b∈(0,12). Obviously, the expression of ϑ(hn) from [21] satisfies the two conditions. In our work, the expression of ϑ(hn) is similar to that in [21].



We first estimate F. Using {|ΔiX|;0≤i≤n,ICin(ϑ(hn))=1} and empirical distribution function, we can try to construct an estimator of F as follows:


F^n(u)=1∑i=1nICin(ϑ(hn))∑i=1nI{|ΔiX|≤u}ICin(ϑ(hn)),u≥0.



(4)







By Equations (3.4) and (3.6) in [21], the estimators of σ2 and λ are


σ2˜n=∑i=1n|ΔiX−chn|2IDin(ϑ(hn))Tn,λ˜n=∑i=1nICin(ϑ(hn))Tn.











By Equation (3.10) in [21], an estimator of λμγ is given by


λμγ˜n=∑i=1n|ΔiX|ICin(ϑ(hn))Tn.











Let ρ=λμγc. Obviously, the estimator of ρ is given by


ρ˜n=1c∑i=1n|ΔiX|ICin(ϑ(hn))Tn.











The Laplace transform of F is defined by lF=E[e−sγ1]=∫0∞e−suF(du). An estimator of lF is given by


lF˜n(s)=∑i=1ne−s|ΔiX|ICin(ϑ(hn))∑i=1nICin(ϑ(hn)),








where s∈E and E is a compact subset of (0,∞).



By the work in [23], the Laplace transform of Φ(x) can be obtained as follows:


LΦ(s)=∫0∞e−sxΦ(x)dx=1−ρD(s),s>0



(5)




where ρ=λμc and D(s)=s+σ22cs2−λc(1−lF(s)).



Let us define an estimator of LΦ(s) as follows:


LΦ˜(s)=1−ρ˜nD˜(s),D˜(s)=s+σ2˜n2cs2−λ˜nc(1−lF˜n(s)),s>0.



(6)







To estimate Φ(x), we use the L2-inversion method proposed from [24]. Now, we give the L2-inversion method by Definition 1. We say that f∈L2(0,∞) if (∫0∞|f(t)|2dt)12<∞.



Definition 1.

Letm>0be a constant. The regularized Laplace inversionLm−1:L2(0,∞)→L2(0,∞)is given by


Lm−1g(t)=1π2∫0∞∫0∞Ψm(y)y−12e−tvyg(v)dvdy



(7)




for a functiong∈L2(0,∞)andt∈(0,∞), where


Ψm(y)=∫0amcosh(πx)cos(xlogy)dx








andam=π−1cosh−1(πm)>0.





For further information, and details of Lm−1, please refer to [24].



To use Definition 1, it requires to verify LΦ˜(s)∈L2(0,∞). As n is sufficiently large, for P-almost all ω∈Ω and s>0, we have


P({ω∈Ω;(1−ρ˜n)s≤D˜(s)≤s+σ2˜n2cs2})=1.



(8)







From Equations (6) and (8), it is obvious that LΦ˜(s)∉L2(0,∞). The L2-inversion method in Definition 1 cannot be applied at once.



Therefore, to use Definition 1, we have to amend LΦ˜(s).



Let


Φθ(x)=e−θxΦ(x),x>0








for arbitrary fixed θ>0. It is obvious that


LΦθ(s)=LΦ(s+θ),s>0.








An estimator of LΦθ is given by


LΦθ˜(s)=LΦ˜(s+θ),s>0.











Obviously, LΦθ˜∈L2(0,∞).



Finally, an estimator of Φ(x) is given by


Φ˜m(n)(x)=eθxΦθ,m(n)˜(x),x>0,



(9)




where Φθ,m(n)˜(x)=Lm(n)−1LΦθ˜(s) and m(n)>0.




3. Asymptotic Properties


According to Theorem 3.1 in [19], the author assumed that σ<Q and γi≥Γ with Q>0, Γ>0. In our work, Assumption 1 is used to prove the asymptotic properties of estimators.



Assumption A1.

There exist two positive constants Q and Γ such thatσ<QandP({ω∈Ω;γi≥Γ})=1fori=1,2,….





Let F¯=1−F. With Equation (4), an estimator of F¯ is given by


F^¯n(u)=1∑i=1nICin(ϑ(hn))∑i=1nI{|ΔiX|>u}ICin(ϑ(hn)).



(10)







Let N(m,n) be a normal distribution with expectation m and variance n. Theorem 1 gives the asymptotic properties of F^n(u).



Theorem 1.

Suppose thatTn=nhn→∞, nhn2→0, hn→0asn→∞and Assumption 1 is satisfied, then


TnF^¯n(u)−F¯(u)→DN(0,F¯(u)(1−F¯(u))λ).



(11)







Obviously,


TnF^n(u)−F(u)→DN(0,F(u)(1−F(u))λ).













Remark 1.

By Dvoretzky–Kiefer–Wolfowitz inequality, we have


P(supu∈[0,∞)|F^n(u)−F(u)|>x)≤Ce−2λTnx2,x>0,








where C is a positive constant, not depending on F. Note that this inequality may be expression in the form:


P(Tnsupu∈[0,∞)|F^n(u)−F(u)|>x)≤Ce−2λx2,x>0,








which clearly demonstrate that


Tnsupu∈[0,∞)|F^n(u)−F(u)|=OP(1).













The asymptotic properties of σ2˜n are given by the following Lemma 1.



Lemma 1.

Suppose thatTn=nhn→∞, nhn2→0andhn→0asn→∞, then


σ2˜n→Pσ2,n→∞.



(12)






n(σ2˜n−σ2)→DN(0,2σ4),n→∞.



(13)









Lemma 2.

Suppose thatTn=nhn→∞, nhnβ→0for someβ∈(1,2], hn→0asn→∞and Assumption 1 is satisfied. Then,


λ˜n→Pλ,sup{s|s∈E}|λ˜nlF˜n(s)−λlF(s)|→P0,



(14)






Tn(λ˜n−λ)→DN(0,λ),



(15)






ρ˜n→Pρ



(16)




and


n(ρ˜n−ρ)→DN(0,λσ2c2),



(17)




asn→∞.





Let ∥f∥B2=∫0B|f(t)|2dt for any function f and B>0. Theorem 2 gives a rate of convergence for Φ˜m(n)(x) in a sense of ISE.



Theorem 2.

Suppose that there exists a constantK>0such that0≤Φ′(x)=g(x)≤K<∞and the conditions in Lemma 2 are satisfied. Then, form(n)=TnlogTnand for any constantB>0, we have


∥Φ˜m(n)−Φ∥B2=OP((logTn)−1),n→∞.













Remark 2.

The explicit expression forΦ˜m(n)(x)is


Φ˜m(n)(x)=exθπ2∫0∞∫0∞e−xsyLΦθ˜(s)Ψm(n)(y)y−12dsdy








whereΨm(n)(y)=∫0am(n)cosh(πx)cos(xlog(y))dxandam(n)=π−1cosh−1(πm(n))>0andm(n)=TnlogTn.



When c, λ, σ, F, θ,ϑ(hn)and sample size n are known,Φ˜m(n)(x)can be evaluated with the commandintegral2(f;0;∞;0;∞)of Matlab.






4. Simulation


If F(x)=1−e−1μγx, the survival probability is given by


Φ(x)=1−r1+1μγ+2λμγσ2r1−r2er1x−r2+1μγ+2λμγσ2r2−r1er2x,x≥0,



(18)




where r2<r1<0 are negative roots of the following equation


12σ2s+c−λs+1μγ=0.











By the work in [25], Equation (18) is obtained easily.



Let c=λ=10, μγ=12, σ=5, θ=0.075, ϑ(hn)=hnb, b=14 and hn=n−45.



Firstly, we computed LΦθ˜(s). In Figure 1, we plot the mean points with sample sizes n= 5000, 10,000, 30,000, 50,000, 80,000, which were computed based on 5000 simulation experiments.



In Remark 2, Φ˜m(n)(u) is a double complex integrals. Using Matlab to compute Φ˜m(n)(u) would take a long time. As shown in Figure 1, L^Φθ is very close to LΦθ as n≥ 30,000. To improve computational efficiency, let


Φp(x)=exθπ2∫0∞∫0∞e−xsy[L^Φθ(s)]n=30000Ψp(y)y−12dsdy,








where [L^Φθ(s)]n=30000=1−1c30000(30000)−45∑k=130000(c(30000)−45−Zk)IDk300001c(30000)−45(130000∑k=130000esZk−1), Ψp(y)=∫0apcosh(πx)cos(xlog(y))dx and ap=π−1cosh−1(πp)>0.



In Figure 2, we plot the mean points with sample sizes n= 30,000 and p=100,500,800,1000,3000, which were computed based on 5000 simulation experiments.




5. Conclusions


In this paper, we use the threshold estimation technique and regularized Laplace inversion technique to constructed an estimator of survival probability for the Wiener–Poisson risk model. The rate of convergence for the estimator is a logarithmic rate. We adopt a method proposed by Cai et al. [26] to improve the speed in simulated calculation. The further work is to improve the speed of convergence for the estimator. We will combine the threshold estimation technique with Fourier transform (inversion) technique to construct an estimator of survival probability. We hope some further studies will be done when the risk model is the compound Poisson model with the barrier dividend strategy and investment. The Gerber–Shiu function and dividend function will be estimated by some statistical methods.
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Appendix A. Proofs of Theorems


Proof of Lemma 1.

The proof of Lemma 1 is easily obtained by Theorem 3.1 in [21]. □





Proof of Lemma 2.

The proof of Equation (14) is given as Theorem 3.2 in [21]. By Theorem 3.1 in [19], we can get Equation (15). It is easy to get Equations (16) and (17) by Proposition 3.4 in [19] and Theorem 3 in [20]. □





To prove Theorem 1, we need the following Proposition, which can be easily obtained in Section 3.2 of [19].



Proposition A1.

Following from the condition of Theorem 1, for anyϵ>0,


limn→∞P|ΔiX|ICin(ϑ(hn))−γτ(i)I{ΔiN≥1}>ϵ=0,



(A1)




whereγτ(i)is the size of the eventual jump in time interval(ti−1n,tin].





Proof of Theorem 1.

By Equation (10),


TnF^¯n(u)−F¯(u)=Jλ˜n,



(A2)




where


J=∑i=1nI{|ΔiX|>u}−F¯(u)ICin(ϑ(hn))Tn.











As n→∞, the expectation of J is


limn→∞E[J]=limn→∞nTnE(I{|ΔiX|>u}−F¯(u))ICin(ϑ(hn))=limn→∞nTnP(|ΔiX|ICin(ϑ(hn))>u)−F¯(u)P(|ΔiX|>ϑ(hn)).











By Proposition A1, we have


limn→∞P(|ΔiX|ICin(ϑ(hn))>u)=limn→∞P(γτ(i)I{ΔiN≥1}>u)=F¯(u)(λhn+o(hn)).



(A3)







By the work in [19], it is obvious that


limn→∞P(|ΔiX|>ϑ(hn))=λhn+o(hn).



(A4)







Therefore,


limn→∞E[J]=0.











As n→∞, the variance of J is


limn→∞Var[J]=limn→∞nTnVar(I{|ΔiX|>u}−F¯(u))ICin(ϑ(hn))=limn→∞nTnE[I{|ΔiX|ICin(ϑ(hn))>u}]+limn→∞nTnE[(F¯(u))2ICin(ϑ(hn))].−limn→∞nTnE[2F¯(u)I{|ΔiX|ICin(ϑ(hn))>u}].











By Equations (A3) and (A4),


limn→∞Var[J]=λF¯(u)(1−F¯(u)).











With the central limit theorem, Slutsky’s theorem and Lemma 2, we have


TnF^¯n(u)−F¯(u)→DN(0,F¯(u)(1−F¯(u))λ),n→∞.








 □





To prove Theorem 2, we need the following Lemma A1.



Lemma A1.

Suppose that∫0∞[t(t12f(t))′]2t−1dt<∞for a functionf∈L2(0,∞)with the derivativef′. Then,


∥Ln−1Lf−f∥=O(logn)−12,n→∞.













By Theorem 3.2 in [24], the proof of Lemma A1 can be found.



Proof of Theorem 2.

By Equation (9),


∥Φ˜m(n)−Φ∥B2≤e2θB∥Φ˜θ,m(n)−Φθ∥B2≤2e2θB{∥Lm(n)−1LΦθ˜−Lm(n)−1LΦθ∥2+∥Φθ,m(n)−Φθ∥2}.



(A5)







Let Φθ′=gθ. Now, we show that Φθ,m(n) satisfies the condition of Lemma A1.


∫0∞[x(xΦθ(x))′]21xdx=∫0∞[x(12xΦθ(x)+xxgθ(x))]21xdx≤∫0∞21x[x12xΦθ(x)]2+∫0∞21x[xxgθ(x)]2dx=∫0∞12Φθ2(x)dx+2∫0∞x2gθ2(x)dx≤∫0∞12e−2θxdx+2∫0∞x2[g(x)e−θx−θΦ(x)e−θx]2dx≤14θ+4∫0∞x2g2(x)e−2θxdx+4θ2∫0∞Φ2(x)x2e−2θxdx≤14θ+4(K2+θ2)∫0∞x2e−2θxdx<∞.











Therefore, by Lemma A1, we have


∥Φθ,m(n)−Φθ∥2=O(1logm(n)),n→∞.



(A6)







By Equations (5) and (6),


∥LΦθ˜−Lθ∥2=∫0∞(1−ρ)(D˜(s+θ)−D(s+θ))D˜(s+θ)D(s+θ)+(ρ˜n−ρ)D˜(s+θ)2ds.



(A7)







Exploiting Equation (8) and P({ω∈Ω;ρ˜n=1})=0, the right-hand side of Equation (A7) is bounded by


2∫0∞(D˜(s+θ)−D(s+θ))2(s+θ)4(1−ρ˜n)2ds+2∫0∞(ρ˜n−ρ1−ρ˜n)21(s+θ)2ds.



(A8)







By Lemmas 1 and 2, the term


Dn˜(s+θ)−D(s+θ)=(s+θ)22c(σ2˜n−σ2)+1c(λ−λ˜n)+(λ˜nlF˜n(s+θ)−λlF(s+θ))=OP(Tn−12)+1cNTnTn∫0∞e−(s+θ)x(F^n(dx)−F(dx))=OP(Tn−12)+1cNTnTn∫0∞(s+θ)e−(s+θ)x(F^n(x)−F(x))dx≤OP(Tn−12)+1cNTnTnsupx∈[0,∞)|F^n(x)−F(x)|=OP(Tn−12)



(A9)







The last equality is obtained from Remark 1.



By Equation (A9) and Lemma 2, we have


2∫0∞(D˜(s+θ)−D(s+θ))2(s+θ)4(1−ρ˜n)2ds=OP(Tn−1)








and


2∫0∞(ρ˜n−ρ1−ρ˜n)21(s+θ)2ds=oP(Tn−1).











Recall that ∥Lm(n)−1∥2≤πm2(n) (see [24]), so


∥Lm(n)−1∥2∥LΦθ˜−LΦθ∥2=OP(m2(n)Tn).



(A10)







Combining Equations (A6) and (A10), we have


∥Φ˜m(n)−Φ∥B2=OP(m2(n)Tn)+OP(1logm(n)).



(A11)




with an optimal m(n)=TnlogTn balancing the the two right-hand terms in Equation (A11), the order becomes OP((logTn)−1). □
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Figure 1. The estimator of LΦθ with sample sizes n= 5000, 10,000, 30,000, 50,000, 80,000. 
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Figure 2. Φp(x) with sample size n= 30,000 and p=100,500,800,1000,3000. 
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