Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters
Abstract
:1. Introduction
2. Preliminaries
- (i)
- T is non-expansive if
- (ii)
- T is L-Lipschitz continuous with , ifWe call T a contractive mapping if .
- (iii)
- T is firmly non-expansive if
- (iv)
- T is α-averaged if there exists a non-expansive operator and , such that
- (v)
- T is v-inverse strongly monotone (v-ism) with , if
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- ;
- (ii)
- ;
- (iii)
- .
3. The Convergence Analysis and the Superiorized Version
3.1. The Exact Form of Algorithm (8)
- (i)
- for all n;
- (ii)
- and ;
- (iii)
- .
3.2. The Strong Convergence of Algorithm (8)
- (i)
- for all n;
- (ii)
- and ;
- (iii)
- ;
- (iv)
- .
3.3. Bounded Perturbation Resilience
4. Numerical Experiments
Algorithm 1: Superiorized Version of (21) |
1: Given |
2: set |
3: set |
4: set Error = Constant |
5: while Error |
6: set |
7: set |
8: while |
9: set to be a nonascending vector for at |
10: set loop = true |
11: while loop |
12: |
13: set |
14: set |
15: if and |
16: set |
17: set |
18: set loop = false |
19: end if |
20: end while |
21: end while |
22: set |
23: set Error = |
24: set . |
4.1. The Norm Problem
4.2. Numerical Examples
- 1.
- Algorithm parameters:The contraction . The diagonal scaling matrix
- 2.
- Algorithm parameters for the superiorized version:The summable nonnegative real sequence : for some and . We set ϕ as the objective function in problem (47).
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Censor, Y.; Davidi, R.; Herman, G.T. Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 2010, 26, 65008. [Google Scholar] [CrossRef] [PubMed]
- Davidi, R.; Schulte, R.W.; Censor, Y.; Xing, L. Fast superiorization using a dual perturbation scheme for proton computed tomography. Trans. Am. Nucl. Soc. 2012, 106, 73–76. [Google Scholar]
- Davidi, R.; Herman, G.T.; Censor, Y. Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections. Int. Trans. Oper. Res. 2009, 16, 505–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikazad, T.; Davidi, R.; Herman, G.T. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction. Inverse Probl. 2012, 28, 035005. [Google Scholar] [CrossRef] [PubMed]
- Censor, Y.; Chen, W.; Combettes, P.L.; Davidi, R.; Herman, G.T. On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints. Comput. Optim. Appl. 2012, 51, 1065–1088. [Google Scholar] [CrossRef]
- Censor, Y.; Zaslavski, A.J. Strict Fejér monotonicity by superiorization of feasibility-seeking projection methods. J. Optim. Theory Appl. 2015, 165, 172–187. [Google Scholar] [CrossRef]
- Davidi, R.; Censor, Y.; Schulte, R.W.; Geneser, S.; Xing, L. Feasibility-seeking and superiorization algorithm applied to inverse treatment plannning in rediation therapy. Contemp. Math. 2015, 636, 83–92. [Google Scholar]
- Censor, Y.; Zaslavaski, A.J. Convergence and perturbation resilience of dynamic string averageing projection methods. Comput. Optim. Appl. 2013, 54, 65–76. [Google Scholar] [CrossRef]
- Censor, Y.; Davidi, R.; Herman, G.T.; Schulte, R.W.; Tetruashvili, L. Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 2014, 160, 730–747. [Google Scholar] [CrossRef]
- Dong, Q.L.; Lu, Y.Y.; Yang, J. The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 2016, 65, 2217–2226. [Google Scholar] [CrossRef]
- Garduño, E.; Herman, G. Superiorization of the ML-EM algorithm. IEEE Trans. Nucl. Sci. 2014, 61, 162–172. [Google Scholar]
- He, H.; Xu, H.K. Perturbation resilience and superiorization methodology of averaged mappings. Inverse Probl. 2017, 33, 040301. [Google Scholar] [CrossRef]
- Jin, W.; Censor, Y.; Jiang, M. Bounded perturbation resilience of projected scaled gradient methods. J. Comput. Optim. Appl. 2016, 63, 365–392. [Google Scholar] [CrossRef]
- Schrapp, M.J.; Herman, G.T. Data fusion in X-ray computed tomography using a superiorization approach. Rev. Sci. Instrum. 2014, 85, 055302. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.N.; Cui, W. Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm. J. Inequal. Appl. 2018, 2018, 103. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.H.; Penfold, S. Total variation superiorization in dualenergy CT reconstruction for proton therapy treatment planning. Inverse Probl. 2017, 33, 044013. [Google Scholar] [CrossRef]
- Zibetti, M.V.W.; Lin, C.A.; Herman, G.T. Total variation superiorized conjugate gradient method for image reconstruction. Inverse Probl. 2018, 34, 034001. [Google Scholar] [CrossRef] [Green Version]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Space; Dilcher, K., Taylor, K., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Xu, H.K. Properties and Iterative Methods for the Lasso and Its Variants. Chin. Ann. Math. 2014, 35, 501–518. [Google Scholar] [CrossRef]
- Strand, O.N. Theory and methods related to the singular-function expansion and Landweber iteration for integral equations of the first kind. SIAM J. Numer. Anal. 1974, 11, 798–825. [Google Scholar] [CrossRef]
- Piana, M.; Bertero, M. Projected Landweber method and preconditioning. Inverse Probl. 1997, 13, 441–463. [Google Scholar] [CrossRef]
- Neto, E.S.; Helou, D.; Álvaro, R. Convergence results for scaled gradient algorithms in positron emission tomography. Inverse Probl. 2005, 21, 1905–1914. [Google Scholar] [CrossRef]
- Guo, Y.N.; Cui, W.; Guo, Y.S. Perturbation resilience of proximal gradient algorithm for composite objectives. J. Nonlinear Sci. Appl. 2017, 10, 5566–5575. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert space. Inverse Probl. 2010, 26, 105018. [Google Scholar] [CrossRef]
- Moreau, J.J. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 1965, 93, 273–299. [Google Scholar] [CrossRef]
- Marino, G.; Xu, H.K. Convergence of generalized proximal point algorithm. Commun. Pure Appl. Anal. 2004, 3, 791–808. [Google Scholar]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Xu, H.K. Error sensitivity for strongly convergent modifications of the proximal point algorithm. J. Optim. Theory Appl. 2015, 168, 901–916. [Google Scholar]
Methods | ||||||
---|---|---|---|---|---|---|
Iter | Obj | Iter | Obj | |||
MPGAS | 9 | 1.600 | 9 | 1.600 | ||
MPGAB | 9 | 1.600 | 9 | 1.600 | ||
MPGA | 47 | 1.600 | 47 | 1.600 |
Methods | ||||||
---|---|---|---|---|---|---|
Iter | Iter | |||||
MPGAS | 367 | 4.265625 | 27.127 | 1652 | 3.343750 | 22.790 |
MPGAB | 1154 | 5.812500 | 28.563 | 2354 | 7.593750 | 22.793 |
MPGA | 2084 | 9.781250 | 32.386 | 2354 | 8.046875 | 22.793 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhao, X. Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters. Mathematics 2019, 7, 535. https://doi.org/10.3390/math7060535
Guo Y, Zhao X. Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters. Mathematics. 2019; 7(6):535. https://doi.org/10.3390/math7060535
Chicago/Turabian StyleGuo, Yanni, and Xiaozhi Zhao. 2019. "Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters" Mathematics 7, no. 6: 535. https://doi.org/10.3390/math7060535
APA StyleGuo, Y., & Zhao, X. (2019). Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters. Mathematics, 7(6), 535. https://doi.org/10.3390/math7060535